「元素」を含む日記 RSS

はてなキーワード: 元素とは

2019-06-24

anond:20190623213416

グルタミン酸レセプターがあると信じられてるのは日本ぐらいだと思うけど?

ほんとにそんなものあるの?

欧州だと、うま味に似た概念ミネラルかな?

ミネラル土地環境が持つ微量元素含めたさまざまな元素のことで

欧米人ミネラル豊富というのと、

日本人にうま味が豊富というのは、非常に似通った印象を与える。

正確には、うま味とは味の刺激で、ミネラルとは身体への刺激なんだけど

欧米というか欧州の人は、日本人がうま味を愛するようにミネラルを愛する。

うま味とミネラル根本的違いは、うま味は科学的な信仰で、ミネラルは大地や自然信仰ということ。

2019-06-13

anond:20190613140227

あれ元素っていう設定だったのか

M31星雲訛りの名前をつけられた電磁波だとおもってた

ウルトラマンスペシウム光線を出し渋るのって

地球環境のことを考えてるから

スペシウムって地球上に存在しない元素だし

きっと放射性があるんだろう

なるべく肉弾戦で倒したいんだけど

時間もないし敵は倒れないし息は苦しいし

結局は最後放射性元素バラまいて帰っていくんだ

なんて奴だ!

2019-06-06

anond:20190605201517

人体を構成してる60%が酸素なんだって!20%が炭素なんだって!10%が水素なんだって!残りもなんかの元素なんだって

人体がなくなっちゃうね!

2019-05-14

元素ジョーク

アメリカ人のボブが彼のホウ素をボロンと出した

ラテン語専攻のぼく「なんというボリウム……」

2019-05-13

anond:20190513144838

父の精子をもらったほうが最愛の嫁(娘の嫁からみた嫁)の元素をもらえるので良いのでは

お父様がもう不能なら知らないけど

2019-05-02

anond:20190501115112

綺麗な三次元アイドルはぎり母親からまれてきているけど二次元アイドルおっさんからまれおっさんDNA100%割合で受け継いでその成長した感性心理までおっさん構成されているおっさん元素とした組成式の人体錬成なのにそこまで好きになれるのはもうおっさん好きを公言してもいいくらいなのでは

2019-04-25

anond:20190425111808

女の三元素「ちち!しり!ふともも!」のうち、ふとももに特化した造形がウケタんやぞ

2019-04-22

コンピューター様はそんなことを言わない

anond:20190422002407

市民あなたコンピューター様について何か誤解をされているようです。

パラノイア1984年に発売された、冷戦下の赤狩り皮肉ブラックユーモアに溢れたTRPGです。

Wikipedia から一部を引用してみましょう

舞台となるアルファコンプレックスは、サンフランシスコ地下にあるコンピューター制御するシェルター都市である小惑星地球への衝突によりネットワークから孤立した各都市コンピューターは、断片的な情報から共産主義国家の核攻撃中にあると誤認。結果、すべての都市共産主義者制圧され自都市けが正常に営まれていると結論するに到った。以後数百年に渡ってコンピューターは「共産主義攻撃」と「汚染から市民守護するという妄想を達成すべく、都市人類が外に出られないように隔離し、独裁的・専制的・全体主義的な支配を行っている(ちなみに、XPの時点ではコンピューター歴214年である)。人類自由を奪うコンピューター支配体制は、かつてのアメリカが持っていた妄想的な「悪の共産圏国家」のイメージのものである共産主義者攻撃から守るという名目共産主義的な社会を作り出すというのは大きな矛盾なのだが、コンピューターはすでに狂ってしまっているのでそのことには気づけていない。



まりパラノイアでは市民は狂ったコンピュータ様の支配の下、特に存在しない脅威と戦い、どうでもよいミッション遂行しつつ、適当な人を反逆者として今日粛清しているのです。(ZAP! ZAP!)

アルファコンプレックスではこのような状況が長く続いたため、科学技術も衰退しきっています

車に乗れば走っている間にタイヤが外れ、エレベーターに乗れば落下をし、銃を撃てば暴発します。

プレイヤーはみな疑心暗鬼です。理不尽ミッション遂行するふりをしながらお互いに監視をしあい、隙あらば反逆者として仲間を処刑しようとします。

なかなか狂っていますね。でもゲームブックさらに狂っています

市民セキュリティクリアランスに従い情報制限されています。そしてプレイヤーセキュリティクリアランス 赤(R: レッド)はルールブックを読むことができないのです! プレイヤーはわけもわからないままアルファコンプレックスに放り込まれまることになります

