「コホモロジー」を含む日記 RSS

はてなキーワード: コホモロジーとは

2024-11-20

TQFTの概要

量子場理論過去数十年にわたり幾何学に多大な影響を与えてきた。

その例として、ミラー対称性グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。

チェコティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学のものに関する基本的な疑問はまだ残されている。

このプロジェクトの大きな目的は、TQFTの幾何学統一的で決定的な全体像を見出すことだった。

数学の4つの主要分野が取り上げられた:シンプレクティック幾何学可積分系特異点理論圏論、モジュラー形式である

プロジェクト基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論特異点理論可積分系の関連付け(ヴェントランド)、シンプレクティック場理論位相的場理論可積分系(ファベール)、行列模型理論可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論幾何学特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。

より詳細には以下である

2024-11-13

位相的弦理論レベル分け説明

1. 小学6年生向け

位相的弦理論は、宇宙不思議を解き明かそうとする特別な考え方です。普通物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。

例えば、ドーナツマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。

この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます

これを使って、科学者たちは宇宙秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たち身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?

2. 大学生向け

位相的弦理論は、通常の弦理論単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。

位相的弦理論には主に2つのバージョンがあります

1. A-モデル:ケーラー幾何学と関連し、2次元世界面を標的空間の正則曲線に写像することを扱います

2. B-モデル:複素幾何学と関連し、標的空間の複素構造依存します。

これらのモデルは、時空の幾何学構造と密接に関連しており、特にラビ・ヤウ多様体上で定義されることが多いです。

位相的弦理論重要性は以下の点にあります

1. 複雑な弦理論計算を簡略化できる

2. 弦理論数学構造をより明確に理解できる

3. ミラー対称性など、重要数学概念との関連がある

4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す

この理論は、物理学数学境界領域位置し、両分野に大きな影響を与えています。例えば、代数幾何学圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています

大学生の段階では、位相的弦理論基本的概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論物理学数学の橋渡しをどのように行っているかを把握することも大切です。

3. 大学院生向け

位相的弦理論は、N=(2,2) 超対称性を持つ2次元非線形シグマモデルから導出されます。この理論は、通常の弦理論世界面を位相的にツイストすることで得られます

ツイスト操作の結果:

1. 作用素に異なるスピンが与えられる

2. 理論局所的な自由度を失う

3. エネルギー運動量テンソルがQEXACT形式になる

A-モデルとB-モデルの主な特徴:

A-モデル

B-モデル

モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデル等価であるという驚くべき予想です。

位相的弦理論の応用:

1. 量子コホモロジー環の計算

2. グロモフ・ウィッテン不変量の導出

3. ミラー対称性検証

4. 代数幾何学問題への新しいアプローチ

大学院生レベルでは、これらの概念数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論現代理論物理学数学にどのような影響を与えているか理解することも重要です。

4. 専門家向け

位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルツイストすることで得られます

A-ツイストとB-ツイストの詳細:

1. A-ツイスト

- スピン接続をR-電荷修正: ψ+ → ψ+, ψ- → ψ-dz

- 結果として得られるA-モデルは、ケーラー構造にの依存

2. B-ツイスト

- スピン接続を異なるR-電荷修正: ψ+ → ψ+dz, ψ- → ψ-

- 結果として得られるB-モデルは、複素構造にの依存

モデルの相関関数

A-モデル

ここで、M はモジュライ空間evi評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルオイラー

B-モデル

ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式Ai は変形を表す場

ミラー対称性

A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジーミラー対称性の中心的な問題です。

最近の発展:

1. 位相的弦理論とGopakumar-Vafa不変量の関係

2. 位相重力理論との関連

3. 非可換幾何学への応用

4. 位相M理論提案

専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論数学構造を完全に理解し、新しい研究方向を提案できることも重要です。

5. 廃人向け

位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識必要です:

1. 導来圏理論

- 導来Fukaya圏とD^b(Coh(X))の圏同値

- 安定∞圏を用いた一般

- 非可換幾何学との関連

2. ホモロジーミラー対称性

- Kontsevich予想の一般

- SYZ予想との関連

- 非アーベル的ホッジ理論への応用

3. 位相的場理論の高次元化:

