はてなキーワード: Ptとは
交通事故などの即死だと、死ぬ前にお世話になった人たちへの挨拶とか、遺品整理をする時間がありません。
しかし、癌など余命がある場合は、死ぬまでに多少時間が残されているので、お世話になった人たちへの挨拶とか、遺品整理をする時間が持てます。
もしも、病気になっても即死ではないなら、時間的な余裕があることぐらいでしょうか?
(即死と比べて病気だった場合のメリットが他にもあれば教えてください。)
もしも、癌になると寿命が10倍、100倍…と延びるとするならば、みんな癌になりたがるはずですし、医師も「誰でも癌になれる方法」とかの本を書いてベストセラーになってないといけませんね?しかし、現実にはそんなことは起こりません。
最初にかかった医者がヤブだと、真の原因に気付かず、適切な治療が選択できないので、病気が進行しますね。
世の中の大半の医者は金儲けのためにやってます。無償のボランティアではありません。
ぶっちゃけ患者が死のうが生きようが、自分が儲かればOKという割り切りがあります。医療事故で訴えられなければラッキーな職業です。
もちろん、このようなサイコパスの医者は一部ですが、他の医者も全員が優秀というわけではありません。東大医学部とFラン医大では、頭の程度が同じとは言えないでしょう。(もちろんFラン医大でも優秀な医師はたまにいます)
要するに病気診断で誤る場合があるので、一人の医師だけに頼るのではなく、複数の医師に分散した方が安全の確率が高まるという話です。(株でも「卵は一つのカゴに盛るな」という格言がありますね)
どうもおかしいと思ったら、セカンドオピニオン、サードオピニオンを得ましょう。
他ならぬ自分自身のためです。
医者に失礼だからと言って、セカンドオピニオン、サードオピニオンを他の医者に聞きに行くのは良くないと遠慮する人は、ハッキリ言ってアホです。残念ながら、アホは死ぬしかありませんね。それがアホの運命です。(ファイナル・デスティネーション)
医学の知識、とりわけ解剖学の知識は全ての人に必要であり、役立つ知識だと思います。
この増田を読んだ方で、自分の本棚に解剖学の本が1冊もない方は、今すぐ解剖学の本を買って勉強しましょう。
https://www.amazon.co.jp/-/e/B004L4AKYM
坂井 建雄について
大阪府生まれ。大阪府立天王寺高校卒、1978年に東京大学医学部医学科卒、東京大学医学部解剖学教室助手、1984~1986年に西ドイツ、ハイデルベルク大学にフンボルト財団の奨学生として留学、1986年に東京大学医学部助教授、1990年に順天堂大学医学部解剖学第1講座(現在は解剖学・生体構造科学講座)教授、現在に至る。
処女作の『からだの自然誌』(東京大学出版会, 1993)は解剖学を人体についての自然誌としてとらえ、生物の形態を意味づける視点と生物の階層性との関係を論じた、解剖学の基礎論である。
解剖学の学習に不可欠な解剖学の教科書・図譜を多数手がけており、代表的なものとして『プロメテウス解剖学アトラス』全3巻(監訳、医学書院, 2007-2008)、『カラー図解 人体の正常構造と機能』第2版、全10冊(総監修、日本医事新報社, 2012)、『臨床のための解剖学』(監訳、MEDSi, 2008)、『解剖実習カラーテキスト』(医学書院, 2013)などがあり、いずれも良質で分かりやすい解剖学書として高い人気を集めている。
医史学の研究者としても活躍しており、ヴェサリウスの伝記の定番である『ブリュッセルのアンドレアス・ヴェサリウス1514-1564』(訳、エルゼビア・サイエンス・ミクス, 2001)、『ガレノス解剖学論集』(共訳、京都大学学術出版会, 2011)、『日本医学教育史』(編、東北大学学術出版会, 2012)などがあるが、なかでも『人体観の歴史』(岩波書店, 2008)は原典に遡って古代から現代までの解剖学の歴史を俯瞰した傑作で、日本医史学会の矢数医史学賞を受賞している。
このような医療職あるいは専門家向けの教科書・専門書ばかりでなく、一般向けの著作もきわめて多数あり、いずれも明確で分かりやすい文章により人気を集めている。とくに『ぜんぶわかる人体解剖図』(共著、成美堂出版)はこの種の本として異例の爆発的な売り上げを示している。
[ASIN:4758102341] 解剖学 (PT・OTビジュアルテキスト専門基礎) 単行本 – 2018/12/3 町田 志樹 (著), 坂井 建雄 (監修) ¥6,160
[ASIN:486034670X] グレイ解剖学アトラス原著第3版 電子書籍付 単行本 – 2021/9/8 ¥11,000
もしも、現代療法で治る見込みがなければ、新しい治療法の実験台になって、効果の検証に参加してみてはいかがでしょうか?
