「多様体」を含む日記 RSS

はてなキーワード: 多様体とは

2024-11-26

理論のAモデルは、弦理論幾何学的およびトポロジー的な側面を扱うための枠組みであり、特にシンプレクティック幾何学と深く関わっている。

このモデルは、特定対象空間上での弦の振る舞いを記述するために構造定義する。

基本的な設定として、Aモデルは次のように定義される:

Aモデルにおける物理的な量、特に散乱振幅は以下のように定義される:

N_{g, d} = ∫_{M_{g, d}(X)} ψ_1^{k_1} ... ψ_n^{k_n}

ここで、M_{g, d}(X) は g 個の境界点を持つ曲線のモジュライ空間であり、ψ_i は境界点上のパラメータである

QH^*(X) = H^*(X) ⊗ ℚ[q]

ここで q は量子パラメータである。この環は、グロモフ・ウィッテン不変量を計算するために用いられる。

AモデルはBモデル対称性を持ち、具体的には:

2024-11-24

君たちの好きな人劇場の話は僕にとってはカスだね。それよりM理論の話をしよう

ああ、君たちの矮小な興味関心には本当に辟易するよ。

人間関係ドラマなんて、11次元宇宙神秘に比べれば取るに足らないものさ。M理論こそが、私たち存在本質に迫る唯一の道筋なんだ。

まず、君たちに基本的なことを説明しなければならないだろうね。

M理論は、超弦理論統一する試みなんだ。これは、重力を含むすべての基本的な力を説明しようとする理論だよ。

想像してごらん、11次元空間振動する膜のようなものを。これが私たち宇宙基本的構成要素なんだ。

もちろん、君たちの頭では11次元想像するのは難しいだろうね。

3次元空間に閉じ込められた平面国の住人のようなものさ。

でも、数学的には美しく表現できるんだ。カラビ・ヤウ多様体を使えば、余剰次元を巧妙に隠すこともできる。

ああ、この話題で興奮してきたよ。君たちの日常的な悩みなんて、宇宙の真理の前では塵のようなものだ。M理論理解すれば、人生意味さえも違って見えてくるはずさ。

さて、もっと詳しく説明しようか。それとも、君たちの脳みそが沸騰する前に休憩した方がいいかな?

2024-11-20

TQFTの概要

量子場理論過去数十年にわたり幾何学に多大な影響を与えてきた。

その例として、ミラー対称性グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。

チェコティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学のものに関する基本的な疑問はまだ残されている。

このプロジェクトの大きな目的は、TQFTの幾何学統一的で決定的な全体像を見出すことだった。

数学の4つの主要分野が取り上げられた:シンプレクティック幾何学可積分系特異点理論圏論、モジュラー形式である

プロジェクト基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論特異点理論可積分系の関連付け(ヴェントランド)、シンプレクティック場理論位相的場理論可積分系(ファベール)、行列模型理論可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論幾何学特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。

より詳細には以下である

2024-11-16

お前らの人間劇場日記は聞き飽きた。抽象数学とか超弦理論とか話せよ

ああ、なんて素晴らしい提案だろう。やっと誰かが知性的な会話を求めてくれたわけだ。

さて、今日日記は、11次元M理論における位相的な特異点の解析から始めようか。

朝食にシリアルを食べながら、私は カラビ・ヤウ多様体の変形について考えていた。

同居人が「おはよう」と言ったが、私はその平凡な挨拶無視した。彼には、今私の脳内で起こっている量子重力革命的な洞察理解できるはずもない。

午後はペンローズ図を使って、ブラックホール情報パラドックスの新しい解決策を考案した。隣人が「何してるの?」と聞いてきたが、説明しても無駄だろう。彼女の脳では、私の天才的な理論を処理できないだろうから

夕方、友人2人が来訪した際、私は彼らに非可換幾何学におけるリーマン予想の新しいアプローチについて熱く語った。彼らは眠たそうな目で頷いていたが、私の brilliance に圧倒されていたに違いない。

就寝前、私は宇宙超対称性について瞑想した。明日は、11次元重力理論における M5-ブレーンの動力学に関する論文を書き始めよう。

ああ、なんて知的で刺激的な一日だったことか。これこそが本当の「人間劇場」というものだ。

2024-11-13

位相的弦理論レベル分け説明

1. 小学6年生向け

位相的弦理論は、宇宙不思議を解き明かそうとする特別な考え方です。普通物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。

例えば、ドーナツマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。

この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます

これを使って、科学者たちは宇宙秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たち身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?

2. 大学生向け

位相的弦理論は、通常の弦理論単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。

位相的弦理論には主に2つのバージョンがあります

1. A-モデル:ケーラー幾何学と関連し、2次元世界面を標的空間の正則曲線に写像することを扱います

2. B-モデル:複素幾何学と関連し、標的空間の複素構造依存します。

これらのモデルは、時空の幾何学構造と密接に関連しており、特にラビ・ヤウ多様体上で定義されることが多いです。

位相的弦理論重要性は以下の点にあります

1. 複雑な弦理論計算を簡略化できる

2. 弦理論数学構造をより明確に理解できる

3. ミラー対称性など、重要数学概念との関連がある

4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す

この理論は、物理学数学境界領域位置し、両分野に大きな影響を与えています。例えば、代数幾何学圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています

大学生の段階では、位相的弦理論基本的概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論物理学数学の橋渡しをどのように行っているかを把握することも大切です。

