「作用素」を含む日記 RSS

はてなキーワード: 作用素とは

2021-01-08

センスは量

センス センサー センシティブ アウェアネス 気づき

 どのサブセット、クラスターで獲得するか 競争 ルール確認 エコーチェンバー注意 習うより慣れろ

  自然に触れていることであれ意識していることであれ、あえて客観メタ確認する、観察する、言葉にする

   体(内臓筋肉)、頭(神経)、心(作用素アラート対処)(前提条件、環境(言外のそそのかし、広告など))

    暗黙知(アレをああする、ジャーゴン方言形式知読書など) マイケルポランニー 梅棹忠雄

   やり口 手口 問題解決 知的創造 野口悠紀雄

文章を大量に書く習慣があって慣れていれば体裁を整えられたのかもしれない

2020-07-12

東大工学大学院出たけど、数学物理もできない

東大修士工学大学院を出たんだけど。

心残りがある。

  

数学物理全然勉強できなかったことだ。

全然というのは、工学必要もの以外は全然くらいの意味

  

ホッジ作用素とか、アインシュタイン方程式、群環体、微分幾何、集合と位相くらいは理解した(つまりe-MANや物理のかぎしっぽくらいのサイトを眺めるレベル

でも、

場の理論って何?繰り込み群って何?超対称性って何?

代数幾何って何?ルベーグ積分って何?幾何学の不変量って何?

って感じの、学部中級レベルしか物理数学理解できていない。

東大まで行って、これかよっていう。

ってか、工学系でも、これらの知識使ってるところは使ってる研究室あって、普通に研究してるわけで。

  

自分がいた研究室は、そんなに高度な数学物理も使わなかった。せいぜい、微分幾何学とかチョロっとだけルベーグもあったかなーくらい。ほとんど何もまともな頭を使う議論はなかった。ルベーグってのも、別にルベーグじゃなくて、ノルムがどうこうでちょろっと。

  

物性系なら、超電導とか相転移とか。あるいは、核物理とかなら、普通に素粒子とかで数学バリバリできたんかなあ。

もう就職しちゃったけど、博士やれるなら、純粋数学か、素粒子物理やりたいなあ。。。

  

人生、こんなにレベル低いところで終わるのいやだ。

2020-06-29

IUT理論宇宙タイミューラー理論ブームに沸く人たち

まず断っておくと、この投稿には望月教授およびその関係者貶める意図は全くない。また、「IUT理論が間違っている」と言っているわけでもない。この投稿の主旨は「IUT理論ブーム」の現象本質を明らかにすることである

ブームの異常性

まずIUT理論は決して数学特に整数論、数論幾何)の主要なブランチではない。「論文を読もう」というレベルの関心がある数学者でさえ全世界に数十人しかおらず、自称理解している」のは望月氏とその一派だけ、そして理解した上でさら理論を発展させようとしている研究者は恐らく数人しかいない。

もちろん、これは数学研究分野として珍しいことではないし、研究者の数が少ないと研究の「格」が下がるなどということもない。しかし、abc予想解決したというインパクトに比べれば、これはあまりにも小規模な影響でしかない。そういうものに、一般人も含めて熱狂しているのは、異常と言える。

繰り返しになるが、これはIUT理論のもの、および望月氏とその関係者貶める意図はない。

内容を理解せずに、単語に反応する人たち

数学科の学部生や、数学の非専門家で「IUT理論勉強したい」などと言っている人も多い。それは大いに結構なことである。どんどんチャレンジすればいいと思う。

しかし、専門的な数学を学ぶ際には、たとえば「可換代数複素解析が好きなので代数幾何研究したい」とか「関数解析が好きなので偏微分方程式作用素環論研究したい」というように、既存知識経験を手がかりにして専攻を決めるものではないだろうか。IUT理論に興味がある非専門家には、そういう具体的な動機があるのか。単に「話題キーワード」に反応しているだけじゃないのか。