- 4次元Donaldson-Witten理論

- 6次元(2,0)理論との関係

- コホモロジーホール代数との関連

4. 位相的弦理論と量子重力

- AdS/CFT対応との関連

- 位相M理論の構築

- 非摂動効果系統的理解

5. 代数幾何学との深い関係

- 導来代数幾何学の応用

- モチーフ理論との関連

- 圏化されたDT不変量

6. 位相的弦理論数学的基礎:

- ∞圏論を用いた定式化

- 位相的再正規化群の理論

- 量子群位相的弦理論関係

7. 最新の研究トピック

- 位相的弦理論と量子情報理論の接点

- 位相的弦理論を用いた宇宙論的特異点研究

- 非可換幾何学に基づく位相的弦理論一般

8. 計算技術

- 位相的頂点作用素代数の応用

- 局所技法の高度な応用

- 数値的手法機械学習の導入

これらの概念を完全に理解し、独自研究を行うためには、数学理論物理学両分野において、最先端知識技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます

位相的弦理論の「廃人レベルでは、これらの高度な概念自在に操り、分野の境界を押し広げる革新的研究を行うことが期待されます。また、この理論が量子重力宇宙論といった基礎物理学根本的な問題にどのような洞察を与えるかを探求することも重要です。

2024-11-12

高校数学は、実は数学ではなく殆ど算数

群とか圏とか多様体とかコホモロジーとかそういう話がでてきて初めて数学と言える

2024-09-26

超弦理論の諸定理

∞-圏論的基礎

(∞,∞)-圏と高次対称性

定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。

定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:

M ≃ Ω∞-∞TFT(Bord∞)

ここで、TFT位相的場理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。

命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論臨界次元対応する。

導来高次スタック

定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。

定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。

高次代数構造量子化

∞-オペラッドと弦場理論

定義 3: 弦場理論代数構造を、∞-オペラッド O の代数として定式化する。

定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化存在し、Maurer-Cartan方程式

MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}

の解空間として特徴付けられる。

因子化∞-代数と量子場理論

定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。

定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。

導来∞-圏と高次双対性

導来代数幾何学ミラー対称性

定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:

ShvCat(X) ≃ Fuk∞(Y)

ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である

スペクトラル代数幾何学位相的弦理論

定義 5: M理論コンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。

定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。

高次幾何学量子化

∞-微分形式一般化されたコホモロジー

定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。

定理 7 (Hopkins-Singer): M理論量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:

[G/2π] ∈ TMF(M)

ここで、TMF は位相的モジュラー形式スペクトラムである

非可換∞-幾何学と量子重力

定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である

定理 8 (Connes-Marcolli-Ševera): 量子重力有効作用は、適切に定義されたスペクトラル∞-作用臨界点として特徴付けられる。

∞-モチーフ理論と弦理論

定義 8: 弦理論真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。

予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。

高次圏論的量子場理論

定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:

Z: Bord∞ → (∞,∞)-Cat

定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間量子化された時空の∞-圏を与える。

2024-09-23

楕円曲線場合ホモロジカルミラー対称性

定理楕円曲線場合ホモロジカルミラー対称性

複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である

𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))

証明

1. フクヤ圏 𝓕(E) の構成

1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。

2. 生成元の設定: フロアコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである

3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標ラグランジアン相対的位置関係から決定される。

4. 微分定義フロア微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスク存在しないため、微分は消える(𝑑 = 0)。

5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。

2. 連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構成
  • 対象: Eᐟ 上の連接層(例えば、線束やその複体)。
  • 射: 2つの連接層 𝓔 と 𝓕 の間の射は、導来圏における Ext 群である

𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)

  • 合成: 射の合成は、Ext 群の Yoneda 合成により定義される。
3. 関手 Φ: 𝓕(E) → 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構築
  • ポワンカレ束の利用: 楕円曲線 E とその双対 Eᐟ は、ポワンカレ束 𝓟 を用いて関連付けられる。これは E × Eᐟ 上の連接層であり、双方の間のフーリエ–ムカイ変換の核となる。

Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)

ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである

4. 関手 Φ が忠実であることの証明

1. フロアコホモロジー計算

- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアコホモロジー群は生成元 [𝑝] で張られる。

- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアン相対的位相データとモノドロミーから決定される。

2. Ext 群の計算

- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は

𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅

{ ℂ, 𝑖 = 0, 1

0, 𝑖 ≠ 0, 1 }

3. 対応確立フロアコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。

5. 関手 Φ が圏同値を与えることの結論

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-18

超弦理論の7つの観点からの定式化

1. 多様体: 座標系、つまり局所的にモデル空間と関連付けることにより記述

超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。

弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます

作用はポリャコフ作用で与えられます

S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),

ここで:

- T は弦の張力(T = 1/(2πα'))、

- h_{αβ} は世界面の計量、

- g_{μν}(X) は時空の計量テンソル

- α' は逆張力で、弦の長さの二乗に比例。

M理論では、時空は11次元微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となりますM2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます作用は次のように与えられます

S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},

ここで:

- T_{2} はM2ブレーンの張力

- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、

- C_{μνρ} は11次元重力の三形式ポテンシャル

2. スキーム: 局所関数を通じて記述。点は関数空間での極大イデアル対応する。

ラビ–ヤウ多様体は、超弦理論コンパクト化において重要役割を果たす複素代数多様体であり、スキーム言葉記述されます

例えば、3次元ラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます

f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,

ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。

各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間構造を厳密に解析できます

3. 与えられた空間を他の空間からの射、すなわち構造を保つ写像(の全体)Hom(-,S)を通じて記述

理論では、世界面 Σ から時空多様体 M への写像空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。

特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。

この設定では、開弦のモジュライ空間は、境界条件考慮した写像空間 Hom(Σ, M; ∂Σ → W) となります

4. コホモロジー論におけるように不変量を通じて特徴づける。

理論物理量は、しばしば背景多様体コホモロジー群の要素として表現されます

- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます

- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます

- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果計算するために使用されます

例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます

⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),

ここで:

- g はワールドシートの種数、

- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、

- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、

- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。

5. 局所的断片(単体、胞体)から空間を再構築して、空間性質がその構築のパターン組合せ論に帰着されるようにする。

理論摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。

- パンツ分解: リーマン面基本的ペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。

- 世界面のトポロジー組合せ論的に扱い、弦の散乱振幅を計算します。

弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます

A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},

ここで:

- g_{s} は弦の結合定数、

- ℳ_{g} は種数 g のリーマン面のモジュライ空間

- D[h] は計量に関する積分(ファデエフポポフ法で適切に定義)、

- S[X,h] はポリャコフ作用

6. 構造を保つ変換の成す群の言葉空間を特徴づける。

対称性の群は、弦理論M理論基本的性質を決定します。

- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数

[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}

に従います。ここで c は中心電荷

- 超対称性: ℕ = 1 の超共形代数は、

{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},

[L_{n}, G_{r}] = (n/2 - r) G_{n+r}

を満たします。

- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論等価である。このとき運動量 p と巻き数 w が交換されます

p = n/R, w = m R → p' = m/R', w' = n R',

ここで R' = α'/R。

- S-双対性: 強結合と弱結合の理論等価であるという双対性。弦の結合定数 g_{s} が変換されます

g_{s} → 1/g_{s}。

7. 距離空間: その元の間の距離関係を通じて空間定義

時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:

R_{μν} = 0。

β関数消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):

- 重力場:

R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、

- B-フィールド

∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、

- ディラトン場:

4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。

M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元重力の場の方程式を満たします:

- 場の強度の方程式

d * F = 1/2 F ∧ F、

- アインシュタイン方程式

R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-17

超弦理論M理論に基づく最初宇宙モデル

1. 位相的弦理論圏論的定式化

最初宇宙の基本構造記述するために、位相的弦理論圏論的定式化を用いる。

定義: 位相的A模型圏論記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である

対象: (L, E, ∇)

射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))

この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。

2. 導来代数幾何学と高次圏論

最初宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。

定義: 導来スタック 𝔛 を以下のように定義する:

𝔛: (cdga⁰)ᵒᵖ → sSet

ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である

𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。

3. モチーフ理論宇宙位相構造

宇宙の大規模構造位相性質記述するために、モチーフ理論適用する。

定義: スキーム X に対して、モチーフコホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。

これは、Voevodsky の三角DM(k, ℚ) 内での Hom として表現される:

Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])