3. 大学院生向け

位相的弦理論は、N=(2,2) 超対称性を持つ2次元非線形シグマモデルから導出されます。この理論は、通常の弦理論世界面を位相的にツイストすることで得られます

ツイスト操作の結果:

1. 作用素に異なるスピンが与えられる

2. 理論局所的な自由度を失う

3. エネルギー運動量テンソルがQEXACT形式になる

A-モデルとB-モデルの主な特徴:

A-モデル

B-モデル

モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデル等価であるという驚くべき予想です。

位相的弦理論の応用:

1. 量子コホモロジー環の計算

2. グロモフ・ウィッテン不変量の導出

3. ミラー対称性検証

4. 代数幾何学問題への新しいアプローチ

大学院生レベルでは、これらの概念数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論現代理論物理学数学にどのような影響を与えているか理解することも重要です。

4. 専門家向け

位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルツイストすることで得られます

A-ツイストとB-ツイストの詳細:

1. A-ツイスト

- スピン接続をR-電荷修正: ψ+ → ψ+, ψ- → ψ-dz

- 結果として得られるA-モデルは、ケーラー構造にの依存

2. B-ツイスト

- スピン接続を異なるR-電荷修正: ψ+ → ψ+dz, ψ- → ψ-

- 結果として得られるB-モデルは、複素構造にの依存

モデルの相関関数

A-モデル

ここで、M はモジュライ空間evi評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルオイラー

B-モデル

ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式Ai は変形を表す場

ミラー対称性

A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジーミラー対称性の中心的な問題です。

最近の発展:

1. 位相的弦理論とGopakumar-Vafa不変量の関係

2. 位相重力理論との関連

3. 非可換幾何学への応用

4. 位相M理論提案

専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論数学構造を完全に理解し、新しい研究方向を提案できることも重要です。

5. 廃人向け

位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識必要です:

1. 導来圏理論

- 導来Fukaya圏とD^b(Coh(X))の圏同値

- 安定∞圏を用いた一般

- 非可換幾何学との関連

2. ホモロジーミラー対称性

- Kontsevich予想の一般

- SYZ予想との関連

- 非アーベル的ホッジ理論への応用

3. 位相的場理論の高次元化:

- 4次元Donaldson-Witten理論

- 6次元(2,0)理論との関係

- コホモロジーホール代数との関連

4. 位相的弦理論と量子重力

- AdS/CFT対応との関連

- 位相M理論の構築

- 非摂動効果系統的理解

5. 代数幾何学との深い関係

- 導来代数幾何学の応用

- モチーフ理論との関連

- 圏化されたDT不変量

6. 位相的弦理論数学的基礎:

- ∞圏論を用いた定式化

- 位相的再正規化群の理論

- 量子群位相的弦理論関係

7. 最新の研究トピック

- 位相的弦理論と量子情報理論の接点

- 位相的弦理論を用いた宇宙論的特異点研究

- 非可換幾何学に基づく位相的弦理論一般

8. 計算技術

- 位相的頂点作用素代数の応用

- 局所技法の高度な応用

- 数値的手法機械学習の導入

これらの概念を完全に理解し、独自研究を行うためには、数学理論物理学両分野において、最先端知識技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます

位相的弦理論の「廃人レベルでは、これらの高度な概念自在に操り、分野の境界を押し広げる革新的研究を行うことが期待されます。また、この理論が量子重力宇宙論といった基礎物理学根本的な問題にどのような洞察を与えるかを探求することも重要です。

2024-11-12

高校数学は、実は数学ではなく殆ど算数

群とか圏とか多様体とかコホモロジーとかそういう話がでてきて初めて数学と言える

2024-11-10

Chern-Simons理論でござる

Chern-Simons理論は、特に3次元のトポロジカル量子場理論(TQFT)における中心的な役割を果たす理論でござって、その定式化は主に接続(connection)と曲率(curvature)という微分幾何学概念に基づいておるのでござる。この理論は、特にゲージ理論トポロジー交差点で深い意味を持ち、リー群上の接続トポロジー性質を探るものでござる。以下では、厳密な数学的枠組みのもとで、Chern-Simons理論を詳細に説明いたすでござる。

1. 主束と接続

Chern-Simons理論は、主束上で定義される接続から構築されるのでござる。ここで、P(E) を G 群の主束とし、G をリー群、𝔤 をそのリー代数といたすでござる。主束は次のように定義されるのでござる:

P(E) → M,

ここで M は3次元多様体で、E はファイバー空間を表すのでござる。接続 A ∈ Ω¹(M, 𝔤) はこの主束上の1-形式でござって、各点でリー代数 𝔤 の値を取るのでござる。

接続 A は、接続を持つファイバー上の接続トランスポート表現し、リー群基準を用いて測地線のようにデータを運ぶのでござる。接続 A によって定義される曲率は、外微分 dA二次の項 A ∧ A を含む、次の形で表現されるのでござる:

F_A = dA + A ∧ A.