IUT理論の具体的な内容に関心を持つには、望月氏の過去の一連の研究に通じている必要がある。そうでない人がIUT理論の「解説」などを読んでも、得られる情報

だけだろう。これに意味があるだろうか。そのような理解で「何か」が腑に落ちたとしても、それはその人にも、数学界にも何ら好影響を与えないだろう。

IUT理論よりも他に知るべきことがあるんじゃないか

こんなことを言うと、「専門的な数学を学ぶには、その前提となる知識を完全に知っていなければいけないのか」と思われるかも知れないが、もちろんそんなことはない。時には思い切りも必要である

しかし、望月氏本人が述べているように、IUT理論既存数学知識類推理解できる数学者は、自身を除いてこの世にいない。これは数論幾何専門家を含めての話である。数論幾何専門家は、一般人から見れば雲の上の存在である。そういう人たちでもゼロから勉強し直さなければ読めないのである一般人がIUT理論の分かりやす解説を求めるのは、1桁の数の足し算が分からない幼稚園児が微分積分の分かりやす解説を求めるのの1000倍くらいのギャップがあると言っても誇張ではない。要するに、難しすぎるのである

一方、数学界には既存数学伝統を多く汲んでいて、最新の数学にも大きな影響を及ぼしているような理論は数多くある。それらは、学部4年生や大学院生セミナーで扱われたり、全学部向けの開講科目で解説されたりしている。数学を知りたい、または普及させたいと思うならば、そういうものを扱う方が適切ではないだろうか。

「IUT理論ブーム」が示すもの

「IUT理論ブーム」が示すのは要するに、ほとんどの人間はある事実説明した文章なり理論なりの本質的な内容に興味がない、ということだ。

彼らは、書いてある事実関係を論理的に読み解くよりも、抽象的な内容を脳内自由解釈することを好む。むしろ理解できないからこそ、何か高尚なことが書いてあると思って有難がったり、満足感を得たりする。

この構造疑似科学新興宗教と同じなのである(IUT理論疑似科学だと言っているのではない)。彼らはあくまでも自分の中で腑に落ちる雑学知識を求めているだけであって、数学理解したいわけではない。そして、こういう人向けに数学科学知識を「布教」しても、社会への貢献にはならないと思う。

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

2020-06-14

物理数学の履修時期は常に1年すれ違っている

物理学は常に数学の発展と共に進歩してきた。

というより物理学から必要に駆られた要請によって新たな数学概念が切り開かれてきた。

したがって当然、物理を学ぶ際には現象のもの理解とその裏に潜む数学的内容の理解が両輪となるのだが、

なぜだか日本学校教育においては、この前提が上手く機能していない。

物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要概念が登場するといった具合だ。

具体的には、以下のようなものがある。

まあ大学まで来ると履修順もある程度好きにできるのであくま一般的な例だが、それでも通常のシラバスでは上記時期に学ぶとされることが多い。

なぜこのようなことになっているのだろう?

はっきり言って物理が「公式の暗記ゲー」になっているのはほとんどこのすれ違いが要因だ。根本的に理解するための道具がないから、その結果だけを公式として先回りに輸入しているのだ。

単純に小学校低学年の段階で理科の履修時期を1年後送りにすれば済むと思うのだが、何か問題があるのだろうか?

(Appendix)

現行(今年度より順次終了)の指導要領は以下

https://www.mext.go.jp/a_menu/shotou/new-cs/youryou/1356249.htm

順次適用される新指導要領は以下

https://www.mext.go.jp/a_menu/shotou/new-cs/1384661.htm

ブクマ返し

かにそこで知識として触れることになっている。ちゃんとやるのは中1だが、そこは誤解を招く表現だった。申し訳ない。

それはない。上記リンク参照。勝手にやってる所はあるかも。

大学カリキュラムはさすがに学校ごと、個人ごとに差が大きく、必ず上記の通りと言うつもりはない。しかベクトル解析は通常1年次の微分積分学ではやらないと思う。

また一般的に、物理の履修が数学に先んじる傾向が大学でも続くという部分は、どの大学でもおおまかには認められると思う。

思ったより各校で工夫されているらしい。それ自体はとても好ましい。

だが基本は指導要領の通り教わっているものであり自分の教わり方が「例外的に素晴らしかった」ことは認識していただきたい。

教師判断で「工夫」しなければいけない状態はどうなのか?

必ずしも初学者発見順に沿って学習する必要はないと思っている。

今の体系の中で、最もわかりやすい順番に並べ直すべき。

それ自体反論はないが、であれば上記のように物理内で微積を導入するなどして必要数学を身に付けさせなければ意味がない。

たとえば等加速度運動二乗公式を暗記させる必要は一切ないはず。

そして具体例から抽象化までに1年のブランクは遠すぎる。

また、個人的には数学はそれ自体完結する学問だと思っているので、常に物理のために数学があるような受取り方になるとしたらちょっと良くない(個人美学だが)

直前に書いた通り、自分はこの考えを指示する。異論はない。

物理要請数学が切り開かれた」というのは、そういう一事実があると言いたかっただけで「全ての数学が」というように受け取らせるつもりはなかった。

ここも誤解を招く表現でしたね。

2019-10-19

anond:20191019005500

たし蟹🦀

物理をもとに作られた数学数学側でちゃん整合性とれてるのもすごすぎてこわい

何でそんな発想でちゃんとR^n上の稠密作用素になるんだとか謎

2019-07-03

半年悩んでいた数学理解できた。

数学科ではないが、理系を出ている。

個人的純粋数学に興味があり、頂点作用素とD加群理論が全く理解できないでダラダラしていた。

昨日、いきなり一気に理解できた。

実は、もう最初の方から半年間、全く理解できていなかったのだが。最初のほうが、ちょっと分かった瞬間に、芋づる式にホボ全てが理解できた。

半年理解できなかったのが、ものの2時間くらいで、教科書全部を一気に理解できた。

不思議だなあと思うと同時に、

大学学部レベル数学しかなかなか理解できない自分に才能ないのかなと辟易としていたので、頑張ってよかったなーと思った。

2018-09-27

anond:20180927023413

じゃあ神は万能ではないということでOKだね。

全ての座標系を単純化させるような作用素定義可能なら別だけど。

2013-09-25

http://anond.hatelabo.jp/20130924230631

どうせなら線形代数はなんとなく分かるけどユークリッド空間まで行くとさすがに分からん、くらい言って欲しかったね!

横だけど、ユークリッド空間とその上に作用する線形作用素としての線形代数は全く同じもんだぞ。

ただの数学コンプのド文系かよ。そんなファビョるくらいだったら線形代数くらい自前で勉強した方が早いぞ。

2013-09-18

http://anond.hatelabo.jp/20130918042535

普通に大学院の在学中の人だけで集まっても、そこで「二階微分」どうこうの例え出したらひきますがな。。。

それはさすがにレベル低過ぎじゃね???

俺が学生の頃は「あの子内積とりたい」とか(ディラックブラケットを思い浮かべること)、数少ない女の子に群がる男を見て「ボーズアインシュタイン凝縮してる」とか、そういうのが普通に日常会話だったが。

今は社会に出てるので線形代数あたりのネタが多いな。内積も当然線形空間ネタなんだが、なんというか、ディラック記法を踏まえた文脈かどうかの違いが本質的物理系のヒルベルト空間必然的にその上に作用する作用素とセットだから

数学科人間なら二階微分なんて雑魚い例えしないし、

2階微分は2階微分であって、雑魚もなにもないでしょ。

そもそも例えじゃなくて文化資本格差時間関数と見たときの厳密な表現だぞ。

他の科ならわざわざ数学に例えるなんてひくわぁ

文系ならそうだろうけど、理系でそれ言うと自分馬鹿さ加減を宣伝してることになるぞ。

まともな理系の知識持ってる人間だったら「2階微分」で意味不明と思うなんて有り得ないよ。

うちの会社とか、どう逆立ちしても入社すらできないだろうなあ。

しかしこういう「勉強ダセェw」みたいな子、10年ぶりくらいに見たな…。なんか懐かしい感じ。どういうバックグラウンドの子なんだろう。

2011-09-15

コンピュータ基礎理論ハンドブック2 形式的モデル意味論」の目次

第1章  有限オートマトン
	D.Perrin:橋口攻三郎
1. 序論
2. 有限オートマトン認識可能集合
3. 有理表現
4. Kleeneの定理
5. 星の高さ
6. 星自由集合
7. 特殊なオートマトン
8. 数の認識可能集合


