2024-08-30

K理論超弦理論関係

位相的K理論超弦理論のD-ブレーン分類

位相的K理論は、超弦理論におけるD-ブレーンの分類に本質的役割を果たす。具体的には、時空多様体XのスピンC構造に関連付けられたK理論群K(X)およびK^1(X)が重要である

定義: K(X) = Ker(K(X+) → K(pt))

ここで、X+はXの一点コンパクト化を表し、K(X+)はX+上のベクトル束の同型類のGrothedieck群である

Type IIB理論では、D-ブレーン電荷はK(X)の要素として分類され、Type IIA理論ではK^1(X)の要素として分類される。これは以下の完全系列に反映される:

... → K^-1(X) → K^0(X) → K^1(X) → K^0(X) → ...

捻れK理論とNS-NS H-フラックス

背景にNS-NS H-フラックス存在する場合、通常のK理論は捻れK理論K_H(X)に一般化される。ここでH ∈ H^3(X, Z)はH-フラックスコホモロジーである

捻れK理論は、PU(H)主束のモジュライ空間として定義される:

K_H(X) ≅ [X, Fred(H)]

ここで、Fred(H)はヒルベルト空間H上のフレドホルム作用素空間を表す。

微分K理論アノマリー相殺

D-ブレーンのアノマリー相殺機構は、微分K理論を用いてより精密に記述される。微分K理論群K^0(X)は、以下の完全系列で特徴付けられる:

0 → Ω^{odd}(X)/im(d) → K^0(X) → K^0(X) → 0

ここで、Ω^{odd}(X)はXの奇数微分形式空間である

アノマリー多項式は、微分K理論言葉で以下のように表現される:

I_8 = ch(ξ) √Â(TX) - ch(f!ξ) √Â(TY)

ここで、ξはD-ブレーン上のゲージ束、fはD-ブレーンの埋め込み写像、ch(ξ)はチャーン指標、Â(TX)はA-hat種を表す。

KK理論と弦理論双対性

Kasparovの KK理論は、弦理論の様々な双対性統一的に記述するフレームワーク提供する。KK(A,B)は、C*-環AとBの間のKasparov双モジュールの同型類のなすである

T-双対性は、以下のKK理論の同型で表現される:

KK(C(X × S^1), C) ≅ KK(C(X), C(S^1))

ここで、C(X)はX上の連続関数なすC*-環を表す。

導来圏とホモロジカルミラー対称性

導来圏D^b(X)は、複体の導来圏として定義され、K理論と密接に関連している:

K(X) ≅ K_0(D^b(X))

ホモロジカルミラー対称性は、Calabi-Yau多様体XとそのミラーYに対して、以下の圏同値予言する:

D^b(Coh(X)) ≅ D^b(Fuk(Y))

ここで、Coh(X)はX上のコヒーレント層の圏、Fuk(Y)はYのFukaya圏を表す。

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん