「微分」を含む日記 RSS

はてなキーワード: 微分とは

2022-05-20

高校数学三角関数指数関数確率微分ベクトル行列(なくなったけど)と数学的帰納法を学ぶためにあるといっても過言じゃない

高校数学で一番いらないやつ

2次関数の値域とかのやつ。

2次関数モデル化できることはそんなにないし、微分覚えてn次関数対応できればよい

ほぼ中卒だけど、三角関数よりも金融習いたい人生だった

ほぼ中卒だと書いたのは嘘だ。一応高校専門学校(2年制)出てる。

ただ、高校の授業はほとんど受けておらず、赤点ばっかりだった。

専門学校は、コンピュータのところ行ったけど、基本的なこと習うだけで、あんまり数学数学してなかった。

情報処理試験計算は色々出てきたけど、log? ってやつ以外は中学数学でなんとかなった(気がする。中学数学の成績は良かった


文系理系って分けるのもよくないことかもしれないが、ほとんどの人って、文系系の浅い知識でやってける仕事に就くのではないだろうか。

文系でも深くなると数学絡んでくるよ~ってのは間違いないとは思うが、そんなジャンルに進むのは一部のエリートだ。

金融だけ重点的に……っていうのも違う気がするけど、深い知識を得る能力理解力とか努力とか)がない人が過半数以上は居る現状では、生活にほんとに役立つ知識を浅くでもいいから植え付けておくみたいなのが必要じゃないか金融って限って言ってしまうと違う気がするけど

ほんとは、家庭環境とか貧富の差が成績に影響しないような学校的な何かを設置して、初めは広く浅く教えて、早い段階で興味を持った分野の比重増やしつつも、いつでも方向転換できるように、受け皿を広げるだけ広げれたらよいのだろうけど

子供時間も有限だし、なにもかものリソースが足りてなさすぎる

現実解としては、数学理科系ちょびっと削って、文系でもわかって将来にちょっと役立つ経済系のなにかを教えるのがよいのではないかと思う(削り方によっては似非科学信者やすから難しいけど、そういう人らって教えても理解できないか忘れるか勉強しなくてどっちみち騙されるのではないかとも)

プログラミング教育とか身に付いたら思考法としても有用だけど、そこそこの大学文系学部(やなんちゃって理系)出た同期達がことごとく研修簡単プログラミングの段階で脱落して、営業かに配属決まっていったり、無理やり開発に回されて何も理解しないままコピペ雰囲気プログラミングしてたのを見ると、数学とかそっち系ってほんとに適正ない人には無理なのでは? と思ったりする。

ひょっとすると早い段階で基礎を叩き込めばそういう人減るのかもしれないし、金融だって落ちこぼれを量産するのかもしれないけど


個人的には三角関数趣味で3Dプログラミングするときに使ったので、ちゃんと教えておいて欲しかった。

高校特殊進学校で多分単位誤魔化してて(か合法的だったかしらんが)、2年の時に文系コースに進んでから数学の授業がほとんどなくなったので(3年の時はゼロになった)、微分積分も習ってない

金融習いたかったというのも嘘でごめんなさい

2022-05-19

三角関数より金融経済

金融工学なんか三角関数どころか微分積分線型代数確率統計が出てくるよ。

経済学文系科目に入れるのおかしくね?って言われる程度には数式バンバン出てくるよ?

 

ねえ、なんでいけると思った?

なんで?

2022-05-07

道で信長を拾ったんだけど

こいつすげーチッコイんだな。150センチくらいしかない。16歳くらいか

なんか初手で名乗りながら刀振り回してイキってきてビビったけどバイクで突進した後腹パンで一発やったわ。

いまは落ち着いてきたのでローズネットクッキー食わしてやったら笑顔になってきたわ。

食器にうるさそうだったけどミッキーのコップでガマンしてもらってる。

音楽はニジューとかよりAdoとかのほうが好きみたいだな。


追記

思いのほかトラバブクマあつまったな。信長も喜んでるわ。みんなサンキュー

あれから時空警察とか区役所相談してとりあえず市営住宅学校の手配が決まるまではうちで預かることになったんだが、

親はうちの養子になるかみたいなことを言ってる。本人もまんざらでもなさそうって感じ。

ケンカで負けたからワイの舎弟になってもいいとまで言ってるがどうもワイの妹のことが好きっぽい感じがするからなんか複雑ですわ。

そういえばTV見てたらIKKOのことを一向宗勘違いしてどんだけ~って言いながら突撃するのかって言って怯えてたわ。

あとエビフライエビフリヤって言うのは何回言ってもなおらないからもうあきらめた。


追記

実在信長の子孫の人についての記述をしてたんだけど、さきほど我が家タイムスクープハンターの人が来て注意されたから消した。

本人と遭遇したりして万が一半透明とかになられても困るからな。

でもYouTubeとか見ても特に半透明になったりしてないみたいだからたぶん信長はゆくゆくはもとの時代に戻っていくことになると思う。

向こうの時代に戻ってもあまり危ないことせず健康に過ごしてほしいわ。


追記

信長を見てて思うのはこいつメチャクチャ頭いいなってこと。微分積分のこと教えたら目の色変えて勉強しだしたからな。あとは化学も。

いったい何を考えてるのかわかんないけど、ワイにはこんなのが何の役にたつのサッパリからすごいよな。

信長過去に戻すために協力してくれてる義太夫教授って人も感心してた。

ブコメタイムパラドックスについての指摘があるけど、義太夫先生いわく現代科学ではあまりよくわかってないみたい。

過去に飛ぶのはすごく厳しいいろんな条件がいるらしいんだ。

みんなもよく知ってるかもしれないけど、時間を止めることは割と簡単みたいなんだけどなぁ。


追記

「帰したら光秀を粛正するかも」ってブコメがあるけど、歴史についてはいずれバレるだろってことで、内心怖かったけど教えたんよ。

信長のやつ、割と淡々と聞いてたんだよな。

「このあとほぼ天下統一するんやで!」って逆にこっちのほうが興奮しながら説明したんだけど「まぁ当然だぎゃー」みたいな感じ。

くぅーカッコイイやないかい。

もちろん本能寺で光秀に殺されるかもしれないってことも教えたけど、

「今の時代日本史教科書にそう書いてるんだから、どんなに気を付けても殺されるのは決まってるだろ」

みたいに淡々説明されて、アホなん?みたいな扱いされたぞ。やっぱ死生観とかだいぶ違うんやなって思った。

そのへんは義太夫先生にも色々教わったみたいやね。

『実は本当は信長は別の何物かによって殺されてて、未来に行ってそれを知ったことにより過去に戻った後はその原因を排除したけど、

今度は光秀という別の要因が出てきて結局は殺される。俺たちの歴史はそうやって変わってしまった後の歴史から光秀に殺されたこしかからない。』みたいな。

光秀がなんだか不自然な感じでいきなり謀反を起こしたように思えるのも、そのへんの歴史復元力?みたいなものの影響なのかもしれないな。

もっと詳しい話もしてたんだが、義太夫先生の話はおれも横で聞いてるんだけど正直難しすぎてあんまわかんないのでこんくらいで勘弁してくれ。

そういえば義太夫先生過去に戻る話をしたあといつも「まぁ、時計台ジゴワット必要ないわけなんですね、ハイ」みたいなこと言ってニヤってするんだよな。

何のネタかわかんないかスルーしてるわ。


追記

好きなゲームについてのブコメがあったけど、やっぱ信長の野望とかハマると思うやん?全くそんなことないんだなコレが。

あれから学校にも行きはじめて友達もできて、みんなでフォーナイト?とかばっかりやってるみたいだな。ちなシムシティしかやらん俺は秒で戦力外にされたで。

あと将棋はもともと知ってるから当然強い。藤井くんとかの棋譜も見たら喜びそうと思って見せたんだけど、チラ見した段階で「まぁ儂が楽勝だぎゃ」とか言ってんの。まぁ強がりやろな。

スマホも当然持たせてて、グループLINEとかで手下?に勉強教えてあげたりしてるみたいやな。indeedで募兵しそうになったのは止めたけどな。

2022-05-06

大学初年度レベル微分積分線形代数知識があれば読めます

大学初年度レベル微分積分線形代数知識があれば読めます

っていう本を読める大卒ほとんどいない。

修卒だっていない。

博士だって卒後10年も経てば専門分野以外は抜け落ちる。

学士修士更新制にしたほうがいい。

定期的にペーパー試験を行って、合格できないやつははく奪しろ

2022-04-24

いうてさ

算数数学って微妙に繋がってるようで繋がってないか

いきなり微分積分教えてもできる子はできるやで。

2022-04-21

問百五、俺の心を微分せよ。社会の闇は無視してもよい

2022-04-10

anond:20220408223103

いや、義務教育の全てを否定にはならない。

国語算数などの基礎は誰にとっても応用が利く知識

しかし「TCP/IP」を教えても99.9%の生徒にとっては、それを知っていたとて応用が利かない。

まり微分積分なんて人生で何の役に立つんだよ~」という学校教育への文句あるあるにおいても最上位にランクされる。

TCP/IPなんて人生で何の役に立つんだよ~」は、ぐうの音も出ない正論

一部の専門家しか必要がないもの義務教育で全員に教えるのは無駄の極み。

Web技術者ですら、実務的には別に全員がTCP/IPを知っている必要もないし。

2022-02-27

微分積分できないまま30代になってしまった

微分のわからないところを教えてください

理系大学一年生です。今度家庭教師バイトを始めるので、微分のわからなかったところを教えてくれるとありがたいです。バイトに役立つかなと思って

2022-02-09

その辺の技術者知識で負けないくらいのふるすたっくえんじにあになりたい

機械工学大学で学んだ。機械系4力学さわりだけなら大体やったがもう忘れている。

・切削加工はけがきフライス盤、ボール盤、くらいならできるが複雑な形状は作れる気がしない。そういえば旋盤は使わなかった。耐久性を考えなければ3Dプリンタでなんでも作れるらしいが、3Dプリンタは触ったことがない。

CAD大学の演習でSolidWorksを触った程度。もうすっかり忘れている。手書きの製図とかは調べて思い出せば簡単な形状ならできるかもしれない。

シミュレータANSYSマニュアル通り触った程度。動力学解析とか連成解析とか仕組みは全くわかっていない。

電気工学はだいぶ勉強不足。簡単回路図チップ製品情報を睨めっこしながらINとOUTと接地をどうすればいいかくらいはわかったが、複雑なものになるとダメArduinoとRasberryPiは買ってみたが埃かぶっている。論理回路の読み方はすっかり忘れているが調べれば思い出せると思う。

化学系は全くの無知大学受験で知識は止まっている。物性物理的なところも無知

数値計算PythonMatlabちょっとできる程度。ライブラリを使った行列計算簡単ニュートン法くらいなら書けるが、精度や速さが必要だったり複雑になるとダメ。解析は微分積分常微分方程式を調べて思い出せばできる程度。測度論とか特殊積分かいわゆる大学数学的な道具が必要になる解析はできない。

競技プログラミングちょっとかじったがやめてしまった。むずかしすぎた。

機械学習や統計はなんとなく知識はついているが、手を動かして何か作ったことはない。この前統計検定1級落ちた。

バックエンドSQLをそれなりに書いてとりあえず動くものなら書ける程度。可用性とかパフォーマンスとか考えられるレベルではない。JavaJavaEEを横展開的に書いた程度。理解できている自信はない。保守性高めたりデザインパターン的に綺麗な書き方とかできない。C++は一瞬だけ触ったことがあるが、環境構築ハマった&謎のSegmentation Faultで苦手意識を残したまま。Go?Rust?なにそれおいしそうだね。

クラウドAWSマニュアル通りに使っている程度。1から設計なんてできない。なのでAWSソリューションアーキテクトを勉強中。AzureやFirebaseは触ったこともない。

ネットワーク系とかセキュリティ系は全く勉強不足。応用情報ギリギリ合格できる程度の知識しかない。わかるようにはなりたい。

フロントエンドFlutter勉強中。Flutterむずかしい、どんな言語でもそうだけどチュートリアルから業務レベルまでの乖離ありすぎてよくわからない。javascriptはjQuery一強時代ちょっと書いた程度。VueとかReactとかなにもわからない。TypeScript?なにそれおいしそうだね。

ハード系だったりファームウェア系だったりコンパイラ系は何もわからない。わかるようにはなりたい。

全部中途半端だな、、、

2022-01-31

十二夜空の青を微分せよ街の明りは無視してもよい ある和歌分析

問十二、夜空の青を微分せよ。街の明りは無視してもよい 川北 天華

概要構造構成分析結論を述べる。

概要
詠人

川北天華。当時は進学をめざす高校生。進学は最終目標ではなく過程ひとつだろう。

歌全体が試験問題体裁をとる。

単語と語法は平易。しかしそれらはすべてべつの何かを表象する。示唆により言外を表象するテクニック掛詞とよばれるが、この歌は全句が掛詞構成されさらに全体として言外のなにかを表象する。このため通常の和歌範疇を超え、たぶんに神話的な雰囲気を持つにいたる。