ひょっとしたら自分で遊ぶよりも他人右往左往している姿を見る方が面白いかもしれません。素敵なリプレイを紹介しましょう。

パラノイアのページ「義務幸福・目次」

作り込まれネタ表現力が魅力です。冒頭を抜粋してみます。こんなノリが好きならオススメです。ちなみに太字はプレイヤー名です。

みなさんは、いつものように仕事へ出かける前の朝食をいただくため、食堂に集まっています

食堂収容人数3000人ぐらいの、カマボコ型の天井をした、とてつもなく広い体育館のような場所想像して下さい。

その中央を長いベルトコンベアーが貫いており、その上にはポリカーボネートの皿に乗った灰色ペーストが並んでいます

これがアルファコンプレックスにおける主食です。

直に匂いを嗅ぐと涙が止まらなくなる強い刺激臭と、スチールのスプーンすら溶かす強烈な味がしますが、食べてもすぐには死なない程度の安全性保証されてい ます

腹を空かせた市民達は、コンベアーに群がり皿を受け取ると、思い思いのテーブルについて食事を始めます

食べ慣れていない市民などはスプーンペーストに長く漬けていたため、スプーンを溶かしてしまうなどといった粗相をするものもいましたが、食事はおおむ ね……失礼しました、完璧幸福に進んでいきます

STAR-R:いやぁ、コンピューターのくださるお食事はいつ食べても美味しいですね~

Rese-R:当然だね。疑いようもなく、我々は幸福だ。

食堂には、より幸福食事を楽しめるよう、娯楽としてテレビまで用意されています

コンピューター万歳

全員:コンピューター万歳

Rese-R:それにしても、いったいどんな番組が流されているのだろう?

ちょうど食事時の人気番組である電子顕微鏡世界」というのが放映されています

この番組は、様々な金属電子顕微鏡映像を延々と流し続けるというもので……ちなみに、今日テーマベリリウム原子番号 4 の元素記号Be 原子量 9.013)です。

Tokyo-R:すばらしい! なんておもしろ番組なんだ。

Rese-R:いよいよ、明日は「ホウ素」か、いゃあ~、楽しみだなぁ!!

STAR-R:まったくです。こいつぁ目が離せませんね。

 市民幸福そうですね。

全員:当然です。幸福義務です。

(注: 本来名前表示は「個人名」-「クリアランスイニシャル」-「ホームセクター」-「クローンナンバー」でしたが、読みやすさのため「個人名」-「クリアランスイニシャル」に変更しました)

雰囲気が伝わったでしょうか。

パラノイアについてもっと知りたい人はこちらをどうぞ。

これであなた今日からアルファコンプレックス市民です。

市民あなた幸福ですか?

アルファコンプレックスの基礎知識 - paranoia_jp

アルファコンプレックス基本用語集 - paranoia_jp

2019-04-08

anond:20190408103801

たった一個の電子をやり取りするというとっても小さな取引がどの元素にも平等に与えられているか水素から重金属まで多様な世界をつくってるんだよ

2019-04-02

47都道府県ぐらい覚えろよ

比較難易度低いんだから

2019-02-24

理系小学三年生へのプレゼントおすすめ教えて

小学三年生の甥っ子の誕生日プレゼントなにがいいか教えてくれ。自分理系の30代。滅多に会わないけど甥っ子とはとても仲いい。

甥っ子は昔から薬とか化学が大好きで、分子構造模型とか元素表とか好き。あとは図工も好き。

自分世代なら空想科学読本とか大好きな感じの子供なんだと思う。

女ばかりの家系で男が少ないか理系のおじさんとしてなんか世界を広げるようなものをあげたいんだけど、なにかいいのないかね。

面白い本とか、おもちゃとかだと思うけど、いいのが浮かばない。世界で一番美しい分子の本も候補ではある。すでに持ってるかもしれなくて、最悪図書券かなとは思ってるけど。。

2019-02-22

怖くも胡散臭くもない「イオン液体」を知ろう

化学界ではここ2,30年ほどイオン液体ブームだ。イオン液体は、バッテリーの電解液や反応溶媒などに応用が期待されている新材料だが、畜生なことに同じ新材料でもカーボンナノチューブとかフラーレンとか導電性ポリマーとか超伝導体みたいなものと比べると格段に知名度が低い。学部生だと化学を専門にしていても知らないやつは多い。

イオンってえと、「ゲッ、プラズマクラスターだ、逃げろ!」みたいな反応をする奴がいるが、イオン液体別にニセ科学でもなんでもない。おそらく健康いいわけでもないし、癒やし効果があるわけでも無え。ただの液体だ。あまり身構えないで読んでくれ。

