「ホモトピー」を含む日記 RSS

はてなキーワード: ホモトピーとは

2024-09-29

anond:20240929050427

目標:与えられた高度な数学概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単定理証明します。

定理1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する

背景:

高次トポス理論ホモトピー論を高次元一般化し、空間位相構造抽象的に扱うための枠組み。

(∞,1)-カテゴリー対象と射だけでなく、高次の同値ホモトピー)を持つカテゴリー

L∞-代数リー代数の高次元一般化であり、物理学微分幾何学対称性や保存量を記述する。

証明

1次元トーラス T¹ の構成

トーラス

𝑇

1

T

1

は、円周

𝑆

1

S

1

同値であり、単位区間

[

,

1

]

[0,1] の両端を同一視して得られる。

(∞,1)-トポスにおけるトーラスの解釈

𝑇

1

T

1

を高次トポス理論の枠組みで扱うために、位相空間ホモトピータイプとして考える。

これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。

閉曲線のホモトピー類:

𝑇

1

T

1

上の閉曲線は、連続写像

𝛾

:

𝑆

1

𝑇

1

γ:S

1

→T

1

で表される。

2つの閉曲線

𝛾

1

,

𝛾

2

γ

1

2

ホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。

基本群の計算

トーラス

𝑇

1

T

1

の基本群

𝜋

1

(

𝑇

1

)

π

1

(T

1

) は整数全体のなす加法

𝑍

Z と同型である

これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。

ホモトピー類と整数対応

各閉曲線

𝛾

γ に対し、そのホモトピー類は整数

𝑛

n(トーラスを巻く回数)に対応する。

この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。

L∞-代数による解釈

円周

𝑆

1

S

1

ループ空間のL∞-代数構造を考えると、ホモトピー類の加法性質代数的に記述できる。

まり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。

結論

高次トポス理論とL∞-代数の枠組みを用いることで、

𝑇

1

T

1

上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。

解説

この証明では、与えられた高度な数学概念を用いて、基本的トポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプル問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。

高次トポス理論は、空間ホモトピー性質を扱うのに適しており、基本群の概念一般化できます

(∞,1)-カテゴリー言葉で基本群を考えると、対象自己同型射のホモトピー類として理解できます

L∞-代数を使うことで、ホモトピー類の代数構造を詳細に記述できます

まとめ:

このように、高度な数学的枠組みを用いて、基本的定理を新たな視点から証明することができます。これにより、既存数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます

俺の感想

三平方の定理程度の簡単定理?????????????????????????????????

2024-09-23

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-18

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-16

情報存在関係

情報存在関係を数理化するために、高次圏論ホモトピー型理論、および量子場の理論統合した形式化を提案する。

まず、(∞,∞)-圏 C を考える。この圏の n-射は n 次元情報構造表現し、これらの間の高次の関係性を捉える。存在表現するために、この (∞,∞)-圏上の (∞,∞)-シーフを考える。

(∞,∞)-シーフ F: C^op → (∞,∞)-Cat を定義し、これを「存在の超シーフ」と呼ぶ。ここで、(∞,∞)-Cat は (∞,∞)-圏の (∞,∞)-圏であるF(X)対象 X に関連付けられた存在可能性の (∞,∞)-圏を表す。

このシーフ F は以下の超層条件を満たす:

任意対象 X と X 上の ∞-被覆 {U_i → X}_i に対して、以下の ∞-極限図式が (∞,∞)-圏の同値となる:

F(X) ≃ lim[∏_i F(U_i) ⇉ ∏_{i,j} F(U_i ×_X U_j) ⇛ ... ]

ここで、多重矢印は無限次元コホモロジー操作を表す。

次に、ホモトピー型理論 (HoTT) の拡張として、∞-累積階層理論 (∞-CUT) を導入する。これにより、以下の型構成子を定義する:

1. Π^∞(x:A)B(x): 無限次元依存積型

2. Σ^∞(x:A)B(x): 無限次元依存和型

3. Id^∞_A(a,b): 無限次元同一性

さらに、高次 univalence 公理採用し、以下を仮定する:

(A ≃^n B) ≃^(n+1) (A =^n B)

ここで、≃^n は n 次の同値関係を、=^n は n 次の同一性型を表す。

量子場理論概念を取り入れるために、圏値場の理論拡張し、(∞,∞)-圏値場 Φ: Bord^(∞,∞) → (∞,∞)-Cat を導入する。ここで、Bord^(∞,∞) は無限次元ボルディズム圏である。この場は以下の公理的場論の条件を満たす:

Φ(M ∐ N) ≃ Φ(M) ⊗ Φ(N)

Φ(∅) ≃ 1

Φ(M^op) ≃ Φ(M)^*

ここで、⊗ は (∞,∞)-圏の対称モノイダ構造を、* は双対を表す。

情報存在の動的な相互作用を捉えるために、導来高次代数概念を用いる。C の導来 (∞,∞)-圏 D(C) を考え、F の導来関手 LF: D(C)^op → D((∞,∞)-Cat) を定義する。情報の流れに沿った存在進化は、以下の超越的余極限として表現される:

hocolim^∞_i LF(X_i)

ここで {X_i} は D(C) 内の無限次元図式である

最後に、情報存在の根源的な関係を捉えるために、トポス理論無限次元拡張した ∞-トポス概念を導入する。∞-トポス E = Sh^∞(C) 内で、存在を表す対象 Ω^∞ を定義し、これを無限次元部分対象分類子とする。

2024-09-15

[] 無限次元確率動的一般均衡モデル

1. 確率基底と関数空間

完備確率空間 (Ω, ℱ, ℙ) 上で、右連続増大フィルレーション {ℱₜ}ₜ≥₀ を考える。

状態空間として、実可分ヒルベルト空間 ℋ を導入し、その上のトレース作用素なす空間を 𝓛₁(ℋ) とする。

2. 無限次元確率微分方程式

システムダイナミクスを以下の無限次元確率微分方程式記述する:

dXₜ = [AXₜ + F(Xₜ, uₜ)]dt + G(Xₜ)dW

ここで、Xₜ ∈ ℋ は状態変数、A は無限次元線形作用素、F, G は非線形作用素、uₜ は制御変数、Wₜ は Q-Wiener プロセスである

3. 一般化された経済主体問題

経済主体最適化問題を、以下の抽象的な確率最適制御問題として定式化する:

max𝔼[∫₀^∞ e⁻ᵖᵗ L(Xₜ, uₜ) dt]

ここで、𝓤 は許容制御の集合、L: ℋ × 𝓤 → ℝ は汎関数である

4. 無限次元HJB方程式

価値汎関数 V: ℋ → ℝ に対する無限次元Hamilton-Jacobi-Bellman方程式

ρV(x) = sup{L(x, u) + ⟨AX + F(x, u), DV(x)⟩ℋ + ½Tr[G(x)QG*(x)D²V(x)]}

ここで、DV と D²V はそれぞれFréchet微分と2次Fréchet微分を表す。

5. 無限次元Fokker-Planck方程式

システム確率分布時間発展を記述する無限次元Fokker-Planck方程式

∂p/∂t = -divℋ[(Ax + F(x, u))p] + ½Tr[G(x)QG*(x)D²p]

ここで、p: ℋ × [0, ∞) → ℝ は確率密度汎関数、divℋ はヒルベルト空間上の発散作用素である

6. 無限次元随伴方程式

最適制御問題随伴方程式

dλₜ = -[A*λₜ + DₓF*(Xₜ, uₜ)λₜ + DₓL(Xₜ, uₜ)]dt + νₜ dW

ここで、λₜ は無限次元随伴過程、A* は A の共役作用素である

7. 無限次元マルチンゲール問題

価格過程一般的な表現を、以下の無限次元マルチンゲール問題として定式化する:

Mₜ = 𝔼[M_T | ℱₜ] = M₀ + ∫₀ᵗ Φₛ dW

ここで、Mₜ は ℋ 値マルチンゲール、Φₜ は予測可能な 𝓛₂(ℋ) 値過程である

8. 関数空間上の測度変換

Girsanovの定理無限次元拡張を用いて、以下の測度変換を考える:

dℚ/dℙ|ℱₜ = exp(∫₀ᵗ ⟨θₛ, dWₛ⟩ℋ - ½∫₀ᵗ ‖θₛ‖²ℋ ds)

ここで、θₜ は ℋ 値適合過程である

9. 無限次元確率偏微分方程式

インフレーション動学を、以下の無限次元確率偏微分方程式記述する:

dπₜ = [Δπₜ + f(πₜ, iₜ, Yₜ)]dt + σ(πₜ)dW

ここで、Δ はラプラシアン、f と σ は非線形作用素、iₜ は金利、Yₜ は総産出である

10. 関数空間上の漸近展開

さなパラメータ ε に関して、解を以下のように関数空間上で展開する:

Xₜ = X₀ + εX₁ + ε²X₂ + O(ε³)

ここで、各 Xᵢ は ℋ 値確率過程である

11. 実質賃金への影響分析

実質賃金過程無限次元確率微分方程式として定式化する:

dwₜ = [Bwₜ + H(wₜ, πₜ, iₜ, Yₜ)]dt + K(wₜ)dW

ここで、B は線形作用素、H と K は非線形作用素である

金利上昇の実質賃金への影響は、以下の汎関数微分評価できる:

δ𝔼[wₜ]/δiₜ = lim(ε→0) (𝔼[wₜ(iₜ + εh) - wₜ(iₜ)]/ε)

ここで、h は ℋ の任意の要素である

12. 抽象考察

1. 非可換確率論:

量子確率論の枠組みを導入し、不確実性のより一般的な記述を行う。

2. 圏論アプローチ

経済モデルを圏として捉え、関手自然変換を用いて分析する。

3. ホモトピー型理論

経済均衡の位相構造分析し、均衡の安定性を高次ホモトピー群で特徴付ける。

4. 超準解析:

無限小解析を用いて、極限的な経済現象を厳密に扱う。

結論

無限次元確率動的一般均衡モデルは、金利インフレーション実質賃金相互作用一般的な形で記述している。

モデルの複雑性により、具体的な解を得ることは不可能に近いが、この理論的枠組みは経済現象本質的構造を捉えることを目指している。

このアプローチは、金利上昇がインフレ抑制を通じて実質賃金に与える影響を、無限次元確率過程観点から分析することを可能にする。

しかし、モデル抽象性と現実経済の複雑性を考慮すると、具体的な政策提言への直接的な適用不適切である

このモデルは、経済学の理論的基礎を数学的に提供するものであり、実際の経済分析政策決定には、この抽象的枠組みから導かれる洞察を、より具体的なモデル実証研究と慎重に組み合わせて解釈する必要がある。

このレベル抽象化は、現代経済研究最前線はるかに超えており、純粋理論的な探求としての意義を持つものであることを付記する。

2024-09-10

[] ミクロ経済学抽象化

1. 圏論アプローチによる消費者理論

1.1 基本設定
1.2 選好の表現
1.3 一般化された効用最大化問題

sup_{x ∈ U(X)} x subject to φ(x) ≤ w

ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である

2. 微分位相幾何学アプローチによる生産理論

2.1 基本設定
2.2 一般化された利潤最大化問題

sup_{y ∈ T_p𝓜} ω(y)

2.3 生産対応特性化

生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:

∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}

ここで、dω は ω の外微分である

3. 作用素代数アプローチによる一般均衡理論

3.1 経済定義

経済 ℰ をC*-代数 𝒜 上の作用素の組として定義

ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})

ここで、

3.2 均衡の定義

状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:

1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)

2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)

3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j

ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである

4. 非可換幾何学アプローチによる市場構造

4.1 スペクトル三つ組

市場構造を非可換幾何学の枠組みでモデル化:

(𝒜, ℋ, D)