ここで、F_A は接続 A の曲率2-形式でござって、ゲージ群 G の接続が示す物理的な局所的な場を表すのでござる。

2. Chern-Simons形式定義

Chern-Simons形式は、主に接続の曲率を用いて定義されるのでござる。3次元多様体 M 上でのChern-Simons形式 CS(A) は、接続 A の曲率 F_A に基づいて次のように表されるのでござる:

CS(A) = ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A),

ここで、Tr はリー代数 𝔤 のトレースを取る演算子でござって、各項は外積wedge product)によって形成されるのでござる。具体的には、A ∧ dA接続 A とその外微分 dA外積を、A ∧ A ∧ A は接続の3重積を意味するのでござる。

この形式が持つ数学的な意味は、次の通りでござる:

3. ゲージ変換とChern-Simons形式の不変性

Chern-Simons形式は、ゲージ変換に対して不変であることが重要な特徴でござる。ゲージ変換は、接続 A に対して次のように作用するのでござる:

A → g⁻¹Ag + g⁻¹dg,

ここで g ∈ G はゲージ群の元でござる。この変換によって、Chern-Simons形式がどのように振る舞うかを調べると、次のように変換することがわかるのでござる:

CS(A) → CS(A) + ∫_M Tr(g⁻¹dg ∧ g⁻¹dg ∧ g⁻¹dg).

これは、Chern-Simons形式がゲージ変換の下でトポロジカル不変量として振る舞うことを示しておるのでござる。すなわち、Chern-Simons形式の値は、ゲージ変換による局所的な変更には依存せず、主に多様体トポロジー依存することが分かるのでござる。

4. Chern-Simons理論量子化

Chern-Simons理論量子化は、パスインテグラルを用いた量子場理論の枠組みで行われるのでござる。具体的には、Chern-Simons作用を用いた量子化は次のように記述されるのでござる:

Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).

この積分は、接続 A に関するパスインテグラルでござって、Chern-Simons理論における量子場理論の構築に用いられるのでござる。ここで 𝒟A は接続 A の変分に関する積分を示すのでござる。

5. トポロジカル不変量としてのChern-Simons作用

Chern-Simons形式は、特に3次元多様体に対するトポロジカル不変量としての性質重要でござる。3次元多様体 M に対して、Chern-Simons不変量は以下のように定義され、計算されるのでござる:

Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).

この不変量は、3次元の量子ホール効果トポロジカル絶縁体などの物理現象記述するのに重要でござる。具体的には、Chern-Simons形式によって、3次元多様体トポロジーを示す不変量が得られ、量子化されたゲージ理論における位相的な特性理解するために利用されるのでござる。

6. Chern-Simons理論トップダウン的応用

Chern-Simons理論の応用には以下のようなものがござる:

2024-11-09

位相的弦理論について

位相的弦理論は、通常の弦理論単純化したバージョンで、弦理論世界面を位相的にツイストすることで得られる。

この理論は、弦理論の複雑さを減らしつつ、その本質的構造を保持することを目的としている。

位相的弦理論の基本概念

位相的弦理論では、通常の弦理論作用位相的にツイストする。このツイストにより、作用素は異なるスピンを与えられ、結果として局所的な自由度を持たない理論が得られる。

数学表現

位相的弦理論作用は、通常の弦理論の Polyakov 作用を変形したものとして表現できる。Polyakov 作用は以下のように与えられる:

Sₚ[X, g] = -1/(4πα') ∫ d²σ √(-g) gᵅᵝ ∂ᵅXᵘ ∂ᵝXᵛ ηᵘᵛ

ここで、Xᵘ は標的空間座標、gᵅᵝ は世界面の計量、α' はスローパラメータである

位相的弦理論では、この作用に対して位相ツイストを行う。ツイストされた作用一般的に以下の形を取る:

Sₜₒₚ = ∫Σ {Q, V}

ここで、Q は位相対称性を生成する演算子、V は適切に選ばれた演算子、Σ は世界面を表す。

A-モデルとB-モデル

位相的弦理論には主に2つのタイプがある:A-モデルとB-モデルである

1. A-モデル

A-モデルは、6次元多様体 X の向きづけられたラグラジアン3次元多様体 M 上の U(N) チャーン・サイモン理論として現れる。

2. B-モデル

B-モデルは、D5-ブレーンのスタックを満たす世界体積上で定義され、6次元への変形された正則チャーン・サイモン理論として知られている。

2024-11-03

コボルディズムとパンツダイアグラム

コボルディズム(cobordism)とパンツダイアグラム関係は、トポロジカルな観点からポロジカル量子場理論(TQFT)や弦理論世界重要役割を果たす。コボルディズムは、異なる次元を持つ多様体の間にどのような接続可能かを調べる手法であり、特にポロジカルな場の理論において境界を介した変形(つまり、どのようにして異なる多様体が連結されるか)を表すために利用される。

パンツダイアグラムは、名前の通り「パンツ」形状をした2次元多様体で、弦理論においては2つの弦が1つに結合したり、1つの弦が2つに分裂したりするプロセス視覚的に表現する。このようなプロセスコボルディズムの一種であり、3つの境界を持つリーマン面として記述できる。特にパンツダイアグラムは、物理的には弦の結合や分裂を表現し、数学的には2次元多様体コボルディズムとして扱うことができる。

具体的には、コボルディズムの考え方に基づき、あるリーマン面が異なる境界条件を持つ複数の弦に分解される場合、それをパンツダイアグラム視覚化することができる。例えば、パンツ状のコボルディズムは、3つの穴(境界)を持ち、それぞれの境界が異なる弦の状態対応する。このようにして、パンツダイアグラムは、弦理論におけるトポロジカルな変換をコボルディズムを通して幾何学的に示す手法の一つと見なされる。