イオンとはなにか

さて、イオン液体イオンからできている液体であることは字面から想像がつく。じゃあイオンとは何か。イオンぶっちゃけ中学理科で習うんだけど、普通は覚えていないだろう。オレだってそうだった。

全ての物質原子分子からできていると考えている人は多い。でも実はイオンという粒子からできている物質もたくさんある。イオンという粒子からできている物質のことを、化学世界では「塩」と書いて「エン」と読む。エンッ!ファッキン紛らわしいことに、料理で使う塩もエンの一種だ。お塩ナトリウムイオン塩素イオンからできている。

イオンとは電荷を持った原子分子のことだ。電荷とは静電気のことで、静電気なのでプラスマイナスがある。プラス電荷を持った原子分子陽イオンマイナス電荷を持った原子分子を陰イオンと言う。「するってえと増田、陰イオンってえのはマイナスイオンのことだな!」と言いたくなる気持ちはわかる。ところがどっこい陰イオンマイナスイオンは全くの別物だ。まあ話が長くなるからそれは置いておこう。別物だとは思っておいてほしい。

なんで静電気を持つのかっていうと、静電気を持ちたがる元素存在するからだ。例えばナトリウムプラス静電気を持ちたがる。原子プラス静電気を持つ原子核とマイナス静電気を持つ電子からできている。原子分子プラマイゼロになっている。プラマイゼロであるナトリウム原子は、例えば水と接触させると、マイナス静電気を持つ電子放出してナトリウムイオンになる。ナトリウム原子空気中の水分とも反応してしまうからナトリウムは通常石油で満たした容器に入れて保存する。この電子放出するという現象は実は酸化と呼ばれている現象とまったく同じなのだが、それは今はいいだろう。とにかく、そのようにして化学反応を通して電子放出してプラス静電気を持ったり、逆に電子を奪い取ってマイナスになったりする原子分子というのは世の中にたくさんある。静電気を持った原子分子、つまりイオンというのはそうやって作られる。

静電気基本的性質として、プラス静電気を持ったものマイナス静電気をもったものは引っ張り合い、マイナスマイナスは反発し、プラスプラスも反発するというものがある。しらなかった人はそういうものだと思ってくれ。髪の毛で下敷きを擦ると髪の毛が下敷きにくっつくのは、下敷きがマイナスで髪の毛がプラスになるからだ。ちょうど磁石のNとSが引き合い、NとNが反発し合うのと同じような感じだ。

プラスプラスは反発するのだから陽イオンばっかりを集めて物質を作ることは、少なくともビーカーの中では不可能だ。普通陽イオンの周りは陰イオンが取り囲んでいるし、陰イオンの周りは陽イオンが取り囲んでいる。塩(エン)に含まれる陰イオン陽イオンの数は1対1になる。陰イオンが1万個あったら陽イオンも1万個ある。もっとも60グラム食塩には陰イオン陽イオンがそれぞれ約6000垓個も含まれている。ガイだ、ガイ。兆の次が京、京の次が垓だ。そんなにたくさんあるので厳密に1対1かどうかはオレは知らん。

話が長くなったが、プラス静電気を持った原子分子陽イオンと呼び、マイナス静電気を持った原子分子を陰イオンと呼ぶ。また、陽イオンと陰イオンが1対1の比率で集まってできている物質を塩(エン)と呼ぶ。塩(エン)の代表例には、塩化ナトリウム食塩)や塩化カルシウム融雪剤に使う)、水酸化ナトリウム石鹸の原料でパイプユニッシュ有効成分)なんかがある。カメラ趣味の人は蛍石レンズなんかを使うかもしれないが、蛍石というのもフッ素イオンカルシウムイオンから構成される塩(エン)だ。薬を飲む人は、ナンチャラ塩酸塩みたいな名前の薬を摂取するかもしれないが、あれも塩(エン)の一種だ。基本的には、塩(エン)にすると水に溶けやすくなるし長持ちするようになるから医薬品には塩(エン)が多い。

・液体の塩

例としていろいろ塩(エン)を上げたが、コイツらには共通する特徴がある。結晶が白い。まあそれもそうだ。叩くと割れる。これもそうだ。岩塩とか割れるもんな。叩くと割れ性質は「へき開性」っつって中学校か高校で塩(エン)の特徴として習ったはずだ。普通忘れてるけどな。そういうのも重要な特徴だが、ここではもっと別のことに気づいてほしい。今あげたような塩ってえのは、全部常温で固体なんだ。