第2章  文脈自由言語
	J.Berstel and L.Boasson:富田 悦次

1. 序論
2. 言語
	2.1 記法と例
	2.2 Hotz 群
	2.3 曖昧性と超越性
3. 反復
	3.1 反復補題
	3.2 交換補題
	3.3 退化
4. 非生成元の探求
	4.1 準備
	4.2 生成元
	4.3 非生成元と代入
	4.4 非生成元と決定性
	4.5 主錐の共通部分
5. 文脈自由群
	5.1 文脈自由群
	5.2 Cayleyグラフ
	5.3 終端


第3章  形式言語とべき級数
	A.Salomaa:河原 康雄

1. 序論
2. 準備
3. 書換え系と文法
4. Post正準系
5. Markov系
6. 並列書換え系
7. 射と言語
8. 有理べき級数
9. 代数的べき級数
10. べき級数の応用


第4章  無限の対象上のオートマトン
	W.Thomas:山崎 秀記

序論
Ⅰ部  無限語上のオートマトン
	記法
1. Buchiオートマトン
2. 合同関係と補集合演算
3. 列計算
4. 決定性とMcNaughtonの定理
5. 受理条件とBorelクラス
6. スター自由ω言語と時制論理
7. 文脈自由ω言語
Ⅱ部  無限木上のオートマトン
	記法
8. 木オートマトン
9. 空問題と正則木
10. 補集合演算ゲームの決定性
11. 木の単項理論と決定問題
12. Rabin認識可能な集合の分類
	12.1 制限された単項2階論理
	12.2 Rabin木オートマトンにおける制限
	12.3 不動点計算


第5章  グラフ書換え:代数的・論理アプローチ
	B.Courcelle:會澤 邦夫

1. 序論
2. 論理言語グラフの性質
	2.1 単純有向グラフの類S
	2.2 グラフの類D(A)
	2.3 グラフの性質
	2.4 1階のグラフの性質
	2.5 単項2階のグラフの性質
	2.6 2階のグラフの性質
	2.7 定理
3. グラフ演算グラフ表現
	3.1 源点付きグラフ
	3.2 源点付き超グラフ
	3.3 超グラフ上の演算
	3.4 超グラフの幅
	3.5 導来演算
	3.6 超辺置換
	3.7 圏における書換え規則
	3.8 超グラフ書換え規則
4. 超グラフの文脈自由集合
	4.1 超辺置換文法
	4.2 HR文法に伴う正規木文法
	4.3 超グラフの等式集合
	4.4 超グラフの文脈自由集合の性質
5. 超グラフの文脈自由集合の論理的性質
	5.1 述語の帰納的集合
	5.2 論理構造としての超グラフ
	5.3 有限超グラフの可認識集合
6. 禁止小グラフ定義される有限グラフの集合
	6.1 小グラフ包含
	6.2 木幅と木分解
	6.3 比較図
7. 計算量の問題
8. 無限グラフ
	8.1 無限グラフ表現
	8.2 無限グラフの単項性質
	8.3 超グラフにおける等式系
	8.4 関手の初期不動点
	8.5 超グラフにおける等式系の初期解
	8.6 等式的超グラフの単項性質