分析

配置

テスト12     

光景 夜空の青   

テスト微分せよ   

光景 街のあかり  

テスト無視してもよい

物理地学問題文をなす歌を助詞などを除去し単語をならべその内容を検討する。

内容は上記のとおりテスト光景に二分され、交互にならんだふたつの要素がリズム形成している。


リズムベクトル

テスト光景、ふたつの要素は卑近受験をひかえた高校生という状況をあてはめると、この世代特有神話的要素がうかぶ

テスト机上教室公共拘束試練事象命令

光 景天空外界自己解放自由心象想像



テスト光景という対極を交互につなぐ構成は内外両極を往還するリズムを生んでいる。対句法ではくくりきれない振り子のようなリズムである。その振り子は往還をくりかえしながら全体をある方向へとすすめてゆく。机上の1枚の切片にしるされた問12という即物的文言は夜空を数式で描けと命じそのときは下界を無視せよと結ぶ。一枚の切片がもとめる問いは振り子のようなリズムのなかで一瞬にして無限宇宙へと拡大し発散する。読者はこの内外両面、両極往還のリズム、そして机上のちっぽけな紙片から数式をとおして一気に宇宙にひろがる強力なベクトルによってここちよく翻弄され、さまざまな記憶作用を楽しむことになる。じっさいのところこのリズムベクトルは、おとなとこども、他発と自発受動能動服従と自立ーつまり境界面を生きる高校生生活リズムベクトルのもので、それらが作者、あるい読者のこころのゆらぎそのもの表徴する。


単語分析

問十二

夜空

微分

明り

無視

良い


各々の単語および叙述は高校生にとって卑近ではあるが軽くはない。試験問題、ふと見上げる夜空、その奥にひろがる宇宙。それらは作者の人生の主要な一部、あるいはすべてかもしれない。ひとつひとつ単語が表層の意味から遊離して現状と行く手の不安、悩み、探求、願望、希望、決意といった、思春期から青年期にかけての心象を表象する。この歌は、読者ひとりひとりに当時の記憶を想起させる力を持つ。

述部の分析

展開は三部で序破急をとる。

序・問十二

テスト問題からはじまる文章表現そもそも斬新なのだが、それを体言止めとして何かを宣言している。この宣言は直裁に読者にとどき、読者はこの歌とともに問いに挑むことになる。

十二は天文暦法と関連がある。詠人だけにわかる何かの符丁かもしれない。だがそんな読み解き以前に十二月受験シーズンであり、夜空がもっとも冴えわたる季節でもある。受験生たち、あるいはかつての、そしてこれから受験生となる読者たちは、冴え渡る夜空にひろがる大宇宙を仰ぎ何を思うだろう。


破・夜空の青を微分せよ

専門術語の唐突な投入は文脈を破砕し衝撃を生む。

この衝撃はじゅうぶんに非凡な序を一気に振り切り読者を天空打ち上げる。

微分される夜空の青とは何か。

それは学問対象として規定される夜空であり、それゆえ純粋に観察と探求の対象であり、その分野への進学を目指す詠み人にとって、それは宇宙であり未来であり、そして自分でもあるだろう。それだけではない。その解をもとめる読者じしんの姿でもある。


急・街の明りは無視してもよい

街のあかりとは成功し定着したものたちの放つ光、そうしたしがらみとははなれた位置にいる受験生にとって、街のあかりは外部か雑音にあたるかもしれないし、いつか自分が再参入する場所かもしれない。


結論

この歌はテスト問題文そのものであり、解答は記されない。作者はこの問いに答えることも思考過程を示すこともせず、それらすべてを読者に投企している。そのため読者は作者の投げかけた問いの答えを探すことになる。読者は自問し夢み思惟想像記憶を想起する。歌を鑑賞することで作者の心象に分け入る作業がいつのまにか自問となり、ときには自分過去、あるいは未来、そして今この瞬間を投影する。

上記のような構成は、ありていに言えば時分の歌、青春限定叙情歌といっていい。さしあたり言語機能の極限をさぐる現代短歌のなかではこうしたテーマははやらない。ではそれだけを根拠にこの歌の価値限定できるのか。