光免疫療法(ひかりめんえきりょうほう、英: Photoimmunotherapy)は、癌(がん)に対して、光線力学療法と免疫療法を組み合わせた、開発中の新たな治療法の候補の一つである。
2015年4月にアメリカ食品医薬品局(FDA)から臨床試験開始許可を受け、現在は臨床第3相試験を実施中。
光免疫療法に使われる医薬品の第一号が2020年に日本において製造販売の承認を得ている。
昔の日本では、50歳を超えると「翁(おきな)」(おじいさん)と呼ばれていました。
食事や医療が現代ほど発展していなかった時代だと50年も生きれば長生きの方だったんですね。
栄養や医学が改善された現代では、健康に気を付ければ100歳以上生きることも可能です。世界各地に長寿村とかありますね。
しかし、50年生きようが、100年生きようが、相対的な違いでしかなく、どっちみち終わりが来ます。死なない人間はいません。人類の歴史が証明しています。
(不老不死の可能性について、これ以外の反論があればトラックバックで紹介してください。死んだ人間を復活させるゾンビはNGです)
どっちみち死ぬのであれば、死を恐れても恐れなくても死ぬのだから、恐れる分だけ損だと思いませんか?
どちらを選ぶかは自分次第です。
もちろん、自分に嘘をついて、自分をごまかして、死ぬのは怖くないと騙すのはダメです。うまく騙せたつもりでも、実際に死ぬときになってみて、やっぱ怖いと思ったら騙せなかったと分かるだけですね。
とことん死と向き合って、生きているときに味わえる喜び(五感の喜び~臭覚・味覚・視覚・触覚・聴覚の快感など)を失うときに、それでも平気と言える価値観を培う必要があります。
自分の内側が充実すれば、外側の影響を受けなくなりますね。内側の充実とは英知を得ることです。
恐怖の感情は対象を理解できない無知から生じています。(例:柳の下の幽霊)
死に対する恐怖が生じるメカニズムを理解して、損得勘定=価値観を変えることができれば、死に対する恐怖がなくなります。
この点について、古今東西多くの人々が議論して、いろんな解決方法を提案しているので、参考にすると良いでしょう。そして自分にあったオリジナルの解決方法を得てください。
お大事に。
ゲーム機として使ってるような気がする。
色んなタイトルをやるよりは1つか2つを長く続けて
行くほうだと思う。
先日スタレのアップデートで容量が足らなくなり、もう
その時ふと辞めたソシャゲでその後再開したやつほぼ無い事に気づいて、何となく今までやったソシャゲと
辞めた理由をまとめたくなった。
①パズドラ
引けず辞めた。
1回復帰しようと手持ちと現状のPT傾向を掲示板で相談したら手持ち売ってシヴァドラ引けと言われて削除した
広告で見かけて始めた。たしかほぼリリース当初くらい。面白さがいまいちわからず1ヶ月と経たずに辞めた。1年後くらいに友達がやってるのを見て再開。クイズだけだと正直飽きるけどスキルの組み合わせで難問も突破できるのが面白かった。課金はたまに数千円くらい。
インフレ化と金札内でも当たり外れの大きさに嫌気が差してきて、レジェンド実装で育成コストが上がって面倒くさくなって辞めた
ウィズで宣伝されて登録。リセマラして星5が出たのでそのまま進めた。ガチャがえらい渋く感じており確かミラがガチャから落ちた時に一旦辞めた。その年の12月に何となくログインしたら石が結構配られてた事と、クリスマス限定キャラ、正月限定キャラが引けたので再開。
そのまま2年くらい続けた。これも辞めた要因はインフレ。白猫は特に酷かった。好きなキャラが多くて続けてたけど、人気が落ちてきたらイベントにもガチャにも出てこないし、強いキャラは限定ばかり。強キャラ引いても
そんなんで微課金だったけどそれすらもったいなくなった。育成コストが低くて引けば即使えたから無料分で限定星5が引けてるうちは続けてたけど引けなくなった時にやめた。パルメ実装年のクリスマスくらいだったかな。再開したところで持ってるキャラはほぼ使えないだろうから再開する気無し