多くの物質は、アホみたいに加熱してやれば液体になる。鉄だって溶鉱炉ではどろどろに溶けるだろう。ココナッツオイルは人肌くらいで溶けるし、氷は極めて不思議な事にピッタリ0度で溶けて水になる。複雑な構造を持った有機物は加熱すると溶ける前に分解して別の物質なっちゃうが、分解しない物質は加熱してやればかならず溶ける。

もちろん塩(エン)も例外ではない。でも、塩(エン)は溶ける温度がメッチャ高い。例えば、食塩(塩化ナトリウム)の融点は800度だ。水酸化ナトリウム融点ちょっと低めの318度。塩化カルシウムは772度。蛍石融点は993度。溶鉱炉レンズを落としたら諦めよう。とにかく、塩と呼ばれる物質融点が高い。普通は700度くらいだ。ご家庭では溶かすことはできないだろうし、そこまで融点が高いと、液体の状態でなにかに応用することはかなり難しい。

なぜ融点が高くて溶けにくいのかといえば、イオン静電気を持っているからだ。水とかアルコールみたいな静電気を持っていない分子からできている物質は、静電気を持っていないので熱を加えてやるとすぐに分子分子がはなれて液体になる。液体とは、分子分子が熱のせいで離れてしまって結晶を作れない状態だ。どっこいイオンは、静電気が働いてプラスマイナスで引き合ってしまうので、アホみたいに熱をかけても結晶構造が壊れずに固体のままだ。びくともしない。

化学世界では、塩は融点が高いというのが長い間常識だった。ところが、100年ほど前に、12度で液体になる硝酸エチルアンモニウムという物質発見された。何を隠そう、コイツこそがイオン液体なのだイオン液体とは、融点が100度以下の塩(エン)のことだ。100年前に発見されたときはなんの役に立つか不明だったので世間からアウト・オブ・眼中だったが、ここ数十年でまたブームが来て、研究が盛んに行われている。おそらく電気自動車とかモバイルデバイスに使うバッテリーに応用ができることがわかってきたからだ。

イオン液体はなぜイオン液体になれたのか

なぜ食塩蛍石は1000度近くまで加熱しないと液体にならないのに、イオン液体は100度前後で液体になるのか。それは、イオン構造が違うからだ。

例えば食塩は、塩素イオンナトリウムイオンからできている。コイツらはかなり小さいイオンだ。水兵リーベ僕の船、七曲りシップス・・・というのを覚えさせられて、なんだったんだよあれと思っている人は多いハズだが、あれを思い出してほしい。がんばって覚えたアレが役に立つときが今来た。まずはナトリウムだ。H He Li Be B C N O F NeNa・・・あった!11番目だ。元素120番くらいまで発見されているから、11というと結構前の方だ。前の方っていうとどういうことかっていうと、原子が小さいということだ。周期表の前の方の奴ほど原子が小さい。それを考えると、ナトリウムはかなり小さい元素だということになる。ついでに塩素も見てみよう。 H He Li Be B C N O F Ne Na Mg Al Si P S Clあった。Cl塩素だ。塩素英語でクロライン。だから元素記号は頭文字をとってClだし、炭素塩素が3つついた物質のことをクロロホルムと言う。それはそうと塩素17番目だ。これもかなり序盤で出てくる元素だ。つまり原子が小さい。原子が小さいってことは、イオンになっても小さままってことだ。

イオンが小さいとどうなるのかってえと、他のイオンと、より強力にくっつくようになる。よくわからない人は磁石想像してほしい。小さいイオンはむき出しの磁石、でかいイオンは周りが分厚いプラスチックでコーティングされた磁石だ。どっちがくっついてしまったとき引き剥がすのが難しいか?もちろんむき出しのほうだ。むき出しのネオジム磁石が2個くっついちゃった日には全然取れないよな。ムカつくぜ。

自然界に溢れている身近な塩(エン)は、小さいイオンから構成されるものばっかりだ。だから融点がクソ高い。1000度近くまで熱しないと溶けない。

じゃあさ、じゃあだぞ。人工的にメッチャでかいイオンを作ったら、融点もっともっと下がるんじゃね?この発想で、ここ数十年でどんどん融点が低い塩(エン)が作られた。うまいこと行って融点が100度を切ったものは見事「イオン液体」の称号が与えられた。