第6章  書換え系
	N.Dershowitz and J.-P.Jouannaud:稲垣 康善,直井 徹

1. 序論
2. 構文論
	2.1 項
	2.2 等式
	2.3 書換え規則
	2.4 決定手続き
	2.5 書換え系の拡張
3. 意味論
	3.1 代数
	3.2 始代数
	3.3 計算能代数
4. Church-Rosser性
	4.1 合流性
	4.2 調和性
5. 停止性
	5.1 簡約順序
	5.2 単純化順序
	5.3 経路順序
	5.4 書換え系の組合せ
6. 充足可能性
	6.1 構文論的単一化
	6.2 意味論的単一化
	6.3 ナローイング
7. 危険対
	7.1 項書換え
	7.2 直交書換え系
	7.3 類書換え
	7.4 順序付き書換え
	7.5 既約な書換え系
8. 完備化
	8.1 抽象完備化
	8.2 公平性
	8.3 完備化の拡張
	8.4 順序付き書換え
	8.5 機能定理証明
	8.6 1階述語論理定理証明
9. 書換え概念拡張
	9.1 順序ソート書換え
	9.2 条件付き書換え
	9.3 優先度付き書換え
	9.4 グラフ書換え


第7章  関数型プログラミングラムダ計算
	H.P.Barendregt:横内 寛文

1. 関数計算モデル
2. ラムダ計算
	2.1 変換
	2.2 計算可能関数表現
3. 意味論
	3.1 操作意味論:簡約と戦略
	3.2 表示的意味論ラムモデル
4. 言語拡張
	4.1 デルタ規則
	4.2 型
5. 組合せ子論理と実装手法
	5.1 組合せ子論理
	5.2 実装の問題


第8章  プログラミング言語における型理論
	J.C.Mitchell:林 晋

1. 序論
	1.1 概論
	1.2 純粋および応用ラムダ計算
2. 関数の型をもつ型付きラムダ計算
	2.1 型
	2.2 項
	2.3 証明系
	2.4 意味論健全性
	2.5 再帰関数論的モデル
	2.6 領域理論モデル
	2.7 カルテシアン閉圏
	2.8 Kripkeラムモデル
3. 論理的関係
	3.1 はじめに
	3.2 作用構造上の論理的関係
	3.3 論理的部分関数論理同値関係
	3.4 証明論的応用
	3.5 表現独立性
	3.6 論理的関係の変種
4. 多相型入門
	4.1 引数としての型
	4.2 可述的な多相的計算系
	4.3 非可述的な多相型
	4.4 データ抽象存在型
	4.5 型推論入門
	4.6 型変数をもつλ→の型推論
	4.7 多相的宣言の型推論
	4.8 他の型概念


第9章  帰納的な関数プログラム図式
	B.Courcelle:深澤 良彰

1. 序論
2. 準備としての例
3. 基本的な定義
	3.1 多ソート代数
	3.2 帰納的な関数プログラム図式
	3.3 同値な図式
4. 離散的解釈における操作意味論
	4.1 部分関数と平板な半順序
	4.2 離散的解釈
	4.3 書換えによる評価
	4.4 意味写像
	4.5 計算規則
5. 連続解釈における操作意味論
	5.1 連続代数としての解釈
	5.2 有限の極大要素と停止した計算
6. 解釈クラス
	6.1 汎用の解釈
	6.2 代表解釈
	6.3 解釈方程式クラス
	6.4 解釈代数クラス
7. 最小不動点意味論
	7.1 最小で唯一の解を得る不動点理論
	7.2 Scottの帰納原理
	7.3 Kleeneの列と打切り帰納法
8. プログラム図式の変換
	8.1 プログラム図式における同値性の推論
	8.2 畳込み,展開,書換え
	8.3 制限された畳込み展開
9. 研究歴史,他の形式のプログラム図式,文献ガイド
	9.1 流れ図
	9.2 固定された条件をもつ一様な帰納的関数プログラム図式
	9.3 多様な帰納的関数プログラム図式
	9.4 代数理論
	9.5 プログラムの生成と検証に対する応用