ここで M(X) は X のモチーフである

4. 高次ゲージ理論と ∞-Lie 代数

最初宇宙の高次ゲージ構造記述するために、∞-Lie 代数を用いる。

定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコ恒等式を満たすものである

L∞ 代数の Maurer-Cartan 方程式

Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0

この方程式の解は、高次ゲージ理論古典的配位を表す。

5. 圏値場の理論と量子重力

最初宇宙の量子重力効果記述するために、圏値場の理論を用いる。

定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:

Z: Cob(n) → 𝒞

特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。

6. 量子エントロピーと von Neumann 代数

最初宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。

定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:

S(ω || φ) = {

tr(ρω (log ρω - log ρφ)) if ω ≪ φ

+∞ otherwise

}

ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である

7. 非可換幾何学と量子時空

最初宇宙の量子時空構造記述するために、非可換幾何学を用いる。

定義: スペクトル三重項 (A, H, D)

非可換多様体上の積分は以下のように定義される:

∫_X f ds = Tr_ω(f|D|⁻ᵈ)

ここで Tr_ω は Dixmier トレースである

2024-09-16

情報存在関係

情報存在関係を数理化するために、高次圏論ホモトピー型理論、および量子場の理論統合した形式化を提案する。

まず、(∞,∞)-圏 C を考える。この圏の n-射は n 次元情報構造表現し、これらの間の高次の関係性を捉える。存在表現するために、この (∞,∞)-圏上の (∞,∞)-シーフを考える。

(∞,∞)-シーフ F: C^op → (∞,∞)-Cat を定義し、これを「存在の超シーフ」と呼ぶ。ここで、(∞,∞)-Cat は (∞,∞)-圏の (∞,∞)-圏であるF(X)対象 X に関連付けられた存在可能性の (∞,∞)-圏を表す。

このシーフ F は以下の超層条件を満たす:

任意対象 X と X 上の ∞-被覆 {U_i → X}_i に対して、以下の ∞-極限図式が (∞,∞)-圏の同値となる:

F(X) ≃ lim[∏_i F(U_i) ⇉ ∏_{i,j} F(U_i ×_X U_j) ⇛ ... ]

ここで、多重矢印は無限次元コホモロジー操作を表す。

次に、ホモトピー型理論 (HoTT) の拡張として、∞-累積階層理論 (∞-CUT) を導入する。これにより、以下の型構成子を定義する:

1. Π^∞(x:A)B(x): 無限次元依存積型

2. Σ^∞(x:A)B(x): 無限次元依存和型

3. Id^∞_A(a,b): 無限次元同一性

さらに、高次 univalence 公理採用し、以下を仮定する:

(A ≃^n B) ≃^(n+1) (A =^n B)

ここで、≃^n は n 次の同値関係を、=^n は n 次の同一性型を表す。

量子場理論概念を取り入れるために、圏値場の理論拡張し、(∞,∞)-圏値場 Φ: Bord^(∞,∞) → (∞,∞)-Cat を導入する。ここで、Bord^(∞,∞) は無限次元ボルディズム圏である。この場は以下の公理的場論の条件を満たす:

Φ(M ∐ N) ≃ Φ(M) ⊗ Φ(N)

Φ(∅) ≃ 1

Φ(M^op) ≃ Φ(M)^*

ここで、⊗ は (∞,∞)-圏の対称モノイダ構造を、* は双対を表す。

情報存在の動的な相互作用を捉えるために、導来高次代数概念を用いる。C の導来 (∞,∞)-圏 D(C) を考え、F の導来関手 LF: D(C)^op → D((∞,∞)-Cat) を定義する。情報の流れに沿った存在進化は、以下の超越的余極限として表現される:

hocolim^∞_i LF(X_i)

ここで {X_i} は D(C) 内の無限次元図式である

最後に、情報存在の根源的な関係を捉えるために、トポス理論無限次元拡張した ∞-トポス概念を導入する。∞-トポス E = Sh^∞(C) 内で、存在を表す対象 Ω^∞ を定義し、これを無限次元部分対象分類子とする。

2024-09-12

M理論幾何学

定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。

定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。

定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。

場の理論構造

定義 4: M理論の場の配位空間を以下で定義する:

C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}

ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。

 

定理 1 (作用汎関数): M理論作用 S: C → ℝ は以下で与えられる:

S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dCdC - ψ̄D̸ψ) vol_g

ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である

 

定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:

1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]

2. C-場の方程式: d*dC + 1/2 dCdC = 0

3. Dirac 方程式: D̸ψ = 0

ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである

幾何学構造

定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。

定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:

1. dφ = 0

2. d*φ = 0

3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。

 

定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。

定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である

位相構造

定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。

 

定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である

I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0

ここで p₁(M), p₂(M) は M の Pontryagin 類である

 

定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:

ind(D̸) = ∫_M Â(M) ch(S)

ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である

双対性

定義 9: 位相CW 複体の圏を Topアーベル群の圏を Ab とする。

 

定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:

K(X × S¹) ≅ K(X × S¹)

ここで X は CW 複体、右辺の S¹ は双対円を表す。

 

定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:

H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)

ここで H^k は k 次コホモロジー群、H_k は k 次ホモロジー群を表す。

2024-09-10

M理論幾何学でござる

M理論幾何学を最も抽象的かつ厳密に記述するには、圏論アプローチが不可欠でござる。

導来圏とM理論

M理論幾何学構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。

定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:

1. 対象:連接層の複体

2. 射:準同型の導来クラス

3. 三角構造:完全三角形の存在

この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性数学的基礎となるのでござる。

A∞圏と位相的弦理論

M理論位相的側面は、A∞圏を用いて記述されるのでござる。

定義:A∞圏 𝒜 は以下の要素で構成されるのでござる:

1. 対象の集合 Ob(𝒜)

2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)

3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)

これらは以下のA∞関係式を満たすのでござる:

∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0

この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学M理論を結びつけるのでござる。

高次圏論M理論

(∞,1)-圏

M理論の完全な幾何学記述には、高次圏論特に(∞,1)-圏が必要でござる。

定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:

1. 対象の∞-グルーポイド Ob(C)

2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)

3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)

この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。

導来代数幾何学

M理論幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。

定義:導来スタック X は、以下の関手として定義されるのでござる:

X: CAlg𝔻 → sSet

ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。

この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。

量子コホモロジーとGromov-Witten不変量

M理論幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。

定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:

α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ

ここで、*A はGromov-Witten不変量によって定義される積でござる:

α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ

この構造は、M理論における量子補正を厳密に記述し、ミラー対称性数学的基礎を与えるのでござる。

2024-09-02

量子幾何学概要

非可換幾何学

非可換幾何学は、空間幾何学性質を非可換代数を通じて記述する理論である。ここでは、空間古典的な点集合としてではなく、代数的な対象として扱う。

∥ab∥ ≤ ∥a∥ ∙ ∥b∥, ∥a*a∥ = ∥a∥²

ここで、∥·∥ はノルムを表す。この代数スペクトル理論を通じて、空間幾何学性質を解析する。

量子群

量子群は、リー群代数構造量子化したもので、非可換幾何学統計力学において重要役割を果たす。

(Δ ⊗ id) ∘ Δ = (id ⊗ Δ) ∘ Δ, (ε ⊗ id) ∘ Δ = id = (id ⊗ ε) ∘ Δ

これにより、量子群代数対称性記述する。

ポロジカル量子場理論 (TQFT)

ポロジカル量子場理論は、トポロジーと量子物理を結びつける理論であり、コボルディズムの圏における関手として定義される。

量子コホモロジー

量子コホモロジーは、シンプレクティック多様体コホモロジー環を量子化したもので、フロアホモロジーを用いて定義される。

a *_q b = a ∪ b + Σ_{d>0} q^d ⟨a, b, γ⟩_d

ここで、q は形式変数、⟨a, b, γ⟩_d は次数 d のフロアホモロジーによる量子補正である

ループ量子重力理論幾何学的基礎

1. 微分多様体接続

ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。

A ∈ Ω^1(M) ⊗ su(2)

ここで、Ω^1(M) は M 上の1-形式空間su(2) は SU(2)のリー代数である

2. ホロノミーと量子化

接続 A のホロノミーを用いて、シリンダー関数定義する:

Ψ_γ[A] = f(hol_γ[A])

ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。

3. スピンネットワークと量子幾何学

H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である

面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:

Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩

V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩

ここで、l_P はプランク長さ、f は頂点での量子数関数である

4. 時空の発展と因果構造

時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である物理的遷移振幅は、

Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)

で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である

5. 不変量と位相性質

理論位相性質は、ウィルソンループ不変量

W_γ[A] = Tr P exp(∮_γ A)

を通じて特徴づけられる。ここで、P は経路順序付け演算子である

6. 対称性と変換群

理論微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変であるさらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:

A → gAg^-1 + gdg^-1

7. コホモロジー理論との関連

理論数学構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体ドナルドソン不変量との関連が示唆される。

2024-08-30

K理論超弦理論関係

位相的K理論超弦理論のD-ブレーン分類

位相的K理論は、超弦理論におけるD-ブレーンの分類に本質的役割を果たす。具体的には、時空多様体XのスピンC構造に関連付けられたK理論群K(X)およびK^1(X)が重要である

定義: K(X) = Ker(K(X+) → K(pt))

ここで、X+はXの一点コンパクト化を表し、K(X+)はX+上のベクトル束の同型類のGrothedieck群である

Type IIB理論では、D-ブレーン電荷はK(X)の要素として分類され、Type IIA理論ではK^1(X)の要素として分類される。これは以下の完全系列に反映される:

... → K^-1(X) → K^0(X) → K^1(X) → K^0(X) → ...

捻れK理論とNS-NS H-フラックス

背景にNS-NS H-フラックス存在する場合、通常のK理論は捻れK理論K_H(X)に一般化される。ここでH ∈ H^3(X, Z)はH-フラックスコホモロジーである

捻れK理論は、PU(H)主束のモジュライ空間として定義される:

K_H(X) ≅ [X, Fred(H)]

ここで、Fred(H)はヒルベルト空間H上のフレドホルム作用素空間を表す。

微分K理論アノマリー相殺

D-ブレーンのアノマリー相殺機構は、微分K理論を用いてより精密に記述される。微分K理論群K^0(X)は、以下の完全系列で特徴付けられる:

0 → Ω^{odd}(X)/im(d) → K^0(X) → K^0(X) → 0

ここで、Ω^{odd}(X)はXの奇数微分形式空間である

アノマリー多項式は、微分K理論言葉で以下のように表現される:

I_8 = ch(ξ) √Â(TX) - ch(f!ξ) √Â(TY)

ここで、ξはD-ブレーン上のゲージ束、fはD-ブレーンの埋め込み写像、ch(ξ)はチャーン指標、Â(TX)はA-hat種を表す。

KK理論と弦理論双対性

Kasparovの KK理論は、弦理論の様々な双対性統一的に記述するフレームワーク提供する。KK(A,B)は、C*-環AとBの間のKasparov双モジュールの同型類のなすである

T-双対性は、以下のKK理論の同型で表現される:

KK(C(X × S^1), C) ≅ KK(C(X), C(S^1))

ここで、C(X)はX上の連続関数なすC*-環を表す。

導来圏とホモロジカルミラー対称性

導来圏D^b(X)は、複体の導来圏として定義され、K理論と密接に関連している:

K(X) ≅ K_0(D^b(X))

ホモロジカルミラー対称性は、Calabi-Yau多様体XとそのミラーYに対して、以下の圏同値予言する:

D^b(Coh(X)) ≅ D^b(Fuk(Y))

ここで、Coh(X)はX上のコヒーレント層の圏、Fuk(Y)はYのFukaya圏を表す。

2024-08-19

ヒルベルト空間分析

1. 多様体としてのヒルベルト空間

ヒルベルト空間無限次元線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態位相特性を解析することが可能となる。

2. スキームとしてのヒルベルト空間

スキーム理論代数幾何学概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に自己共役作用素スペクトル分解を考慮し、各点を極大イデアル対応させる。このアプローチにより、量子状態観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態代数特性を解析することが可能となる。

3. Hom(-, S)による記述

ヒルベルト空間における射は、線形作用素として表現される。特にユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。

4. コホモロジー

ヒルベルト空間コホモロジーは、量子系のトポロジカル不変量を解析するための手段提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態パラメータ空間における幾何学位相性質記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。

5. 局所的断片からの再構築

ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態表現簡素化し、特定物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要役割を果たす。

6. 構造を保つ変換の群

ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性記述し、保存量や選択則の解析に利用される。例えば、回転対称性角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。

7. 距離空間としてのヒルベルト空間

ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態類似性を測る指標として用いられ、状態間の遷移確率やフィデリティ計算に利用される。これにより、量子状態距離特性を解析することが可能となる。