そうかもしれないが、それで終わりにしてほしくない。なぜなら、こうした心のゆらめきを大切に記憶し想起し記述する行為自己世界のはざまからまれ認識の、つまり哲学科学原初のすがたであり、その姿勢現代短歌流行からはずれていようといまいといっこうにかまわないから。

結句を復唱したい。

俗世、しがらみ、現実などを表象する「街の明かり」を無視してもよいと歌い上げる。かそけき深き空の青さが真実ならばその対極にある現実など捨象してかまわないとも歌い上げる。

時分の歌かもしれないが、そこに込められたまっすぐに真実を見ようとする迷わない力をわたしたちは大切に保持してゆきたい。なぜならそれはたぶん、うしなってはいけないものから

anond:20220131145450

「問十二 夜空の青を微分せよ 街の明りは無視してもよい」

孤独風景ととるか、孤独の中でひとり強く立つ風景とみるか、孤独のような感情を大きく離れ、より普遍的視野を獲得するものとしてみるか。

2022-01-20

anond:20220118155416

全員理系に進むわけでもないのに限定的問題を出しちゃ駄目だろ

公立文系やら私大文系微分積分くらいでキャッキャ言ってるくらいでちょうどいいと思うんやけど 彼ら曰く数学は使わないらしいし

2022-01-19

anond:20220119144600

それあれじゃん!2015のセンターのことじゃないかな。1Aじゃないし微分積分問題だけど。

あの時は、あの問題で平均39だったのは受験生側の学力問題って感じだったなあ  過去問見てみてや

2022-01-12

[] そのひゃくななじゅうご

ワイエルシュトラーッス

 

名前を出して調べたけど10分20分程度じゃわかんないっすね

ふ、ふくそかいせき…における解せきせつ続…?をもちいた…げ、げんみつなかいせきほう…ってなります

微分積分ですらセブンイレブンと語感が似てるよねとしか思えない頭してるのに

まぁリーマンと共に複素解析研究を進めた人、ということらしいです。

とりあえず一応の収束を図るつもりで終わりにしたいと思います。一様収束って文字を見てこのオチにしようと思いました。

 

ということで本日は【作業時間の見極めよいか】でいきたいと思います

作業時間の見極めよいか作業時間の見極めヨシ!

 

それでは今日も一日、ご安全に!

2021-12-20

勉強なんか社会に出て役に立たないという人々はものすごく勉強をしたクズだという話

勉強なんて社会に出て何の役に立つの卒業してから微分積分三角方程式なんか使わねーだろ」という首相経験者の言でにわかに湧きあがるこれまで勉強なんか何の役にも立たないサポーターたち。ここでにわかに湧きあがれるのが勉強をしてこなかった所以なのだろうなと思うんだが、勉強をしないことの弊害って結構あると思うんだよな。

ところでこういう人たちと本気で話し合う機会がある人というのはなかなかいない。高校生とかが勉強に行きづまっで酸っぱい葡萄的に役に立たねーよと吐き捨ててるのではなく、30歳40歳結構年を取っているのにいまだにそういうことを言えちゃう人びとのことだ。

だけどこういう人たちの性質を見ていると「いうこと聞かねーならぶん殴ればいいんだよ」ということを割とスッと言っちゃえるわけだ。要は暴力ふるえば手っ取り早いということを割と受け入れているし、実際にぶんなぐらなくても、どういえば相手を陥れられるのか、自分を有利にできるのか、というスキルばかりが異様に高い。つまりそういう勉強ばかりをやってきた、ということだしこれが楽だし儲かる。何もしなくても養ってもらえるし何なら一生の奴隷を手に入れることもできる。

何ならすれ違いざまにいきなり顔面を殴りつけて土下座させることも可能かもしれない。それくらいにチンピラスキルが高い。

彼らに勝つには結局のところ彼らが振るう以上の暴力、つまり反社会的組織、法、そういったものを使うしかない。だが、彼らはサイコパス能力も高いため平気でうそつくし自分被害者に仕立て上げることも得意だ。借金取りに追い詰められて自殺した人の遺族が「あんたらがあの人を殺したんだ!」とか言っても普通に「変なこと言わないでくださいよ、我々はお金を返してください、としか言ってません、そんなことより彼の債務相続しますか?あぁ、相続開始してましたね、じゃぁ債務自動的相続されていますからよろしくお願いしますね」とか言えちゃう。そういう性質っていう事だ。