通算で3回ほど辞めた。課金はサプチケとか買うくらい。天井は無料ガチャ期間に配布プラス課金でやった。
最初に始めたのは多分リリースから3年目くらい?なんかストーリーはテンポ悪いし戦闘は何が面白いのかよく分かんなくてすぐ辞めた。1年後くらいに友達に面白いよ!って
勧められて再開。再開した感想は「やる事が多いしなんかルートが決まってる」なんかコンテンツいっぱいあるように見えるのに自由度が低い。最初はストーリー進めてマルチ解放して救援しながら武器集めてクラスはこの順でとって…。これ何が楽しいんだ?って感じだった。あと最初は火力伸びないからマルチは全部救援頼みで人が倒してくれるのをただ眺めるゲームだった。ストーリーは合間のボス戦が意外と強くてちょいちょい止まってた。リミテッド武器引けてもストーリー進行で育成解放だからストーリー進めないとだし、でもボスで詰むしそもそもストーリー長い。正直メインストーリーは心惹かれなくてスキップしまくった。
なんとかマグナをソロクリアできるくらいにはなったけど武器はあんまり落ちないし、HLは勝てないし救援もあんまり来なくて火力に伸び悩んでログイン勢と化した。
ヴァジラ実装時の無料ガチャ期間でリミキャラがぽこぽこ当たってまたプレイし始めた。
マルチも救援入ったら武器が順調にドロップしてPT強化できて火力が伸びた。何より水着ゾーイの存在がデカかった。初めて古戦場で最終難易度のマルチを救援有りとはいえ回れた(確か)ヨダルラーハ無しでもアサルトタイム中ならマグナがワンパン出来るようになった。
強くなっていく実感が湧くと楽しくてしょうがなかった。あのアホみたいな量の周回すら楽しかった。
古戦場も正直ただの周回ゲーだけど自分がどれだけ強くなれたかわかるからモチベも高かった。もっと強くなりたい!と思って色々調べて壁にぶち当たった。皆違うこと言ってる。
最初は有名攻略サイトを参考にしてた。が、Twitterとか掲示板であれは参考にならんと言われてた。
YouTubeで解説動画が上がっているのを知って視聴し始めた。実際のバトルでの動きが見れるしわかり易くて物凄く有難かった。が、それもTwitterで結構評判が悪い事を知った。あれで強くなれるかと。結局は実際に強い人に聞けと。そこでTwitterで強いと思しき人を探してみた。
全員何言ってるのかわからなかった。高難易度ソロクリアしてるから間違いなく強いんだろう。でも何言ってるかわかんないしやたら口が悪い。怖い。
その後団活して優しい団員の皆様や友人に教えもらいながら頑張った。ただ周回量のえぐさと好きなキャラを引いても使えないこと、天井まで引いてもピックアップが1つも出ないことがザラなので辞めた。
⑤Fate/Grand Order
新宿実装時にスタート。なんだかんだ続けてる。メインストーリーと評判良さそうな新規イベントだけやってあとは気が向いた時にログインしてる。
不満はちょいちょいあるけど結局ストーリーとキャラクターが好きで続けてしまう。ガチャは人権級がサポートキャラかつフレンドでスキルマ1体借りれるのでまぁ孔明が入れば1章くらいならなんとかなるのとストーリーはコンテニューでごり押せるし無料でコンテニューも1回できるしサポートキャラの性能が高いので正直星3でも宝具重なってればそこまで困らないと思う。メインはストーリーだからゲーム性のシンプルさはあまり気にならない。ただキャラの多さとライターが統一されてないのでキャラがストーリー毎に微妙に性格が違うのが気になる。個人的に1番気になったのがアストルフォとイアソン。
⑥メギド72