第10論理プログラミング
	K.R.Apt:筧 捷彦

1. 序論
	1.1 背景
	1.2 論文の構成
2. 構文と証明論
	2.1 1階言語
	2.2 論理プログラム
	2.3 代入
	2.4 単一化子
	2.5 計算過程―SLD溶融
	2.6 例
	2.7 SLD導出の特性
	2.8 反駁手続き―SLD木
3. 意味論
	3.1 1階論理意味論
	3.2 SLD溶融の安全性
	3.3 Herbrand模型
	3.4 直接帰結演算子
	3.5 演算子とその不動点
	3.6 最小Herbrand模型
	3.7 SLD溶融の完全性
	3.8 正解代入
	3.9 SLD溶融の強安全性
	3.10 手続き的解釈と宣言的解釈
4. 計算力
	4.1 計算力と定義力
	4.2 ULの枚挙可能性
	4.3 帰納的関数
	4.4 帰納的関数計算力
	4.5 TFの閉包順序数
5. 否定情報
	5.1 非単調推論
	5.2 閉世界仮説
	5.3 失敗即否定規則
	5.4 有限的失敗の特徴付け
	5.5 プログラムの完備化
	5.6 完備化の模型
	5.7 失敗即否定規則の安全性
	5.8 失敗即否定規則の完全性
	5.9 等号公理と恒等
	5.10 まとめ
6. 一般目標
	6.1 SLDNF-溶融
	6.2 SLDNF-導出の安全性
	6.3 はまり
	6.4 SLDNF-溶融の限定的な完全性
	6.5 許容性
7. 層状プログラム
	7.1 準備
	7.2 層別
	7.3 非単調演算子とその不動点
	7.4 層状プログラム意味論
	7.5 完全模型意味論
8. 関連事項
	8.1 一般プログラム
	8.2 他の方法
	8.3 演繹データベース
	8.4 PROLOG
	8.5 論理プログラミング関数プログラミング統合
	8.6 人工知能への応用


第11章  表示的意味論
	P.D.Mosses:山田 眞市

1. 序論
2. 構文論
	2.1 具象構文論
	2.2 抽象構文
	2.3 文脈依存構文
3. 意味論
	3.1 表示的意味論
	3.2 意味関数
	3.3 記法の慣例
4. 領域
	4.1 領域の構造
	4.2 領域の記法
	4.3 記法上の約束事
5. 意味記述法
	5.1 リテラル
	5.2 式
	5.3 定数宣言
	5.4 関数抽象
	5.5 変数宣言
	5.6 文
	5.7 手続抽象
	5.8 プログラム
	5.9 非決定性
	5.10 並行性
6. 文献ノート
	6.1 発展
	6.2 解説
	6.3 変形


第12意味領域
	C.A.Gunter and D.S.Scott:山田 眞市

1. 序論
2. 関数帰納定義
	2.1 cpoと不動点定理
	2.2 不動点定理の応用
	2.3 一様性
3. エフェクティブに表現した領域
	3.1 正規部分posetと射影
	3.2 エフェクティブに表現した領域
4. 作用素関数
	4.1 積
	4.2 Churchのラム記法
	4.3 破砕積
	4.4 和と引上げ
	4.5 同形と閉包性
5. べき領域
	5.1 直観的説明
	5.2 形式的定義
	5.3 普遍性と閉包性
6. 双有限領域
	6.1 Poltkin順序
	6.2 閉包性
7. 領域の帰納定義
	7.1 閉包を使う領域方程式の解法
	7.2 無型ラム記法モデル
	7.3 射影を使う領域方程式の解法
	7.4 双有限領域上の作用素表現


第13章  代数仕様
	M.Wirsing:稲垣 康善,坂部 俊樹

1. 序論
2. 抽象データ型
	2.1 シグニチャと項
	2.2 代数計算構造
	2.3 抽象データ型
	2.4 抽象データ型の計算可能性
3. 代数仕様
	3.1 論理式と理論
	3.2 代数仕様とその意味論
	3.3 他の意味論的理解
4. 単純仕様
	4.1 束と存在定理
	4.2 単純仕様表現能力
5. 隠蔽関数と構成子をもつ仕様
	5.1 構文と意味論
	5.2 束と存在定理
	5.3 隠蔽記号と構成子をもつ仕様表現能力
	5.4 階層仕様
6. 構造仕様
	6.1 構造仕様意味論
	6.2 隠蔽関数のない構造仕様
	6.3 構成演算
	6.4 拡張
	6.5 観測的抽象化
	6.6 構造仕様代数
7. パラメータ仕様
	7.1 型付きラムダ計算によるアプローチ
	7.2 プッシュアウトアプローチ
8. 実現
	8.1 詳細化による実現
	8.2 他の実現概念
	8.3 パラメータ化された構成子実現と抽象化子実現
	8.4 実行可能仕様
9. 仕様記述言語
	9.1 CLEAR
	9.2 OBJ2
	9.3 ASL
	9.4 Larch
	9.5 その他の仕様記述言語