人工的にデカイオンを作ると言っても、別にそんなにすごいことではない。ナトリウムイオン塩素イオンなんかは一つの原子イオン化したものだが、世の中には分子イオン化したものというのが存在する。先程言った医薬品塩酸塩というのもそれだ。だったらデカ分子イオン化してやればいいだけだ。イオンといってもビーカーで作れるような大したことないものだ。ビームレーザー電磁波超伝導コイルも使わない。ちゃんイオン液体が合成できたか確認するとき電磁波超電導コイルを使うがそれはまた別の話だ。基本的には混ぜるだけで作れる。

デカイオン融点が低いとは言ったが、デカけりゃデカイほどよいというものでもない。デカすぎると、静電気以外にもまた別の力が働いて固体になっちゃう(ファンデルワールス力といって、高校で習った人も多いだろう)。だから、ちょうどいい大きさというのが重要だ。具体的に言うと、ベンゼンくらいの大きさがちょうどいい。まあ炭素6個分くらいだ。デカさ以外にも融点を決める要因はいろいろあるが、余白が足りない。

イオン液体って何に使えるの?

イオン液体は、わりと特殊性質を持つ。それらの特殊性質のすべては、「イオン液体が陰イオン陽イオンからできているから」という理由で全て説明がつく。

まずひとつイオン液体全然蒸発しない。マジで蒸発しない。全然だ。厳密に言うと全く蒸発しないわけではないらしいが、ほとんど誤差レベルしか蒸発しない。だから防毒マスクを付けないで扱っても安全だ。これは保証しよう。蒸発しないから吸い込むことすらできない。蒸発しない理由簡単で、イオン蒸発しようとすると静電気が働いて蒸発しようとしたイオンを引っ張るからだ。静電気で引っ張り合っているからどう頑張っても蒸発することができない。まあ塩(エン)が蒸発しないことは、食塩とか重曹匂いがないことからもわかっていただけるだろう。

蒸発しないと何がいいのかっていうと、宇宙で使うことができるということだ。宇宙真空から普通の液体はすぐに蒸発してなくなってしまう。でもイオン液体蒸発しない。だから、例えば宇宙船の可動部に塗りたくる潤滑油として使うことができる。

もうひとつ。まったく燃えないというのもデカい特徴だ。マジで燃えない。燃えない理由簡単で、蒸発しないからだ。蒸発しないか燃えない。それだけの話しだ。有機物燃え現象というのは、有機物が気化したもの燃えているだけに過ぎない。アルコールを燃やす一見液体が燃えているように見えるが、実際は液体から気化したアルコール分子燃えているだけだ。液体自体は燃焼を起こさない。イオン液体は気化しないか燃えない。簡単な話だ。もし我がラボ燃えたらイオン液体ぶっかけて消火しようと企んでいるのだが、今の所火災はない。喜ばしいことだ。難燃性だと何が良いかというと、バッテリーの電解液に使うことができる。バッテリーの電解液は普通有機溶媒でできている。有機溶媒はメッチャ燃える。だからスマホとかモバイルバッテリー燃えるし爆発する。一方でイオン液体燃えいから、イオン液体バッテリーを作れば燃えないバッテリーがいっちょ上がりだ。もちろん実用化の上で課題は多いから、もっともっと研究必要だ。

さらに一つ。電気伝導度が高い。液体なのに電気を通す。だから同じくバッテリーの電解液に使えるんじゃないかと言われている。

仕上げにもういっちょ。イオン液体静電気を持つイオンからできているから、水とかアルコールとかアセトンとかテトラヒドラフランとかヘキサンみたいな普通の液体とは根本的に違う。だからイオン液体の中で化学反応を起こせば、普通の液体では起こらなかったスゴい特殊化学反応が起こせるかもしれない。普通の液体を使ってメッチャ手間暇をかけて合成していた医薬品プラスチックなんかが、イオン液体を使えば一発で作れる可能性があるかもしれない。イオン液体しか起こせない反応というのも結構報告されているし、オレの専門もイオン液体を使った新しい反応を開発することだ。

この通り、イオン液体結構使えるシロモノだ。でも、研究が十分に進んでいるとは言えない。もっともっと研究が進んで、イオン液体実用化されて、お薬がちょっぴり安くなったり、スマホがちょっぴり軽くなったり、モバイルバッテリーが爆発しなくなったりすると良いなあと思っている。名前だけでも覚えてくれたら幸いだ。