さらに、トポロジカルM理論やTQFTの枠組みでは、コボルディズムやパンツダイアグラム理論構造や不変量を計算するための基本的モジュールとして扱われる。これにより、特定物理プロセス(たとえば、弦の結合・分裂やパス積分構成)が、数学的にはコボルディズムの空間での操作として表現されることになる。

2024-10-31

ランドスケープ空間構造人間原理の制約

まず、超弦理論におけるランドスケープ空間を高次元多様体 M と仮定し、その点 v ∈ M が観測可能物理真空状態を定める。

真空 v には物理パラメータベクトル λ(v) ∈ R^n が付随し、宇宙の諸定数および構造(カラビ-ヤウ多様体の形状、膜の巻き込みパラメータ等)を特徴づける。

人間原理によって、観測者の存在可能となる真空状態を唯一選択することを数学的に表現するため、次のような制約集合を定義する:

M_H = { v ∈ M | Φ(λ(v)) = 0 },

ここで、Φ: R^n → R は観測者の存在必要物理的条件を反映する制約関数である

したがって、Φ(λ(v)) = 0 なる条件を満たす v が人間原理に適合する唯一の状態とみなされる。

制約集合の構造位相的制約

ランドスケープ空間 M 内において、制約集合 M_H ⊆ M の構造重要である

ここで、M_H が単一の点 v_* に収束する場合人間原理確率的ではなく決定論的に唯一の宇宙 v_* を選択する。

この一意性は次の数理的要請によって確保される:

1. 収束の一意性:制約集合 M_H が単一の極大成分 {v_*} を含む。

2. 位相的閉性:M_H がランドスケープ空間 M において位相的に閉であること。

このような位相構造を持つことで、観測者の存在条件はランドスケープ全体における唯一の解 v_* を定めることができ、これによって観測可能宇宙が一意に決まる。

制約充足問題としての形式

ランドスケープ空間 M 内で観測存在可能真空状態が唯一の解 v_* に収束することを示すため、制約充足問題として以下の条件を考える:

∃ ! v_* ∈ M such that Φ(λ(v_*)) = 0.

この解の一意性条件に基づき、ランドスケープ空間上で観測者の存在可能真空が他にないことを保障する。さらに、制約充足の観点から、Φ がランドスケープ空間において単調減少的または収束性質を持つと仮定することにより、真空状態が唯一の極小点に収束し、ランドスケープの大規模な空間人間原理の下で自動的に一意の宇宙 v_* へと選ばれる。

結論: 確率的要素を排した人間原理による一意な選択

このようにして、ランドスケープ空間 M は観測存在の制約 Φ(λ(v)) = 0 によって一意の真空 v_* を選択することができる。

この解は確率論を伴わずに、人間原理自然に一意な観測可能宇宙 v_* のみを選択するという決定論的なモデル提供する。

このモデルでは、ランドスケープ可能多様性が、観測者の存在条件という数学的制約により唯一の解へと集約される構造を持つ。

2024-10-27

M理論とはなにか

M理論は、弦理論進化形であり、最終理論候補として位置づけられている。

特にM理論11次元の時空を基盤としており、5種類の超弦理論がこの11次元時空で統合される特性を持つ。

この統合は、双対性と呼ばれる関係によって実現される。

これらの理論には、M2膜と呼ばれる2次元膜や、M5膜と呼ばれる5次元膜が含まれる。

M2膜とM5膜上の場の理論自由度は、それぞれ膜の枚数 N に依存し、具体的には:

この関係は、特に行列模型の解析において重要であり、自由エネルギー評価にも影響を与える。例えば、M2膜の場合自由エネルギー F は次のように表される:

F ∝ N^(3/2)

ABJM理論は、M2膜を記述するための3次元理論であり、超対称チャーン・サイモン理論を基盤としている。

この理論では行列模型が用いられ、分配関数計算が行われる。ABJM行列模型における分配関数 Z は以下の形をとる:

Z = ∫ ∏(i=1 to N) dμ_i ∏(j=1 to N) dν_j (∏(i < j) sinh^2((μ_i - μ_j)/2) sinh^2((ν_i - ν_j)/2)) / (∏(i,j) cosh((μ_i - ν_j)/2))

さらに、インスタント効果と呼ばれる非摂動的な効果にも焦点が当てられている。

これらは膜インスタントンと弦インスタントンとして分類され、特定パラメータ空間で発散が相殺されることが示されている。

インスタントンと弦インスタントンの寄与は次のように表される:

e^(-S_膜) + e^(-S_弦)

ABJM行列模型の解析は可積分性の観点からも行われており、その解は代数曲線の量子化条件に関連している。

このことにより、背景時空と対応するカラビ・ヤウ多様体が非摂動的な補正項として厳密に求まる。

2024-09-27

バナッハ=タルスキーパラドックスブラックホール情報量

1. 数学的前提

以下の数学構造定義する:

2. バナッハ=タルスキー分割の形式

H上にバナッハ=タルスキー分割を以下のように定義する:

定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、

1. H = ∪iεI Ai

2. Ai ∩ Aj = ∅ for i ≠ j

3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H

ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅

3. 量子情報理論の導入

事象の地平面上の量子状態密度作用素 ρ ε B(H) で表現する。

von Neumannエントロピーを以下のように定義する:

S(ρ) = -Tr(ρ log ρ)