第14章  プログラム論理
	D.Kozen and J.Tiuryn:西村 泰一,近藤 通朗

1. 序論
	1.1 状態,入出力関係,軌跡
	1.2 外的論理,内的論理
	1.3 歴史ノート
2. 命題動的論理
	2.1 基本的定義
	2.2 PDLに対する演繹体系
	2.3 基本的性質
	2.4 有限モデル特性
	2.5 演繹的完全性
	2.6 PDLの充足可能性問題の計算量
	2.7 PDLの変形種
3. 1階の動的論理
	3.1 構文論
	3.2 意味論
	3.3 計算量
	3.4 演繹体系
	3.5 表現力
	3.6 操作的vs.公理意味論
	3.7 他のプログラミング言語
4. 他のアプローチ
	4.1 超準動的論理
	4.2 アルゴリズム論理
	4.3 有効的定義論理
	4.4 時制論理


第15章  プログラム証明のための手法論理
	P.Cousot:細野 千春,富田 康治

1. 序論
	1.1 Hoareの萌芽的な論文の解説
	1.2 C.A.R.HoareによるHoare論理のその後の研究
	1.3 プログラムに関する推論を行うための手法に関するC.A.R.Hoareによるその後の研究
	1.4 Hoare論理概観
	1.5 要約
	1.6 この概観を読むためのヒント
2. 論理的,集合論的,順序論的記法
3. プログラミング言語の構文論と意味論
	3.1 構文論
	3.2 操作意味論
	3.3 関係的意味論
4. 命令の部分正当性
5. Floyd-Naurの部分正当性証明手法とその同値な変形
	5.1 Floyd-Naurの手法による部分正当性証明の例
	5.2 段階的なFloyd-Naurの部分正当性証明手法
	5.3 合成的なFloyd-Naurの部分正当性証明手法
	5.4 Floyd-Naurの部分正当性の段階的な証明と合成的な証明同値性
	5.5 Floyd-Naurの部分正当性証明手法の変形
6. ライブネス証明手法
	6.1 実行トレース
	6.2 全正当性
	6.3 整礎関係,整列集合,順序数
	6.4 Floydの整礎集合法による停止性の証明
	6.5 ライブネス
	6.6 Floydの全正当性証明手法からライブネスへの一般化
	6.7 Burstallの全正当性証明手法とその一般化
7. Hoare論理
	7.1 意味論的な観点から見たHoare論理
	7.2 構文論的な観点から見たHoare論理
	7.3 Hoare論理意味論
	7.4 構文論と意味論の間の関係:Hoare論理健全性と完全性の問題
8. Hoare論理の補足
	8.1 データ構造
	8.2 手続き
	8.3 未定義
	8.4 別名と副作用
	8.5 ブロック構造局所変数
	8.6 goto文
	8.7 (副作用のある)関数と式
	8.8 コルーチン
	8.9 並行プログラム
	8.10正当性
	8.11 プログラム検証の例
	8.12 プログラムに対して1階論理拡張した他の論理