バトルがとにかく面白かった。ストーリーも軍団設立後からかなり面白くなった。配布キャラが強いのも有難かったしモーションも一人一人凝ってて見てて楽しかった。組み合わせや戦略次第で何とかなるのも面白かったし、何が出ても使いみちはあるからガチャも引きやすかった。ただストーリーが進むにつれイベントにしろメインにしろテンポの悪さが気になった。毎回雑魚戦挟むのが煩わしくなった。ドロップアイテムもボス以外うまくないからやらんでもいいし。あとシナリオのサイレント修正はどうかと思う。告知しろ。復刻は既プレイ者はスキップ出来るようにしてもいいと思うんだよなあ。ストーリーは複雑だしイベントストーリーも関わって来るけど見返し機能は無いしメインストーリーの進行も遅いから更新される頃には正直分からない箇所がある。アスモデウス復活くらいまでやってモチベ下がって辞めた。
⑦原神
ソシャゲに分類していいのかわかんないけどとりあえず。続けてます。
申鶴実装時にスタート。稲妻終わったあたりからなんかだるくなって、たまにログインしてまとめてイベント消化するくらいにはなった。スメール実装でモチベ復活。
多分1番楽しい時期なのかもしれない。
スタレの実装と重なって落ち気味かもしれないけどフォンテーヌ実装されて水神が実装されたら評価はまた上がるんじゃないかな。ディシアは流石に修正いれていいと思う。ディシアに修正入ったなら他のキャラも!とはならんよ多分
面白い、というより理由はわかんないけどなんかやっちゃうという感じ。この後のストーリーもだけどキャラのバランスが上手いことやるかどうかで続けるかどうか。
続けてるやつはガチャ以外のコンテンツに面白さを見出してるからなんだかんだ続いてる。
ホヨバ系はガチャがまだ優しい方だけどこれでキャラが凸有りきだと途端に渋くなるから辞めるだろうなあ
カムバック報酬でガチャが引ければ戻ってくるかもしれないけど、仮に欲しいキャラが引けても育成のしやすさや実践で使えるかどうかも大きいのかも。
"『婚活PT/結婚相談所/親族の紹介のお見合い』、『職場の上司部下/先輩後輩』に限定した話であれば、"
ここを読み飛ばしてました。
"普通の恋愛とか友達の紹介とかならどっちが奢るべきとかは無いぞ
その通りだと思います。
『婚活PT/結婚相談所/親族の紹介のお見合い』に限定した話であれば、
ド貧困・発達障害じゃなきゃ奢るのが今もフツーですけども(マジで無限ループ)
お金がない・払いたくないなら、友達の紹介や趣味の場での出会いかSNSを使おう(100回目)
友達の紹介や趣味の場やSNS経由の出会いなら面接じゃなくて、友達との食事だからね
化粧・美容を頑張っている私のために他人は飯代その他多く出すべきの人は
頭おかしいメンヘラ・配慮が必要な人として横に置いておいておくとして、
『婚活PT/結婚相談所/親族の紹介のお見合い』、『職場の上司部下/先輩後輩』に限定した話であれば、
奢りたくない・奢る金がないなら、『婚活PT/結婚相談所/親族の紹介のお見合い』は利用せず、
『婚活PT/結婚相談所/親族の紹介のお見合い』の後の食事って、条件に見合っているかの面接だぞ
お食事とかデートとか言わず、そのまんま"面接"って呼ばれているし、ネットでもそう書かれるぞ
部下・後輩にどうしても奢りたくない・奢る金がないなら、そもそも飯に誘わなきゃ良いと思うぞ。迷惑だから
どうしても飲み食べコミュニケーション命じられてるならランチmtg費を会社に請求しろ
『婚活PT/結婚相談所/親族の紹介のお見合い』に限定した場合、
閲覧ありがとうございます。
筆者はケイト&クラウンのDLC実装直前くらいから始めました。古参ではないにしろ初老には入るレベルだと思います。
私は大会運営者でも参加者でもないので、第三者の一般プレイヤー視点と思っていただけたら幸いです。
DBDについてある程度知っていると目にするであろう大会や大会勢という言葉だが、果たしてDBDには大会ができるだけの土壌があるのだろうか。
恐縮だが、私はそうは思えない。