なんならぶんなぐればいいと思っているというところですでにかなり強い。勉強をしてきた人々というのは暴力に訴えるというのはなかなかないし、選択肢としてかなり後ろのほうにある。そして勉強をしてこなかった人々というのは基本的に持たざるものなので、失うものもかなり少ない。暴力のだがが弱いうえに振るったところで大したデメリットもない、というのが彼らだ。

勉強なんか社会に出て何の役にも立たないとか普通に言える大人には近づかないことが身のためだ。

2021-12-07

大学数学は嫌われて当然

小説だって何巻というのを無視して途中の巻から読めば作中特有概念人物を示す固有名詞でつまづくのは普通で、そうならないように何巻とか上下巻みたいな目印がある。

しか数学書はそういうのがなく仕方なく手に取ってみても行単位で見知らぬ固有名詞ぼんぼん出て来る。予備知識を手に入れようにも「前の巻」という概念自体がどうにもならない。

岩波基礎(!?)数学叢書かいうのに微分多様体の本があったと思うけどはしがきには基本的な解析数学代数学微積分学を既知のものとして扱っていると書いてあったと思う。

しかしたとえばお前の言う基本的代数学とは具体的にどこまでの範囲を指しているんだ?ていうか何の本を読めばいい?てかお前が大学時代読んできた本のなかでその範囲に属するものを列挙すりゃそれで済むし確実なのになぜそうしない?という言葉がつい漏れる。

だって同じ岩波基礎の本でもアフィン代数みたいな本があってこれが大学数学代数スタートラインにあたるものなのは確実だろうがそこのはしがきにはその応用は標準形は別の本にまとめられてると書いてあって確かにジョルダン標準形とか二次形式は別の本になっている。

しかしこれらもそれなりのボリュームがあるわけで読んでやっとのことで理解した後に「実はそこまで代数を掘り下げて学ぶ必要はなかった」と言われたんじゃ遅いわけ。

興味ある分野へ最短経路で学べるようになりたい人も当然多いわけで、実は不必要なのに無駄学習時間注ぎたくないわな。そわそわしてもこれは必要学習だということだから頑張れるわけで。

高校みたいに数1とか数2とかなってて高校行ってなくて道筋が明瞭でどうとでも独学できるのとはわけが違う。しかも全てのはしがきに予備知識として学ぶべきものが書いてあるわけじゃなくこのはしがきを頼りとした芋づる式で学ぶべき順番に見当をつける方法をもってしても袋小路に入ることもあるという…。んでどうでもいいことだが俺の学びたいものベクトル解析が必要なのかいまだに判断がつかない。

日本語一家言ある人や政治的思想がある人は検索してるうち日本語学や法律学論文に当たることもあるだろうけど、そもそも興味があるのもあって字面は難しそうでもじっくり読めば理解できなかったということはなかったはず。でも数学知識が無い人を門前払いです…。

ドラクエだかでファルスコクーンなんていうスラング象徴されてる現象プレイすればゲーム展開に沿って難なく解消されるわけで要するにそんなのよりずっとタチが悪いのが大学数学の現状

2021-12-04

anond:20211204145749

後編

プログラミングを学ぼうと思い立つ

行列VBAなんかじゃ無理っぽいし、なんかプログラミング言語を覚えようと決める。

なんでも、統計やるならRという言語がいいらしい。

最近じゃPythonというのも人気らしい。

とりあえず両方試そうということで、RのためにRとRstudioをインストール

Pythonはanaconda

プログラミングはなんかを製作する目標がないと挫折すると聞いていたので。

深層学習というもの流行ってると聞いて、ちょっと触りを勉強したくなる。

Excelでわかるディープラーニング超入門」

https://www.amazon.co.jp/Excel%E3%81%A7%E3%82%8F%E3%81%8B%E3%82%8B%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E8%B6%85%E5%85%A5%E9%96%80-%E6%B6%8C%E4%BA%95-%E8%89%AF%E5%B9%B8/dp/4774194743/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=Excel+%E6%B7%B1%E5%B1%A4%E5%AD%A6%E7%BF%92&qid=1637482610&s=books&sr=1-1

この本は面白かったので、深層学習目標プログラミングを覚えよう!