2024-08-16

クラインの壺ホモロジー群について

クラインの壺は、二次元の閉じた向き付け不可能な曲面である

円筒の片方の端をひっくり返して反対側に接続することで構成される。

通常の三次元空間内では実現できない特異なトポロジーを持つ。

クラインの壺ホモロジー群とコホモロジー群は、その代数特性理解するための手段である

クラインの壺ホモロジー群は次のように計算される。

コホモロジー群はホモロジー群に対して双対的な関係を持つ。

  • 𝐻⁰(𝐾) ≅ ℤ
  • 𝐻¹(𝐾) ≅ ℤ ⊕ ℤ/2ℤ
  • 𝐻²(𝐾) ≅ 0

クラインの壺ホモロジー群の計算には、マイヤー・ヴィートリス完全系列使用されることがある。

クラインの壺を二つのメビウスの帯に分解し、それらの交わりが円にホモトピー同値であることを利用して計算を行う。

クラインの壺の高次元ホモロジー群が消えることが示される。

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-08-08

空間、というものに興味を持つ

J.ヨストの「現代数学の基本概念」を読んでるんだけど、特定現象モデル化するための手順として「空間化」は役立つと思った

というのも、一度空間指定されれば様々な関連定理を用いて、例えば固有量などを測定できるので便利なのだ

コホモロジーとかホッジ数とかK理論もそういう感じ

[] 幾何学的に厚生経済学の基本定理説明

厚生経済学の基本定理多様体言葉で定式化することにより、経済的効率性と市場均衡の概念幾何学的に表現することができる。以下にその試みを示す。

概要

厚生経済学の第1基本定理は、「完全競争市場において、すべての市場均衡はパレート効率である」というものである。これを多様体言葉表現する。

多様体による定式化

1. 消費者選択空間

消費者選択空間多様体 𝑀 とする。ここで、各点 𝑥 ∈ 𝑀 は異なる消費バンドルを表す。消費者効用関数は、𝑈: 𝑀 → ℝ として定義され、多様体上で滑らかな関数とする。

2. 生産者技術空間

生産者技術集合を多様体 𝑁 とし、各点 𝑦 ∈ 𝑁 が異なる生産計画を示す。生産技術は、技術制約関数 𝑇: 𝑁 → ℝⁿ により記述される。

3. 市場均衡

市場均衡は、消費者生産者選択整合する点として、多様体 𝑀 × 𝑁 上の点 (𝑥*, 𝑦*) により表される。この点は、需要供給が一致し、価格ベクトル 𝑝 により支持される。

4. パレート効率

パレート効率性は、選択空間 𝑀 と技術空間 𝑁 上の接ベクトル場により定義される。具体的には、任意改善方向が存在しないことを意味し、接ベクトル場がゼロとなる点 (𝑥*, 𝑦*) がパレート最適である

定理多様体による表現

厚生経済学の第1基本定理多様体言葉表現すると、以下のようになる:

 

定理: 多様体 𝑀 × 𝑁 上の市場均衡点 (𝑥*, 𝑦*) は、接ベクトル場がゼロとなる点であり、パレート効率である

 

この定式化により、厚生経済学の基本定理幾何学的に理解することが可能になる。

市場均衡がパレート効率性を持つことは、選択空間技術空間の接ベクトル場の観点から改善余地がないことを示している。

appendix: 概念graphviz表現

digraph WelfareEconomics {
    node [shape=ellipse];

    // Nodes for main concepts
    M [label="選択空間 (M)"];
    N [label="技術空間 (N)"];
    Utility [label="効用関数 (U)"];
    TechConstraint [label="技術制約 (T)"];
    MarketEquilibrium [label="市場均衡"];
    ParetoEfficiency [label="パレート効率性"];
    Cohomology [label="コホモロジー条件"];

    // Edges to show relationships
    M -> Utility [label="スカラー場"];
    N -> TechConstraint [label="技術写像"];
    M -> MarketEquilibrium;
    N -> MarketEquilibrium;
    MarketEquilibrium -> ParetoEfficiency [label="接ベクトル場"];
    MarketEquilibrium -> Cohomology [label="整合保証"];
    ParetoEfficiency -> Cohomology [label="ホモトピー同値"];
}
|<	