ここで、

4.2 市場均衡の特性化

市場均衡を以下の作用素方程式特性化

[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}

ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である

5. ホモトピー理論と均衡動学

均衡への収束過程ホモトピー理論を用いて分析

H: [0,1] × X → X

ここで、X は経済状態空間、H(0,x) = x_0(初期状態)、H(1,x) = x*(均衡状態である

均衡の安定性は、ホモトピー H の特異点構造と関連付けられる。

M理論幾何学でござる

M理論幾何学を最も抽象的かつ厳密に記述するには、圏論アプローチが不可欠でござる。

導来圏とM理論

M理論幾何学構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。

定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:

1. 対象:連接層の複体

2. 射:準同型の導来クラス

3. 三角構造:完全三角形の存在

この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性数学的基礎となるのでござる。

A∞圏と位相的弦理論

M理論位相的側面は、A∞圏を用いて記述されるのでござる。

定義:A∞圏 𝒜 は以下の要素で構成されるのでござる:

1. 対象の集合 Ob(𝒜)

2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)

3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)

これらは以下のA∞関係式を満たすのでござる:

∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0

この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学M理論を結びつけるのでござる。

高次圏論M理論

(∞,1)-圏

M理論の完全な幾何学記述には、高次圏論特に(∞,1)-圏が必要でござる。

定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:

1. 対象の∞-グルーポイド Ob(C)

2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)

3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)

この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。

導来代数幾何学

M理論幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。

定義:導来スタック X は、以下の関手として定義されるのでござる:

X: CAlg𝔻 → sSet

ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。

この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。

量子コホモロジーとGromov-Witten不変量

M理論幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。

定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:

α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ

ここで、*A はGromov-Witten不変量によって定義される積でござる:

α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ

この構造は、M理論における量子補正を厳密に記述し、ミラー対称性数学的基礎を与えるのでござる。

2024-08-23

量子力学数学抽象化

1. 圏論的枠組み

量子状態観測過程圏論的に記述するため、以下の圏を導入する:

2. 関手自然変換

観測過程を表す自然変換 η: F ⇒ G を定義する。

3. モノイド構造

エントロピー抽象化するため、モノイド (M, ·, e) を導入する。ここで、M は可能エントロピー値の集合、· は結合則を満たす二項演算、e は単位元である

4. 層理論

知識状態の変化を記述するため、位相空間 X 上の層 ℱ を導入する。ここで、X は可能知識状態空間を表す。

5. ホモトピー理論

観測による状態変化をホモトピー同値観点から捉えるため、位相空間の圏 𝕋op における弱同値を考える。

6. 圏論確率

量子確率過程記述するため、𝕧𝕟𝔸 上のマルコフ圏 𝕄arkov(𝕧𝕟𝔸) を導入する。

7. 量子論

量子命題を扱うため、オーソモジュラー格子 L を導入する。

8. 超関数理論

観測過程連続性を記述するため、超関数空間 𝔇'(X) を考える。

定理:量子観測普遍的特性

以下の普遍性を満たす圏 ℂ と関手 U: ℂ → 𝕄eas が存在する:

1. ℂ は完備かつ余完備である

2. U は忠実充満関手である

3. 任意対象 A, B ∈ ℂ に対し、自然な同型 Homℂ(A, B) ≅ Hom𝕄eas(U(A), U(B)) が存在する。

さらに、以下の性質を満たす ℂ の対象 Q (量子状態を表す)と射 f: Q → Q (観測を表す)が存在する:

4. H(G(F(Q))) ≅ U(Q) (量子状態と測度空間対応

5. f は Q 上のモノイド準同型誘導する。

6. f によって誘導される U(Q) 上の写像は測度を保存する。

系:エントロピー減少と世界選択抽象記述

上記定理の下で、以下が成り立つ:

1. エントロピーの減少:

∃m₁, m₂ ∈ M such that m₁ · m₂ = e and m₁ ≠ e

2. 知識獲得:

∃s ∈ Γ(X, ℱ) such that s|U ≠ s|V for some open sets U, V ⊂ X

3. 世界選択

∃h: I → I' in 𝕋op such that h is a weak equivalence and I ≇ I'