2019-02-08

水兵リーベ僕の船の覚え方

化学元素周期表の水兵リーベ僕の船ってやつ

あれが長くて覚えられなかった

いい覚え方はないもの

2019-01-02

anond:20190102131623

化学世界には鏡像異性体という概念があります

右手左手は、構造相対的位置関係が全く同じであるにもかかわらず立体的に重なり合うことがありません。

それと同様に、結合している元素が同じで、元素同士の相対的位置関係が全く同じであるにもかかわらず立体的に重なり合わない分子化学世界には存在します。そのような、構造が同じであるにもかかわらず立体的に重なり合わない2種類の分子関係を「鏡像異性体関係にある」と言います

鏡像異性体関係にある化合物は、R体、S体という呼び方区別されます生化学の分野では、L体、D体と呼ぶことも多いです。L-メントールとか、L-アスコルビン酸という名前を耳にしたことがある方も多いと思います

R体を鏡に写すと、鏡に写ったR体は、S体の立体構造をしています。逆に、S体を鏡に写すと、R体の構造が鏡には写っています。ですから、R体とS体の関係鏡像異性体と言うわけです。これは右手左手関係と全く同じです。右手を鏡に移すと、その像は左手と同じ立体構造のものです。

鏡像異性体関係にある分子は、化学的な性質(沸点や色や反応性など)が全く同じであるにもかかわらず、生体内での働きが全く異なることがあります。これは、生体内の酵素が立体的な分子であり、薬理効果酵素の立体構造分子の立体構造作用した結果であるからです。右手にピッタリと合うように設計された鍵穴に、立体的な配置以外は全く同じ構造をしている左手を入れてもはまらないのと同じです。酵素は鍵穴のような形状をしていて、多くの薬理作用を持つ化合物は、鍵穴に適切な分子がはまったとき薬理作用を発揮します。

例えば、ミントに多く含まれるL-メントールは皮膚に対して清涼感を与えることで知られますが、その鏡像異性体であるD-メントールは清涼感を与えません。

また、サリドマイドと呼ばれる物質は、R体のみ薬理効果を示し、S体は催奇性を呈します。睡眠薬として販売されたサリドマイドは、S体のみがもつ催奇性により、重大な薬害事件引き起こしました。有機化合物の多くは鏡像異性体を持つため、薬学的には、R体とS体を区別して考えることは非常に重要です。

薬理作用、すなわち生体内での働きというのは、匂いについても同様です。ある分子は良い匂いがするけど、その鏡像異性体はそうではないというケースは十分に考えられます

したがって、元増田は、ええニオイがしない分子化学合成しようとして、ええニオイがする物質ができあがってしまったため、分子の立体構造上下左右前後全部逆になっている分子、すなわち鏡像異性体を作ってしまったのではないかと考え、そのおかしから腹が痛くなってしまったのではないかと考えられます

2018-12-19

anond:20181219093124

比較的室温に近い条件で液化して、人体に無害な物質で気化しやす物質がないから。

ほぼ炭化水素系か、炭化フッ素系になる。で、炭化フッ素系がオゾン層破壊フロン。なお、炭化水素系はほぼすべてよく燃える

元素数が少ないほど気化しやすいけど、組み合わせ的にもうほとんど選択肢がない。

2018-12-10

anond:20181210160209

マジンガーZは一応「光子力」という新エネルギーおよび「ジャパニウム元素」という素材、この二つの設定があるんやで。

で、装甲材である超合金Zはジャパニウムでできており、光子エネルギーを蓄積するという便利素材。

これで硬さとパワーの説明をしておるのだ。

実際は作劇のコミカルさと勢いで押し切ってる感はあるが。

そのため、勢いがなくなり小難しさマシマシの「マジンガーZ/INFINITY」はツッコミどころの塊と化した。

誰が書いたんやあの糞脚本...

グレンラガンはまぁ、そういうもんだ...

トップをねらえからハードSFブルマを取り除いたらああなるだな、としか言えぬ

2018-11-16

anond:20181116091552

それでは友達をつくる過程を省略しすぎだと思う。元増田真剣友達を創ろうとしているのだから水35L、炭素20㎏、アンモニア4L、石灰1.5㎏、リン800g、塩分250g、硝石100g、硫黄80g、フッ素7.5g、鉄5g、ケイ素3g、その他少量の15の元素必要であることをしっかり伝えるべき。

2018-10-14

[][] (仮題)第3話

(執筆途中の作品であり、今後内容を変更する予定です)

高田

雙葉学園は、フランスサンモール修道会の会員が1875年に設立した築地語学校を祖とする、私立学校法人である

雙葉学園はその長い伝統において、「徳においては純真に、義務においては堅実に」という校訓のもと、幼稚園から高等学校にわたる一貫したカトリック教育を行ってきたが、雙葉女学院大学設立により、さらに4年間の大学過程をふくむ一貫教育が行われることになった。