第16章  様相論理時間論理
	E.A.Emerson:志村 立矢

1. 序論
2. 時間論理の分類
	2.1 命題論理 対 1階述語論理
	2.2 大域的と合成的
	2.3 分岐的 対 線形
	2.4 時点と時区間
	2.5 離散 対 連続
	2.6 過去時制 対 未来時制
3. 線形時間論理技術的基礎
	3.1 タイムライン
	3.2 命題線形時間論理
	3.3 1階の線形時間論理
4. 分岐的時間論理技術的基礎
	4.1 樹状構造
	4.2 命題分岐的時間論理
	4.3 1階の分岐的時間論理
5. 並行計算:その基礎
	5.1 非決定性と公平性による並列性のモデル化
	5.2 並列計算抽象モデル
	5.3 並列計算の具体的なモデル
	5.4 並列計算の枠組みと時間論理の結び付き
6. 理論見地から時間論理
	6.1 表現可能性
	6.2 命題時間論理の決定手続き
	6.3 演繹体系
	6.4 モデル性の判定
	6.5 無限の対象の上のオートマトン
7. 時間論理プログラム検証への応用
	7.1 並行プログラム正当性に関する性質
	7.2 並行プログラム検証証明論的方法
	7.3 時間論理による仕様からの並行プログラム機械合成
	7.4 有限状態並行システム自動検証
8. 計算機科学における他の様相論理時間論理
	8.1 古典様相論理
	8.2 命題動的論理
	8.3 確率論理
	8.4 不動点論理
	8.5 知識


第17章  関係データベース理論の構成要素
	P.C.Kanellakis:鈴木 晋

1. 序論
	1.1 動機と歴史
	1.2 内容についての案内
2. 関係データモデル
	2.1 関係代数と関係従属性
	2.2 なぜ関係代数か
	2.3 なぜ関係従属性か
	2.4 超グラフデータベーススキーマの構文について
	2.5 論理データベース意味について
3. 従属性データベーススキーマ設計
	3.1 従属性の分類
	3.2 データベーススキーマ設計
4. 問合わせデータベース論理プログラム
	4.1 問合わせの分類
	4.2 データベース論理プログラム
	4.3 問合わせ言語と複合オブジェクトデータモデル
5. 議論:関係データベース理論のその他の話題
	5.1 不完全情報の問題
	5.2 データベース更新の問題
6. 結論


第18章  分散計算モデル手法
	L.Lamport and N.Lynch:山下 雅史

1. 分散計算とは何か
2. 分散システムモデル
	2.1 メッセージ伝達モデル
	2.2 それ以外のモデル
	2.3 基礎的概念
3. 分散アルゴリズムの理解
	3.1 挙動の集合としてのシステム
	3.2 安全性と活性
	3.3 システム記述
	3.4 主張に基づく理解
	3.5 アルゴリズムの導出
	3.6 仕様記述
4. 典型的な分散アルゴリズム
	4.1 共有変数アルゴリズム
	4.2 分散合意
	4.3 ネットワークアルゴリズム
	4.4 データベースにおける並行性制御


第19章  並行プロセス操作的および代数意味論
	R.Milner:稲垣 康善,結縁 祥治

1. 序論
2. 基本言語
	2.1 構文および記法
	2.2 操作意味論
	2.3 導出木と遷移グラフ
	2.4 ソート
	2.5 フローグラフ
	2.6 拡張言語
	2.7 その他の動作式の構成
3. プロセスの強合同関係
	3.1 議論
	3.2 強双模倣関係
	3.3 等式による強合同関係の性質
	3.4 強合同関係における置換え可能性
	3.5 強等価関係上での不動点の唯一性
4. プロセスの観測合同関係
	4.1 観測等価性
	4.2 双模倣関係
	4.3 観測合同関係
	4.4 プロセス等価性上での不動点の唯一性
	4.5 等式規則の完全性
	4.6 プロセス等価性に対するその他の概念
5. 双模倣等価関係の解析
	5.1 等価性の階層構造
	5.2 階層構造論理的特性化
6. 合流性をもつプロセス
	6.1 決定性
	6.2 合流性
	6.3 合流性を保存する構成子
7. 関連する重要な文献

2009-10-10

ラブプラス悪魔

ラププラ作用素

ラブプラシアンフィルター

最近ラブプラスというソフト流行ってるらしい。」「へえ、あの圧縮解凍ソフトがねえ!」

ラブプラス変換?信号処理なんかで使うアレ?

2008-04-23

http://anond.hatelabo.jp/20080423003651

自然科学系か…。一応ビジネスマン向けっていう指定があったから避けたんだけども…。


ボロが出まくってるんでもうやめますすみませんでした。

 
ログイン ユーザー登録
ようこそ ゲスト さん