4. ホログラフィック原理数学表現

AdS/CFT対応に基づき、バルク空間重力理論境界CFTの間の同型を考える:

Zgravity[φ0] = ZCFT[J]

ここで、φ0はバルクの場、Jは境界ソースである

5. 情報量モデル

事象の地平面上の情報量を以下の汎関数表現する:

I[H] = ∫H √h d³x I(x)

ここで、hはHの誘導計量、I(x)は局所的な情報密度である

6. バナッハ=タルスキー分割と情報量関係

命題:バナッハ=タルスキー分割の下で、

I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]

が成り立つ。

7. 量子効果考慮

プランクスケールでの量子効果考慮するため、非可換幾何学を導入する。

H上の座標演算子 X̂i に対して:

[X̂i, X̂j] = iθij

ここで、θijは非可換パラメータである

8. 情報保存の定理

定理:量子効果考慮した場合、以下が成り立つ:

limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε

ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である

結論

このモデルは、バナッハ=タルスキーパラドックスブラックホール情報量問題統合している。

量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量記述することが可能となる。

このアプローチは、量子重力理論情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックス解決に向けた理論的基盤を提供する。

M理論超弦理論数学宇宙仮説

超弦理論数学構造

超弦理論は、2次元の共形場理論を基礎としている。この理論は、以下の数学的要素で構成される:

1. 共形対称性: 2次元世界面上で定義される場の理論で、局所的なスケール不変性を持つ。これは無限次元のビラソロ代数によって記述される。

[Lₘ, Lₙ] = (m - n)Lₘ₊ₙ + c/12 m(m² - 1)δₘ₊ₙ,₀

ここで、Lₘはビラソロ演算子、cは中心電荷である

2. モジュライ空間: 弦の運動記述する際、リーマン面のモジュライ空間重要役割を果たす。これは複素多様体の変形理論と密接に関連している。

3. カラビ・ヤウ多様体: 超対称性を保つためには、6次元余剰次元がカラビ・ヤウ多様体の形をしている必要がある。これは複素3次元のケーラー多様体で、リッチ曲率テンソルが消えるという特徴を持つ。

Rᵢⱼ̄ = 0

M理論数学構造

M理論11次元の超重力理論を基礎としており、以下の数学的要素が重要である

1. 超多様体: 11次元の時空は超多様体として記述され、通常の座標に加えてグラスマン数値の座標を持つ。

2. E₈ × E₈ ゲージ群: ヘテロ型E₈理論との関連で、E₈ × E₈という例外リー群重要役割を果たす。

3. G₂ホロノミー: M理論コンパクト化において、7次元の内部空間がG₂ホロノミーを持つ多様体である必要がある。これは、7次元多様体上の3-形式ωが以下の条件を満たす場合である

dω = d*ω = 0

ここで、*はHodgeスタ演算子である

数学宇宙仮説との関連

数学宇宙仮説の観点からM理論超弦理論は以下のように解釈できる:

1. 圏論視点: これらの理論は、物理的実在圏論的な言語記述しようとする試みと見なせる。例えば、弦の世界面のカテゴリーと、それに対応する共形場理論カテゴリーの間の対応関係重要である

2. 代数幾何学的構造: カラビ・ヤウ多様体例外リー群などの登場は、宇宙根本構造代数幾何学的な性質を持つ可能性を示唆している。

3. 双対性: 様々な双対性(例:T双対性、S双対性ミラー対称性)の存在は、異なる数学記述が同じ物理的実在表現可能であることを示唆し、プラトン数学構造多様性示唆している。

4. 高次圏論: ブレーンの階層構造は、高次圏論的な記述自然対応する。n-カテゴリー概念が、p-ブレーンの理論と密接に関連している。

5. 無限次元リー代数: 弦理論における無限次元対称性(例:カッツ・ムーディ代数)の出現は、宇宙基本法則無限次元数学構造に基づいている可能性を示唆している。

これらの理論示唆する数学構造の豊かさと複雑さは、数学宇宙仮説が主張するような、宇宙根本的な数学性質を支持する証拠解釈できる。

しかし、これらの理論実験検証の困難さは、数学構造物理的実在関係についての哲学的問題を提起し続けている。

2024-09-26

超弦理論時間依存背景とド・ジッター空間における量子論

超弦理論時間依存背景とド・ジッター空間における量子論モデルについて述べる。

基本的な設定として、(M, g)なる時空を考慮する。ここでMは(d+1)次元多様体、gはその上の計量である。dは超弦理論では9、標準的なド・ジッター空間では3となる。

統一モデル作用積分は S = Sstring + SdS + Sint と定義される。Sstringは超弦理論作用、SdSはド・ジッター空間作用、Sintは相互作用項を表す。

超弦理論部分はPolyakov作用を基にし、以下のように表される:

Sstring = -1/(4πα') ∫ d²σ √(-h) hᵃᵇ ∂ₐXᵘ ∂ᵇXᵛ Gμν(X) + フェルミオン

ここでα'は弦の張力、hₐᵇはワールドシート計量、Xᵘは標的空間座標、Gμνは標的空間計量である

ド・ジッター空間部分の作用は以下のように表される:

SdS = 1/(16πG) ∫ d^(d+1)x √(-g) (R - 2Λ)