というのも、雙葉中学校・高等学校は、東京大学をはじめとするいわゆる旧帝国大学や、慶應義塾大学などの難関私立大学合格者を多数輩出し、全国有数の進学校と呼ばれるようになっていたが、多数の生徒父兄が、単なる学力の追及ではなく、カトリック教育さらなる徹底を望んでいたこと、卒業生の多くがカトリックの信仰を保持していない現実を嘆くサンモール修道会の強い推薦により、2002年に大学過程を行う教育機関の設立が決議されたのである。その後、文部科学省の認可を受け、雙葉高等女学校設立からちょうど100年となる2009年、開校に至った。

私が雙葉高校卒業したとき、もしこの大学があったら、このエスカレーターに乗っていだろうか。キーボードを叩く手が止まり、ふと自分過去を反芻した。

中学受験成功し、晴れて雙葉の門を潜ることはできたものの、入学後は成績が低迷し、人生の目的も見出せないまま、あるいは、先生がたがおっしゃっていた、神に与えられた使命を感じることもなく、特に受験勉強もせずになんとなく大学受験をした私は、願書を出した中で最も無名な、平凡な私立大学に行くこととなった。

パッとしない4年間の大学生活の間、やはり人生に意義を見出せず、大学卒業後は、飲食店塾講師などのアルバイト転々としたのち、25歳で、あるカリスマ英語学者執筆アシスタントとして雇われることになった。

受験生向けから社会人のやり直し英語のための参考書まで、様々な英語関連書籍を多数執筆し、そのほとんどすべてがベストセラー、2005年から教育テレビでレギュラー番組放送されている、クリストファー・トンプソン、その人である

誰もが認めるカリスマ英語学者アシスタントベストセラー約束された数々の出版物編集作業。やっと使命が見つかったかに思えた。

が、それもつかの間のことだった。

最初の数ヶ月で気づいたことは、クリス・トンプソン執筆作業ほとんど全てを、彼の『アシスタント』に任せているということだった。それでも、はじめのうちは、英語学者である彼の理論専門家でない一般大衆向けに落とし込むのに、アシスタントが最大限の貢献をしているのだろうと好意的に考えていた。

働き始めて半年が経った頃、主力の『アシスタント』が結婚出産を機に退職することになり、私がその立場を引き継がなければならないとなったとき彼女から真相が告げられた。カリスマ英語学者クリス・トンプソンは、自分ではなんの理論も持っておらず、彼の博士号はディプロマミルから得られたもので、彼のアイデアと言われるものはすべて、彼女作品だったのだ。

『徳においては純真に。』私は、彼が世間を欺き続けるのを手助けすることはできなかった。

代わりの職を求めた私はその後、27歳にして都内にある無名私立高校英語教師として採用された。

須藤智くんとの出会いは、私がその学校で働き始めて3年目のことだった。

高校といえば雙葉高校しか知らなかった私は、おそらく世間では平均的であろう、学習意欲のない生徒たちを前に、教師として戸惑っていた。そんなとき入学してきた須藤くんは、『教え子』と——おこがましいが——呼びたくなるような、優秀で向上心の高い、私の初めての生徒だった。

彼はすべての科目の定期試験で満点を取り、全国模試では偏差値が80を超えていたので、瞬く間に教職員あいだで評判になった。

彼の非凡な才能は、主に自然科学理解に向けられているようであったが、彼の言語に対する洞察も、単に受験勉強ができるというレベルを超えているように思われた。

それは、彼が二年次に進級し、私の授業を受けることがなくなった新学期のことである。珍しく残業もなく、夕方6時に山手線新大久保駅で帰りの電車を待っていた私の元に、彼が歩み寄ってきた。

自然言語構成する元素を見つけました」

突然そう告げた彼は、意表を突かれてうろたえる私の返事を待つことなく、ノートを広げ、彼の発見説明し始めた。

私は彼の理論を即座に理解することができた。なぜなら、中性子陽子原子核電子といった、化学アナロジーを用いているものの、それらの用語を適宜『主要部、内項、外項、句、付加部』という言語学の用語に置き換えれば、それは現代言語学の父、ノーム・チョムスキーが1970年に発表した、エックスバー理論のものだったかである

彼はきっとエックスバー理論をどこかで読んだのだろう、そしてそれを、自分の慣れ親しんでいる化学アナロジー理解したのだろう、と私は考えた。

しかし、彼は、これは紛れもなく自分でたどり着いた理論で、とっかかりになったのは、クリス・トンプソンの『60億人の英文法』にある「日本人名詞が主でそれに冠詞がくっつくと考えがちだが、冠詞がまずあって、そこに名詞がくっつくというのがネイティブ感覚だ。」という記述だと言う。