ゲームの大会には「競技性」が重要視されているが、これについて議論すると永久に結論のでない哲学の領域に入ってしまうので省略する。
ただ、競技性について1つ思うところは「参加者全員が同じ目的を目指していて、その過程に至るまでの公平性と運のバランス」が重視されている傾向にあるということだ。
APEXだったら1位、Varolantだったら相手チームに勝利する。と全員の最終的な目的はほぼ一致していて、ゲーム内でも「Champion」だの「Victory」だの表示されて明確に勝利条件が決まっている。
そしてその目的がそのまま大会の優勝条件になっていることがほとんどだ。1番勝った奴が優勝。実にわかりやすい。
またAPEX含むバトロワ系は全員が何も持たないほぼ公平な状態で始まる。そこから序盤に強い武器を拾ってより強くできるか、ヒーローシューター系ならキャラ構成の相性が運になるが、実力や連携次第で覆すことも容易にできる。
大会が多く開催されるゲームほど競技シーンを意識した調整がされていき、環境も目まぐるしく変わっていく。
ではDBDはどうだろう?
まずサバイバーとキラーで人数と目的が全く違う。そしてサバイバー4人の中でも
・脱出できれば満足な人
・ロングチェイスできれば満足な人
等バラバラなのである。言い換えれば、自分で勝利条件を決めることができるのだ。
PvP対戦ゲームでありながら非対称かつ目的が曖昧である。それが奇跡的に噛み合って毎回違うドラマが生まれる。これこそがDBDの最大の特徴と言えるであろう。
脱出したいという人もガチガチに4人PTを組んで、ガチガチにパーク構成や役割を決めれば脱出率は上がるだろうが、そうしている人は果たしてどれくらいいるだろうか。
バランスの議論も毎日のように飛び交っているレベルかつ、DBD運営も調整の内容がパーティゲームにしたいのか競技ゲームにしたいのか二転三転することが常なので、このまま大会を開催することは難しい。
まずサバだったら〇人脱出でXポイント、キラーだったら〇人処刑でYポイント、とサバイバー間とキラー間で目的を一致させ、そのポイントの合計数が一番高いチームが優勝とすることで参加者全員の目的を一致させる。
そしてキャラ、パーク、アドオンに制限を設けることで公平性を生み出す。
運営者はこうしたルールを試行錯誤しながら設けることで、何とか競技性を生み出している。
DBDの大会はほとんどがプレイヤー有志による開催となっている。この人達はDBDをもっと知ってもらいたい・盛り上げたいという気持ちがあるのだろう。
それは素晴らしいことだし、尊敬することでもある。
だが、私がDBDは大会ができるゲームではないと思っている最大の理由は、参加者の質だ。
ここで言う質とはプレイヤースキルのことではなく、参加するにあたる意識や責任のことを指している。この質が他ゲームに比べてあまりにも低すぎる。
SNSを見ているとDBDの大会は比較的大規模な大会でも毎回のように炎上している。あまりにも炎上の頻度が高いので私も苦笑を禁じえなかった。
そういえば数年前に1回だけ開催された公式大会も燃えてたっけ。
炎上の多くはチート・グリッチの使用と煽り行為に起因している。これらを行ってしまう理由として、
・大会に参加する=より多くの人に自分の行いが見られる=DBDのプレイヤー代表として見られる
これらの意識の欠如ではないだろうか。
通常の公開マッチのように仲間内でしか見られていないという感覚のまま大会に参加して迷惑行為をしてしまい、それがリアタイやアーカイブ視聴にてその様が広まって炎上する。
本質的にはつい最近社会で爆発炎上したスシローでの迷惑行為の加害者と何ら変わりはない。
そして最近では、大規模大会の参加者が裁判レベルの不祥事を起こし、それが運営にも飛び火して結果的に大会運営チームを解散する事件が起きた。
こんな事は前代未聞だ。そうしたプレイヤーが参加する確率があまりにも高すぎるのだ。