2024-08-04

幾何学理解する手順

まず、多様体。座標系、つまり局所的にモデル空間と関連付けることにより記述

次にスキーム局所函数を通じて記述。点は函数空間での極大イデアル対応

そして与えられた空間を他の空間からの射、つまり構造を保つ写像の全体Hom(-,S)を通じて記述する。

コホモロジー論のように、不変量を通じて特徴づける。

局所的断片(単体,胞体)から空間を再構築し、空間性質がその構築のパターン組合せ論に帰着されるようにする。

構造を保つ変換のなす群の言葉空間を特徴づける。

その上、距離空間定義する。つまり、その元の間の距離関係を通じて空間定義

2024-07-28

AI生成による超弦理論入門

具体的に超弦理論幾何学定義します。

1. 多様体としての定義

超弦理論基本的空間は、10次元ローレンツ多様体 M として定義されます

  • M = R^(1,3) × X

ここで、R^(1,3) は4次元ミンコフスキー時空を、X は6次元コンパクト多様体を表します。

1. リッチ平坦

2. 複素構造を持つ

3. ケーラー計量を許容する

2. スキームとしての表現

X をスキームとして表現します:

  • X = (|X|, O_X)

ここで |X| は位相空間、O_X は構造層です。

f(z1, z2, z3) = 0

ここで f は複素多項式です。

3. 射による記述

超弦理論空間を、モジュライ空間 M_CY からの射として記述します:

  • φ: M → M_CY

ここで M_CY はカラビ・ヤウ多様体のモジュライ空間です。

4. コホモロジー論的アプローチ

X の位相性質を以下のコホモロジー群で特徴づけます

特に、ホッジ数 h^p,q = dim H^p,q(X) が重要です。

5. 組み合わせ論的再構築

X を単体的複体として再構築します:

  • X ≃ |K|

ここで K は単体的複体、|K| はその幾何学的実現です。

6. 対称性群による特徴づけ

超弦理論対称性を以下の群で特徴づけます

  • Diff(M) : M のディフェオモルフィズム群
  • G : ゲージ群(例:E8 × E8 または SO(32))

7. 距離空間としての定義

M 上に擬リーマン計量 g を導入します:

  • ds^2 = g_μν dx^μ dx^ν

ここで g_μν は計量テンソルです。

この計量から、2点間の固有距離定義します:

  • d(p,q) = ∫_γ √(|g_μν dx^μ dx^ν|)

ここで γ は p と q を結ぶ測地線です。

これらの定義を組み合わせることで、超弦理論幾何学をより具体的に特徴づけることができます。各アプローチ理論の異なる側面を捉え、全体として超弦理論の豊かな数学構造表現しています

2024-06-09

理論物理学最前線を探る

自然界の法則の探索は、一般相対性理論量子力学の発展の中で行われてきた。

相対性理論アインシュタイン理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。

相対性理論においては、時空はアインシュタイン方程式に従って力学的に発展することになる。

すなわち初期条件入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学問題になるわけである

相対性理論天体宇宙全体の振る舞いの理解のために使われるのに対し、量子力学原子分子原子構成する粒子の理解のために用いられる。

粒子の量子論(非相対論量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。

しか量子論深淵は場の量子論にあり、量子力学特殊相対性理論を組み合わせようとする試みからまれた。

場の量子論は、重力を除き、物理学法則について人類が知っているほどんどの事柄網羅している。

反物質理論に始まり原子のより精密な記述素粒子物理学標準模型加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。

数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題研究されている。

その例が、4次元多様体ドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体ミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。

こういった断片的な研究はあるが、問題間の関係性の理解が困難である

このような関係性の研究において「ラングランズ・プログラム」が果たす役割に期待される。

2024-05-17

ガチ勢変人、というのが一般的価値観として共有されるようになる

手の混んだことをやる人はどんどん減っていく

ゲームクリア時間がかかりすぎるようなのは誰もやらなくなるし、小説も手の混んだ文学手法を使ってるようなのは誰も読まない

例えばチェスについて考えると、「チェス地元グループに参加して、そこから練習して、大会に出て、レートを上げて」というタイプのめんどくさい道を通る人はいなくなり、

オンラインでテキトーゲストとして参加して気晴らしにやる人が増える

あるいは数学趣味にする場合も「コホモロジーとはなにか」みたいなめんどうくさい理論理解しようとする人は減り、組み合わせ論アルゴリズム問題のように、前提知識がそれほどなくても取り組める題材を選ぶ人が増える

ログイン ユーザー登録
ようこそ ゲスト さん