ともかく、私は彼の話を信じた。そして、彼が自分発見を教えてくれたお返しに、私も自分の『発見』を彼に打ち明けた。こうして彼は、クリス・トンプソン秘密を知る、部外者第一号となるのであった。

秘密を共有した私たちは、ときどきメールを交換する仲になった。話題は主に、言語学。彼は初め、原子力工学の話をしたがったが、私がついていけないということに気づくと、言語学を中心に、私が理解できる話題を選んでしてくれるようになったのだ。これは私にとって、10年遅れて訪れた青春の一ページだったが、彼にとってはたぶん、相手先生から、気を使って付き合ってくれていただけだったのかもしれない。

私は一度、言語学の道に進みたくはないか、と彼に尋ねたことがある。彼がチョムスキーほどの天才かどうかはともかく、才能があることは間違いない。しかし、彼は原子力工学をやるといって譲らず、ワシントンにあるベルビュー工科大学を単願し、同校に進んだ。なぜマサチューセッツ工科大学や、スタンフォード大学を目指さなかったのだろう、あるいは、ワシントンならなぜ同州トップワシントン大学に行かなかったのだろう、願書くらい出しておけばよかったのに、と当時も思ったが、きっと彼なりの理由があったのだろう。

メールのやり取りは彼が高校卒業した後もしばらく続いたが、彼が希望通りベルビュー工科大学に進学すると、須藤智という天才を失ってただの無名私立高校に戻ったその場所で、張り合いのない授業を続ける私が、なんだか取り残されたように思えて、劣等感からメールを送るのが億劫になって、やめてしまった。

須藤くんとのメールをやめた私は、高校教師仕事もやめた。また人生に迷ってしまったと思った私は、以前のように求人情報をチェックしたり、履歴書作成したりする気もなくなって、目白アパートに引きこもった。

そんな張り合いのない生活を続けるうち、あるとき新聞広告欄に、雙葉学園が、大学新設にあたり職員を求めているという求人情報が載っているのが目に留まった。行き場を失った私は、まるで蜂が巣に戻るように、こうして古巣に戻ることになった。

はいま、雙葉女学院大学国際交流課で、4年ぶりに須藤くんへのメールを書いている。雙葉女学院日本大学として初めて、ツー・プラス・ツーのダブル・ディグリー協定海外大と結ぶことになったのだが、なんの因果か、その協定第一号が、ベルビュー工科大学だったのである。そして、私が留学カウンセリング担当した学生が、第1期生として派遣されることになったのだ。

彼女聡明女性だが、単独海外に行った経験はないと言う。現地に信頼できる知人がいれば、少しくらい世話を焼いてもらってもばちは当たらないだろう。

2018-10-04

anond:20181004125110

FFは6までですぞ若造よw

4元素クリスタル物語FFなんですわ

10とか勝手に祈って召喚するだけの話だろFF名乗るな

2018-08-17

元素ジョーク

アメリカ人のボブが彼のホウ素をボロンと出した

ラテン語専攻のぼく「なんというボリウム……」

2018-08-07

anond:20180806232425

20XX年、透過力の強い特殊素粒子ビーム放射性元素に当てると

一瞬で核崩壊が進行して無害な元素に変化する…現象発見されて、

放射能汚染された地域から放射能を除去することに成功

チェルノブイリフクシマはもとより、劣化ウラン弾汚染された地域も一気に清浄化された。

ビームのおかげで、半減期万年間を待つ必要もなくなったことに、人々は安堵した。


このビーム核兵器に当てれば、遠隔から核兵器を無力化できるのでは?

そう考えた学者核兵器ビーム照射したところ、核兵器は爆発した。

濃縮されたウランプルトニウムを一瞬で核崩壊させたのだから当然の結果である

やがて、核兵器は敵を攻撃する兵器ではなく、敵がリモートから爆破できる危険地雷という認識が広まり

核兵器の廃絶は進んだが、同時に、安全性担保できないという理由原子力発電所廃炉されて行った。

エネルギーを利用できなくなった人類が、残り少ない化石燃料を巡って戦争を始めたのはその数年後である

2018-08-06

anond:20180806194016

その118の元素ももっと少ないパターンの組み合わせでできてるわけだし、逆に元素じゃなくて分子で数えたら世界構成要素は多くなるし。

アーカイブ ヘルプ
ログイン ユーザー登録
ようこそ ゲスト さん