後になって、これはとんでもない間違いだったことに気づく。深層学習機械学習の違いも判らないまま、RよりPythonを先に触ることに。

教本にしたのはこちら。

ゼロから作るDeep LearningPythonで学ぶディープラーニング理論実装

https://www.amazon.co.jp/%E3%82%BC%E3%83%AD%E3%81%8B%E3%82%89%E4%BD%9C%E3%82%8BDeep-Learning-%E2%80%95Python%E3%81%A7%E5%AD%A6%E3%81%B6%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%AE%E7%90%86%E8%AB%96%E3%81%A8%E5%AE%9F%E8%A3%85-%E6%96%8E%E8%97%A4-%E5%BA%B7%E6%AF%85/dp/4873117585/ref=pd_lpo_2?pd_rd_i=4873117585&psc=1

途中まではまあなんとか。

微分って便利だな。行列計算できるの便利だなっていうところまでいったが、クラスという概念理解できず、途中からハテナが浮かんで読み進められず。

うん、もうちょっと易しい本を探そうと思って手に取ったのが

「独学プログラマー Python言語の基本から仕事のやり方まで」

https://www.amazon.co.jp/%E7%8B%AC%E5%AD%A6%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9E%E3%83%BC-Python%E8%A8%80%E8%AA%9E%E3%81%AE%E5%9F%BA%E6%9C%AC%E3%81%8B%E3%82%89%E4%BB%95%E4%BA%8B%E3%81%AE%E3%82%84%E3%82%8A%E6%96%B9%E3%81%BE%E3%81%A7-%E3%82%B3%E3%83%BC%E3%83%AA%E3%83%BC%E3%83%BB%E3%82%A2%E3%83%AB%E3%82%BD%E3%83%95/dp/4822292274/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&crid=1T6BBXYJ16G6T&keywords=%E7%8B%AC%E7%BF%92%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9E%E3%83%BC&qid=1637483073&s=books&sprefix=%E7%8B%AC%E7%BF%92%2Cstripbooks%2C279&sr=1-1

なんとか読了。自信をつける。

しかし、Gitとかbashの章はさっぱり。

実は、いまだにコマンドプロンプトとパワーシェルbashの違いが分かってない。

つづいてPyQに2か月くらい登録してみる。

https://pyq.jp/

とりあえずデータ分析コースを終わらせる。

なかなかPythonが楽しくなってきたが、クラス意味が今一つ掴めないままいったん中断。

この辺で、自分統計に興味があってもプログラミングに興味がないんじゃないかということに気づく。

結局Excelへ戻り、PowerQueryとの出会って、再びPythonとRに回帰した話

なんだかんだもがきながら、PythonもRもモノにならず、日常ちょっとした計算グラフを作ったりはExcelを使い続ける日々が続く。

あるいは、Excelで成形して、検定かけやす形式にしてRで検定するとか。

Rに触れてなかったな、Rは完全に独学。「こんなことやりたいなぁ、ググってみるか、ほうなるほど」って感じ。

そんなさなか、放送大学で「Rで学ぶ確率統計」という講義があるのを知り、さっそく入学して受講。

なかなか面白かったし、PythonばっかりでRあんまり触ってなかったからいい刺激になった。

恥ずかしながら、負の二項分布やガンマ分布ってよう知らんかった。

しかし、講義は楽しかったがなにか書けるようになったかというとそんなことはなく、依然として基本はExcel

まあ、実際csvじゃなく、手書きデータとかをExcelに打ち込んだりする程度なんでPythonやRを使うまでもなかったというのもあるんだけど。

そんなとき出会ったのがこちら、パワークエリというもの

Excelパワーピボット 7つのステップデータ集計・分析を「自動化」する」

https://www.amazon.co.jp/Excel%E3%83%91%E3%83%AF%E3%83%BC%E3%83%94%E3%83%9C%E3%83%83%E3%83%88-7%E3%81%A4%E3%81%AE%E3%82%B9%E3%83%86%E3%83%83%E3%83%97%E3%81%A7%E3%83%87%E3%83%BC%E3%82%BF%E9%9B%86%E8%A8%88%E3%83%BB%E5%88%86%E6%9E%90%E3%82%92%E3%80%8C%E8%87%AA%E5%8B%95%E5%8C%96%E3%80%8D%E3%81%99%E3%82%8B%E6%9C%AC-%E9%B7%B9%E5%B0%BE-%E7%A5%A5-ebook/dp/B07SCK1ND9/ref=sr_1_2?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=%E3%83%91%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%A8%E3%83%AA&qid=1637483953&s=books&sr=1-2

パワークエリを覚えたらピボット形式Excelファイルとか、セルの結合が多用されたExcelファイルを、成形加工するのが非常に楽になった。

しかも、同じフォーマットで記録されてるデータならフォルダにぶち込んで一気にまとめ上げることも可能

控えめにいって神!