ここでGはニュートン定数、Rはリッチスカラー、Λは正の宇宙定数である

相互作用項は Sint = ∫ d^(d+1)x √(-g) Lint(Xᵘ, φ) と定義される。φはド・ジッター空間上の場、Lintは相互作用ラグランジアンである

系の量子化経路積分形式で Z = ∫ DXDGDΦ exp(iS[X,g,φ]) と表される。

エネルギー極限での有効作用は以下のように表される:

Seff = 1/(16πGeff) ∫ d⁴x √(-g) (R - 2Λeff) + 高次項

ここでGeffとΛeffは量子補正を含む有効的なニュートン定数と宇宙定数である

AdS/CFT対応拡張として、Zstring[J] = ZCFT[J] なる関係仮定する。

ド・ジッター空間状態方程式 p = wρ, w = -1 を考慮する。pは圧力、ρはエネルギー密度、wは状態方程式パラメータである

摂動効果を含めるため、Z = Zpert + Σn Cn exp(-Sinst,n) なるインスタント寄与考慮する。

時空のトポロジー変化を記述するため、コボルディズム理論を用い、∂M = Σ1 ∪ (-Σ2) なる関係を考える。

量子ゆらぎを考慮するため、gμν = g⁽⁰⁾μν + hμν なる計量の揺らぎを導入する。

2024-09-23

楕円曲線場合ホモロジカルミラー対称性

定理楕円曲線場合ホモロジカルミラー対称性

複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である

𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))

証明

1. フクヤ圏 𝓕(E) の構成

1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。

2. 生成元の設定: フロアコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである

3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標ラグランジアン相対的位置関係から決定される。

4. 微分定義フロア微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスク存在しないため、微分は消える(𝑑 = 0)。

5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。

2. 連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構成
  • 対象: Eᐟ 上の連接層(例えば、線束やその複体)。
  • 射: 2つの連接層 𝓔 と 𝓕 の間の射は、導来圏における Ext 群である

𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)

  • 合成: 射の合成は、Ext 群の Yoneda 合成により定義される。
3. 関手 Φ: 𝓕(E) → 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構築
  • ポワンカレ束の利用: 楕円曲線 E とその双対 Eᐟ は、ポワンカレ束 𝓟 を用いて関連付けられる。これは E × Eᐟ 上の連接層であり、双方の間のフーリエ–ムカイ変換の核となる。

Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)

ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである

4. 関手 Φ が忠実であることの証明

1. フロアコホモロジー計算

- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアコホモロジー群は生成元 [𝑝] で張られる。

- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアン相対的位相データとモノドロミーから決定される。

2. Ext 群の計算

- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は

𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅

{ ℂ, 𝑖 = 0, 1

0, 𝑖 ≠ 0, 1 }

3. 対応確立フロアコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。

5. 関手 Φ が圏同値を与えることの結論

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-18

超弦理論の7つの観点からの定式化

1. 多様体: 座標系、つまり局所的にモデル空間と関連付けることにより記述

超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。

弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます

作用はポリャコフ作用で与えられます

S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),

ここで:

- T は弦の張力(T = 1/(2πα'))、

- h_{αβ} は世界面の計量、

- g_{μν}(X) は時空の計量テンソル

- α' は逆張力で、弦の長さの二乗に比例。

M理論では、時空は11次元微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となりますM2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます作用は次のように与えられます

S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},

ここで:

- T_{2} はM2ブレーンの張力

- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、

- C_{μνρ} は11次元重力の三形式ポテンシャル

2. スキーム: 局所関数を通じて記述。点は関数空間での極大イデアル対応する。

ラビ–ヤウ多様体は、超弦理論コンパクト化において重要役割を果たす複素代数多様体であり、スキーム言葉記述されます

例えば、3次元ラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます

f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,

ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。

各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間構造を厳密に解析できます

3. 与えられた空間を他の空間からの射、すなわち構造を保つ写像(の全体)Hom(-,S)を通じて記述

理論では、世界面 Σ から時空多様体 M への写像空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。

特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。

この設定では、開弦のモジュライ空間は、境界条件考慮した写像空間 Hom(Σ, M; ∂Σ → W) となります

4. コホモロジー論におけるように不変量を通じて特徴づける。

理論物理量は、しばしば背景多様体コホモロジー群の要素として表現されます

- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます

- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます

- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果計算するために使用されます

例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます

⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),

ここで:

- g はワールドシートの種数、

- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、

- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、

- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。

5. 局所的断片(単体、胞体)から空間を再構築して、空間性質がその構築のパターン組合せ論に帰着されるようにする。

理論摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。

- パンツ分解: リーマン面基本的ペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。

- 世界面のトポロジー組合せ論的に扱い、弦の散乱振幅を計算します。

弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます

A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},

ここで:

- g_{s} は弦の結合定数、

- ℳ_{g} は種数 g のリーマン面のモジュライ空間

- D[h] は計量に関する積分(ファデエフポポフ法で適切に定義)、

- S[X,h] はポリャコフ作用

6. 構造を保つ変換の成す群の言葉空間を特徴づける。

対称性の群は、弦理論M理論基本的性質を決定します。

- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数

[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}

に従います。ここで c は中心電荷

- 超対称性: ℕ = 1 の超共形代数は、

{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},

[L_{n}, G_{r}] = (n/2 - r) G_{n+r}

を満たします。

- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論等価である。このとき運動量 p と巻き数 w が交換されます

p = n/R, w = m R → p' = m/R', w' = n R',

ここで R' = α'/R。

- S-双対性: 強結合と弱結合の理論等価であるという双対性。弦の結合定数 g_{s} が変換されます

g_{s} → 1/g_{s}。

7. 距離空間: その元の間の距離関係を通じて空間定義

時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:

R_{μν} = 0。

β関数消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):

- 重力場:

R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、

- B-フィールド

∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、

- ディラトン場:

4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。

M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元重力の場の方程式を満たします:

- 場の強度の方程式

d * F = 1/2 F ∧ F、

- アインシュタイン方程式

R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。

2024-09-17

超弦理論M理論に基づく最初宇宙モデル

1. 位相的弦理論圏論的定式化

最初宇宙の基本構造記述するために、位相的弦理論圏論的定式化を用いる。

定義: 位相的A模型圏論記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である

対象: (L, E, ∇)

射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))

この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。

2. 導来代数幾何学と高次圏論

最初宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。

定義: 導来スタック 𝔛 を以下のように定義する:

𝔛: (cdga⁰)ᵒᵖ → sSet

ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である

𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。

3. モチーフ理論宇宙位相構造

宇宙の大規模構造位相性質記述するために、モチーフ理論適用する。

定義: スキーム X に対して、モチーフコホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。

これは、Voevodsky の三角DM(k, ℚ) 内での Hom として表現される:

Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])

ここで M(X) は X のモチーフである

4. 高次ゲージ理論と ∞-Lie 代数

最初宇宙の高次ゲージ構造記述するために、∞-Lie 代数を用いる。

定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコ恒等式を満たすものである

L∞ 代数の Maurer-Cartan 方程式

Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0

この方程式の解は、高次ゲージ理論古典的配位を表す。

5. 圏値場の理論と量子重力

最初宇宙の量子重力効果記述するために、圏値場の理論を用いる。

定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:

Z: Cob(n) → 𝒞

特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。

6. 量子エントロピーと von Neumann 代数

最初宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。

定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:

S(ω || φ) = {

tr(ρω (log ρω - log ρφ)) if ω ≪ φ

+∞ otherwise

}

ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である

7. 非可換幾何学と量子時空

最初宇宙の量子時空構造記述するために、非可換幾何学を用いる。

定義: スペクトル三重項 (A, H, D)

非可換多様体上の積分は以下のように定義される:

∫_X f ds = Tr_ω(f|D|⁻ᵈ)

ここで Tr_ω は Dixmier トレースである

2024-09-15

量子力学観測問題

量子力学観測問題を、高次圏論、導来代数幾何学、および量子位相場の理論統合した枠組みで定式化する。

基礎構造として、(∞,n)-圏 C を導入し、その導来スタック Spec(C) を考える。観測過程表現するために、Spec(C) 上の導来量子群スタック G を定義する。G の余代数構造を (Δ: O(G) → O(G) ⊗L O(G), ε: O(G) → O(Spec(C))) とする。ここで ⊗L は導来テンソル積を表す。

観測を ω: O(G) → O(Spec(C)) とし、観測後の状態を (id ⊗L ω) ∘ Δ: O(G) → O(G) で表す。エントロピーを高次von Neumannエントロピー一般化として、S: RMap(O(G), O(G)) → Sp^n として定義する。ここで RMap は導来写像空間Sp^n は n-fold loop space のスペクトラム対象である観測によるエントロピー減少は S((id ⊗L ω) ∘ Δ) < S(id) で表現される。

デコヒーレンスを表す完全正(∞,n)-関手 D: RMap(O(G), O(G)) → RMap(O(G), O(G)) を導入し、S(D(f)) > S(f) for f ∈ RMap(O(G), O(G)) とする。

観測者の知識状態表現するために、G-余加群スタック M を導入する。観測過程における知識状態の変化を (ω ⊗L id) ∘ ρ: M → M で表す。ここで ρ: M → O(G) ⊗L M は余作用である

分岐表現するために、O(G) の余イデアルの(∞,n)-族 {Ii}i∈I を導入する。各分岐対応する射影を πi: O(G) → O(G)/LIi とする。観測者の知識による分岐選択は、自然(∞,n)-変換 η: id → ∏i∈I ((O(G)/LIi) ⊗L -) として表現される。

知識状態の重ね合わせは、M の余積構造 δ: M → M ⊗L M を用いて表現される。

さらに、量子位相場の理論との統合のために、Lurie の圏化された量子場の理論の枠組みを採用する。n次元ボルディズム(∞,n)-圏 Bord_n に対し、量子場理論を表す対称モノイダル(∞,n)-関手 Z: Bord_n → C と定義する。

観測過程は、この関手の値域における状態制限として記述される。具体的には、閉じたn-1次元多様体 Σ に対する状態 φ: Z(Σ) → O(Spec(C)) を考え、ボルディズム W: Σ → Σ' に対する制限 φ|W: Z(W) → O(Spec(C)) を観測過程として解釈する。

2024-09-13

圏論アプローチによるM理論ラングランズ・プログラム

1. 基礎設定

M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。

2. 導来圏の構築

D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。

3. 幾何ラングランズ対応一般

以下の圏同値を構築する:

Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))

ここで、D_M は M 上の捻れ D-加群の圏である

4. 量子化位相的場理論

M 上の Chern-Simons 理論量子化を考える。その分配関数 Z(M,k) を以下のように定義する:

Z(M,k) = ∫ DA exp(ikCS(A))

ここで、CS(A) は Chern-Simons 作用である

5. モジュラー関手の構築

F: D^b(Bun_G(M)) → Mod(MF_q)

を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である

6. L関数との関連付け

G の既約表現 ρ に対し、以下の等式を予想する:

L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)

ここで、V_ρ は ρ に付随する M 上のローカルである

7. 幾何ラングランズ対応M理論の融合

以下の図式が可換であることを示す:

D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M)))
   |                     |
   |                     |
   F                     F
   |                     |
   V                     V
Mod(MF_q) -----≃----> Mod(MF_q)

8. 高次元化とモチーフ理論

M の次元一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記構成を高次元化する。

結論

以上の構成により、M理論幾何学的構造ラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論モチーフ理論統一的に扱う枠組みを提供するものである

今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性検証重要である

2024-09-12

M理論幾何学

定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。

定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。

定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。

場の理論構造

定義 4: M理論の場の配位空間を以下で定義する:

C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}

ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。

 

定理 1 (作用汎関数): M理論作用 S: C → ℝ は以下で与えられる:

S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dCdC - ψ̄D̸ψ) vol_g

ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である

 

定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:

1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]

2. C-場の方程式: d*dC + 1/2 dCdC = 0

3. Dirac 方程式: D̸ψ = 0

ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである

幾何学構造

定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。

定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:

1. dφ = 0

2. d*φ = 0

3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。

 

定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。

定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である

位相構造

定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。

 

定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である

I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0

ここで p₁(M), p₂(M) は M の Pontryagin 類である

 

定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:

ind(D̸) = ∫_M Â(M) ch(S)

ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である

双対性

定義 9: 位相CW 複体の圏を Topアーベル群の圏を Ab とする。

 

定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:

K(X × S¹) ≅ K(X × S¹)

ここで X は CW 複体、右辺の S¹ は双対円を表す。

 

定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:

H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)

ここで H^k は k 次コホモロジー群、H_k は k 次ホモロジー群を表す。

2024-09-10

anond:20240910203201

実に興味深い

狂人理解可能な行動原理存在するのか

ジョーカーが狂ったようなものだと考えれば説明がつくか?

それともファンタスティックフォー放射能を浴びて変な能力を身につけたようなものか?

もしそうだとすると、🐊は何らかの超人能力を備えているのか?

僕の仮説だが、🐊はカラビヤウ多様体が作り出す多世界自由に移動する能力を持っている

その各所で痕跡を残すことに努力していると見た

[] ミクロ経済学抽象化

1. 圏論アプローチによる消費者理論

1.1 基本設定
1.2 選好の表現
1.3 一般化された効用最大化問題

sup_{x ∈ U(X)} x subject to φ(x) ≤ w

ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である

2. 微分位相幾何学アプローチによる生産理論

2.1 基本設定
2.2 一般化された利潤最大化問題

sup_{y ∈ T_p𝓜} ω(y)

2.3 生産対応特性化

生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:

∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}

ここで、dω は ω の外微分である

3. 作用素代数アプローチによる一般均衡理論

3.1 経済定義

経済 ℰ をC*-代数 𝒜 上の作用素の組として定義

ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})

ここで、

3.2 均衡の定義

状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:

1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)

2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)

3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j

ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである

4. 非可換幾何学アプローチによる市場構造

4.1 スペクトル三つ組

市場構造を非可換幾何学の枠組みでモデル化:

(𝒜, ℋ, D)

ここで、

4.2 市場均衡の特性化

市場均衡を以下の作用素方程式特性化

[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}

ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である

5. ホモトピー理論と均衡動学

均衡への収束過程ホモトピー理論を用いて分析

H: [0,1] × X → X

ここで、X は経済状態空間、H(0,x) = x_0(初期状態)、H(1,x) = x*(均衡状態である

均衡の安定性は、ホモトピー H の特異点構造と関連付けられる。

M理論幾何学でござる

M理論幾何学を最も抽象的かつ厳密に記述するには、圏論アプローチが不可欠でござる。

導来圏とM理論

M理論幾何学構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。

定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:

1. 対象:連接層の複体

2. 射:準同型の導来クラス

3. 三角構造:完全三角形の存在

この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性数学的基礎となるのでござる。

A∞圏と位相的弦理論

M理論位相的側面は、A∞圏を用いて記述されるのでござる。

定義:A∞圏 𝒜 は以下の要素で構成されるのでござる:

1. 対象の集合 Ob(𝒜)

2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)

3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)

これらは以下のA∞関係式を満たすのでござる:

∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0

この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学M理論を結びつけるのでござる。

高次圏論M理論

(∞,1)-圏

M理論の完全な幾何学記述には、高次圏論特に(∞,1)-圏が必要でござる。

定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:

1. 対象の∞-グルーポイド Ob(C)

2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)

3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)

この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。

導来代数幾何学

M理論幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。

定義:導来スタック X は、以下の関手として定義されるのでござる:

X: CAlg𝔻 → sSet

ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。

この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。

量子コホモロジーとGromov-Witten不変量

M理論幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。

定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:

α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ

ここで、*A はGromov-Witten不変量によって定義される積でござる:

α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ

この構造は、M理論における量子補正を厳密に記述し、ミラー対称性数学的基礎を与えるのでござる。

ログイン ユーザー登録
ようこそ ゲスト さん