これを聞いて「そういった人はほんの一部で、多くの参加者はマナー・モラルを守っている」と思われる方も多いだろうが、特にネットではネガティブなイメージの方が記憶に残るものなので、
残念ながらこれがDBDというゲームなのかと広まってしまうのだ。
DBDは調整の度、「これで人口が減ってサービスが終了する」と言われているが、steamの人口はずっと横ばい推移なのでサ終はもう少し先になるだろう。
だが大会に関して今後もこのような事態が続いていけば、ただでさえ競技に向かないゲームなので開催頻度はどんどん下がりやがて身内レベルの小規模大会くらいしか残らないだろう。
プレイヤーの質を上げることが重要だがこればかりは個人のモラルに委ねるしかなく、またここまでの経緯を見るとあまり期待できない。
ついでにこのあとのリプライが正しくて笑う。公金チューチュースキームが知られていないのにこれ。
返信先:
さん
そしてこの人選に歴代政権でもっともネットのインフルエンサーマーケティング(ソーシャルリスニング)に力を入れている現政権のあり方が現れていると思う。こういう単発PTじゃない審議会の人選が今後どうなっていくかは注目ですね。
厚労省は昨年コロナ関連の情報発信について、公式ツイッターでこういうやらかしがあったので、情報発信のPTつくること自体はいいことだと思います。この情報発信のあり方に疑問を呈した西田くんも入ってるし、きちんとネット見て情報チェックしてるんだなという印象。
https://news.yahoo.co.jp/articles/416e988f3f4122bf68405b5a319c497675630b3f
kakuto shiraji
@Kakutoshiraji
返信先:
@tsudaさん
やんじ
@yyanjikun
返信先: @tsudaさん
やってる感出せば良いだけでは?
https://twitter.com/colabo_yumeno/status/1362951950115893253
仁藤夢乃 Yumeno Nito
@colabo_yumeno
アウトリーチとは、支援を必要としている人を探し、直接出向き、つながること。それは広報とは違うのに、Colaboが取り組んでいる「若年被害女性支援モデル事業」の本事業化に向けての動きを見ても、国も勘違いしている。窓口が周知されれば自ら相談できる人に必要なのは、アウトリーチではなく広報。
話題の厚労省有識者会議「コロナ禍の雇用・女性支援プロジェクトチーム~もっとあなたを支えたい~」労働問題専門家の少なさを疑問に思ってたらPTの趣旨は「支援が必要な人にどう情報を届けるのか」というアウトリーチ、PR手法開発なのね。それなら人選は理解できるけど名称これじゃないだろ感が強い。
仁藤夢乃 Yumeno Nito
@colabo_yumeno
Colaboのアウトリーチなどの取り組みがモデルとなり「若年被害女性等支援モデル事業」が来年度から本事業がされるにあたり増額された予算の説明でこの前、厚労省から「ICTを使ったアウトリーチとしてGoogleなどに出す広告費として使える」と言われた。
仁藤夢乃 Yumeno Nito
@colabo_yumeno
·
相談窓口の周知はアウトリーチでなく広報であり、公的支援はそこに力を入れるべきだと考えるが、モデル事業では、公的支援に繋がれずにいる人へのアウトリーチに取り組んでいる。しかし「アウトリーチには声かけよりも、広告費をかけた方が効果的。その方が相談者が増える」と勘違いしている団体もある
仁藤夢乃 Yumeno Nito
@colabo_yumeno
宣伝費をかけて相談者が増えるのは、「自分から相談したい」と思っている人に窓口が知られたからで、自ら支援に繋がれずにいる人に出会えているわけではない。自分から助けを求め、れない状況にある方を、探して、声をかけ、出会い、つながるのがアウトリーチではないか。支援の質がどんどん下がる、、