としばらくパワークエリを礼賛してたのだけど、各ステップPythonのpandasやRのdplyrでも出来ることに気づく。というか最初から気づけ。

こりゃ、一気に覚えちまおう、統計というより、データの前処理だなと思ってUdemyでRの動画を買ってみた。

AIエンジニアが教えるRとtidyverseによるデータの前処理講座

https://www.udemy.com/course/r-tidyverse-preprocess/

すっかりR信者になる。

それまで教本を呼んでもdplyrの便利さが今一つわからなかったのに、パワークエリで具体的にモノを作ると、dplyrに翻訳したら、すいすい。スピード10倍。

便利さにようやく気付く。

ハドリーウィッカムって神だな。

そんで、pandasに翻訳したらどうなんだろ?と思ったらもっと速いw

すごいなPython

Rへの入信はたった数週間。再びPythonに興味。

機械学習

さて、ゼロから作るディープラーニングを再開しようと思ったけれども、そもそも機械学習をすっ飛ばし深層学習って無茶だったと反省し、まずは機械学習に。

機械学習エッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)

https://www.amazon.co.jp/%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%81%AE%E3%82%A8%E3%83%83%E3%82%BB%E3%83%B3%E3%82%B9-%E5%AE%9F%E8%A3%85%E3%81%97%E3%81%AA%E3%81%8C%E3%82%89%E5%AD%A6%E3%81%B6Python-%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0-Machine-Learning/dp/4797393963/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=1637485264&sr=1-1

で、この本がすごい。

5章あるんだけど、機械学習アルゴリズムは5章だけなんだなw

それまでは何に割かれてるんだって?数式の証明とか、便利な計算法、例えばニュートン法とかラグランジュ未定乗数法とかw

こんだけ引っ張っておいて、いよいよ本番の第5章もゴリゴリ数式をスクリプトに落とし込んでいってるのに、「これは学習のためでscikit-learnっての使えばたった1行」っていう無慈悲

いや、ほんと数学勉強になったし、こうやってゴリゴリやるとなんのためにクラスというもの存在するのかようやくわかった。

線形代数って便利なんだなと。行列スカラー値のように何の気なしに扱えるようになると、あの頃苦しんでいた実験計画法タグメソッド、今読み直したら別の印象があるんじゃないかなと思うようになったり。

この本を読む途中、「マンガでわかる統計学因子分析編」で学んだことが理解の助けになった。

なんたる僥倖

線形回帰、リッジ回帰SVM、PCA、k-means、クラスター分析、一気に手札が増えた。

ふたたび実験計画法

Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析

https://www.amazon.co.jp/%EF%BC%B0%EF%BD%99%EF%BD%94%EF%BD%88%EF%BD%8F%EF%BD%8E%E3%81%A7%E5%AD%A6%E3%81%B6%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB%E6%B3%95%E5%85%A5%E9%96%80-%E3%83%99%E3%82%A4%E3%82%BA%E6%9C%80%E9%81%A9%E5%8C%96%E3%81%AB%E3%82%88%E3%82%8B%E3%83%87%E3%83%BC%E3%82%BF%E8%A7%A3%E6%9E%90-%EF%BC%AB%EF%BC%B3%E6%83%85%E5%A0%B1%E7%A7%91%E5%AD%A6%E5%B0%82%E9%96%80%E6%9B%B8-%E9%87%91%E5%AD%90%E5%BC%98%E6%98%8C-ebook/dp/B09C89HZRV/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=python+%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB&qid=1637486019&s=books&sr=1-1

実験計画法って、fisherの古典的なやつ、ラテン方格に割り付けて、ってやつかと思ったら、線形代数使えればもうなんでもありなのな。

そこにきて、ベイズ、今まで避けてたのに出会ってしまった!!

結論から言うと、超面白い。

これ、すごいな。

Python万歳

いいのかこんな便利分析個人でやれて。

機械学習実験計画法がここでつながるとか、控えめにいって最高だな。

まだ読了してないので、また後日。

ログイン ユーザー登録
ようこそ ゲスト さん