はてなキーワード: 特性化とは
sup_{x ∈ U(X)} x subject to φ(x) ≤ w
ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である。
sup_{y ∈ T_p𝓜} ω(y)
生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:
∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}
ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})
ここで、
状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:
1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)
2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)
3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j
ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである。
(𝒜, ℋ, D)
ここで、
[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}
ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である。
H: [0,1] × X → X