仁藤夢乃 Yumeno Nito
@colabo_yumeno
·
公的機関の周知も必要だけど、それ以上に質の改善をしないと、出会った人に責任が取れない。そのため、他で適切に対応してもらえなかった自ら助けを求められる状態にある人たちが、Colaboを頼ってくる。そしてColaboは助けを求められない状態にある人の支援まで手が届かなくなってしまっているのが現状
仁藤夢乃 Yumeno Nito
@colabo_yumeno
モデル事業で「何万人の女性を支援しました!」と、国や都は報告してるけど、実態は民間が丸抱え。この事業でColaboから婦人保護施設につなげられたケースは、この3年間で1ケースもない。出会っても受ける気なく、公的に責任が取れない状況が続いていて、形だけ「助けを求めてください」と呼びかける。
返信先:
@colabo_yumeno
さん
一連のツイート重要な指摘だと思いました。結局は行政の仕事の評価基準があいまいで「実」よりも目に見えやすい数字を追いかけやすい(図書館の評価基準が貸出本数になるなどが典型ですね)、予算の単年度主義により中長期的支援が難しい弊害。ここを見直さないと支援の質が上がらないんでしょうね。
仁藤夢乃が数字を出さず金だけ取ることが目的なのはデータから裏付けられています。データや実績を頭に入れると、広告代を独り占めしたいということになります。
「Cural Health」や「Drexel’s University」「Nabla」など、各所でGPT-3の検証がなされているので、今後 医療現場でGPTが使われるようになる可能性を聞いてみた。
Me:
あなたはどのように実装されたの? Deep Learning?
GPT:
はい、私はDeep Learningによって実装されました。特に、Transformerと呼ばれるアルゴリズムを使用して学習されました。これは大量のテキストデータを学習し、自然言語処理タスクに適用することができるように設計されています。
Me:
もっと詳しく。
GPT:
Transformerは、自然言語処理タスクのためのDeep Learningアルゴリズムです。それは、大量のテキストデータを学習し、それを解釈し、理解することができるようになります。 Transformerは、複数の層からなるニューラルネットワークを使用して、テキストを処理します。それは、大量のデータを効率的に処理するために、Attention機構を使用します。これは、特定の部分のテキストに注目しながら、それらの関係を理解することができるようになります。Transformerは、自然言語処理タスクにおいて非常に成功しています。それは、自然言語の翻訳、文章の解釈、質問応答などのタスクに適用されており、高い精度を発揮しています。私はTransformerを使用して学習され、自然言語処理タスクに適用することができます。
Me:
事前訓練とかしているんだよね?
GPT:
はい、私は事前学習を受けています。事前学習とは、大量のテキストデータを使用して、言語モデルを学習することを指します。これは、言語処理タスクを実行するために必要な基礎知識を獲得するために行われます。事前学習は、言語モデルのパフォーマンスを大幅に改善することができます。それは、事前学習済みのモデルを使用することで、新しいタスクに対して学習をスキップすることができ、タスク特化の fine-tuning を行うことができるためです。私は、大量のオンラインテキストデータを使用して学習され、それを解釈し、理解することができるようになりました。それは、自然言語処理タスクに対して高い精度を発揮することができます。
Me:
今のパラメータはいくつ? 前のバージョンよりどのくらい精度がよくなった?
GPT:
私の現在のパラメータ数は、数百億から数千億となっています。これは、大量のデータを使用して学習し、高い精度を達成するために必要なパラメータ数です。精度は、バージョンによって異なりますが、一般的には、前のバージョンよりも高い精度が達成されています。これは、新しいアルゴリズムや技術の進歩によって、より良い結果が得られるようになってきているためです。また、事前学習済みのモデルを使用することで、新しいタスクに対して学習をスキップすることができ、タスク特化の fine-tuning を行うことができるため、精度が向上していることも見られます。
Me:
具体的なパラメータ数は? 前バージョンのGTP-2、現バージョンのGPT-3、次バージョンのGPT-4、それぞれ教えて。
GPT:
GPT-2は、1.5バイアレイパラメータを持っていました。それは、大量のテキストデータを使用して学習し、自然言語処理タスクに適用することができるようになっていました。GPT-3は、175バイアレイパラメータを持っています。これは、GPT-2よりも多くのパラメータを持っており、より高い精度を達成することができます。GPT-4はまだリリースされていないため、そのパラメータ数については確定していません。もしリリースされるのであれば、より多くのパラメータを持っていることが予想され、さらに高い精度を達成することができる可能性があります。
Me:
175バイアレイパラメータって何? 1750億パラメータの間違いでは?
GPT:
そうです、GPT-3は175バイアレイパラメータを持っています。それは1750億のパラメーターを持っていることを意味します。これは、大量のデータを使用して学習し、高い精度を達成するために必要なパラメータ数です。これは、現在の自然言語処理タスクに対して最も大きなモデルであり、高い精度を達成することができるため、市場においても高い評判を得ています。
Me:
バイアレイパラメータを英語で表現して。
GPT:
A "peta-parameter" or "Peta-parameter" (PT) is a measure of the capacity of a machine learning model, specifically the number of parameters it has. In the case of GPT-3 it has 175 peta-parameters, meaning it has 175 million billion parameters. These parameters help the model to understand and interpret large amounts of text data, allowing it to perform natural language processing tasks with high accuracy.
Me:
「175 billion parameters」の間違いでは?
GPT:
そうです、「175 billion parameters」の間違いでした。 GPT-3は175 billion parametersを持っています。それは、自然言語処理タスクに対して高い精度を発揮するために必要なパラメータ数です。申し訳ありませんでした。
Me:
GPT-3はどのように概念レベルの知識を持つの? Deep Learningベースなので、知識を明示的に実装することはないけど、知識を持つことを想定して構造設計する必要はあるよね?
GPT:
GPT-3は、大量のテキストデータを使用して学習されました。それによって、自然言語処理タスクに対して高い精度を発揮することができます。それは、事前学習済みのモデルを使用することで、新しいタスクに対して学習をスキップすることができ、タスク特化の fine-tuning を行うことができるためです。GPT-3は、大量のテキストデータから概念レベルの知識を学習します。それは、言語処理タスクを実行するために必要な基礎知識を獲得するために行われます。 それは、単語や文章の関係性、文章の構造、文章の意味などを理解することができるようになります。GPT-3は、Deep Learningベースのモデルであり、知識を明示的に実装することはありませんが、大量のテキストデータから知識を学習することができるように構造設計されています。それは、Attention機構を使用して特定の部分のテキストに注目しながら、それらの関係を理解することができるようになります。
Me:
Attention機構について詳しく。
GPT:
Attention機構は、自然言語処理タスクにおいて重要な役割を担う機構です。それは、大量のテキストデータを処理するために使用され、特定の部分のテキストに注目しながら、それらの関係を理解することができるようになります。Attention機構は、Seq2Seqモデルなどの自然言語処理タスクに使用されています。それは、入力シーケンスから出力シーケンスを生成するために使用されます。Attention機構は、入力シーケンスのある部分に注目し、それに基づいて出力シーケンスを生成することができるようになります。Attention機構は、ニューラルネットワークの中で使用されます。それは、重み付けされた平均値を計算し、それに基づいて入力シーケンスから重要な部分を選択することができるようになります。GPT-3は、Attention機構を使用して、大量のテキストデータから概念レベルの知識を学習し、文章の意味を理解することができるようになります。