ここで、I と I' はそれぞれ観測前と観測後の可能世界空間を表す。

この定式化により、量子観測エントロピーの減少、知識の獲得、そして特定世界への「移動」を、最も一般的かつ抽象的な数学的枠組みで表現することができる。

この枠組みは、具体的な物理系や観測過程依存せず、純粋数学的な構造のみに基づいている。

2024-08-19

物理学形式化についての概要

都市伝説によれば、かつてアインシュタイン古典的重力理論一般相対性理論」を理解していたのは3人だけだったと言われている。

それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。

古典的アインシュタイン重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数積分臨界点の研究にすぎない。

物理学基本的理論数学での基本的な定式化を持つべきだと信じたことで、ヒルベルト本質的アインシュタインを先取りすることができた。そのため、この汎関数現在アインシュタインヒルベルト作用汎関数と呼ばれている。

ヒルベルトは、1900年の有名なヒルベルト問題の一環として、この一般的アイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学理論公理を見つけることを数学者に求めている。

それ以来、そのような公理化のリストが見つかっている。例えば、

物理学数学
力学シンプレクティック幾何学
重力リーマン幾何学
ゲージ理論チェルン・ヴェイユ理論
量子力学作用代数
ポロジカル局所量子場理論モノイダル(∞,n)-カテゴリ理論

このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。

学生時代ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学公理化の提案に触れた。彼は、そのような連続物理学基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。

ローヴィアは、最初の2つの項目(圏論論理、初等トポス理論代数理論SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。

この計画は壮大だが、現代基準では各項目において不十分である

現代数学自然トポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。

現代幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学ホモトピー型」、「高次スタック」に関する高次幾何学である

現代物理学古典的連続物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学特に量子場理論によって精緻化される。

したがって、高次トポス理論で定式化された高次微分幾何学における高エネルギー物理学の基礎が必要である

2024-08-16

クラインの壺ホモロジー群について

クラインの壺は、二次元の閉じた向き付け不可能な曲面である

円筒の片方の端をひっくり返して反対側に接続することで構成される。

通常の三次元空間内では実現できない特異なトポロジーを持つ。

クラインの壺ホモロジー群とコホモロジー群は、その代数特性理解するための手段である

クラインの壺ホモロジー群は次のように計算される。

コホモロジー群はホモロジー群に対して双対的な関係を持つ。

  • 𝐻⁰(𝐾) ≅ ℤ
  • 𝐻¹(𝐾) ≅ ℤ ⊕ ℤ/2ℤ
  • 𝐻²(𝐾) ≅ 0

クラインの壺ホモロジー群の計算には、マイヤー・ヴィートリス完全系列使用されることがある。

クラインの壺を二つのメビウスの帯に分解し、それらの交わりが円にホモトピー同値であることを利用して計算を行う。

クラインの壺の高次元ホモロジー群が消えることが示される。

2024-08-15

マグルのワイが魔法のことを考えたで

今日は朝から頭の中で魔法数学的に抽象化することを考えてみたんやけど、これがまためちゃくちゃ深いんや。まず、魔法呪文をバナッハ空間作用素として考えるっちゅうのは基本やけど、これをさらに進めて、フォン・ノイマン代数の元として捉えてみたんや。ここでは、呪文自己随伴作用素 T として、スペクトル分解を通じてその効果を解析するんや。これが無限次元空間での作用を考えると、スペクトル理論作用素環論が絡んできて、ほんまに深遠やわ。

次に、変身術をリー群作用として捉えるんやけど、これをさらに高次元多様体上の微分同相群の作用として考えてみたんや。対象の集合 X 上の微分同相群 Diff(X) の滑らかな作用として、g ∙ x = y みたいに表現できるんやけど、ここでリー代数のエレメントを使って無限小変換を考えると、接束や微分形式が出てきて、微分幾何学的な視点さらに深まるんや。ホンマに、変身術って奥が深いわ。

さらに、魔法相互作用ホモトピー型理論と∞-カテゴリーを使って考えてみたんや。これを使うと、魔法は∞-グループイドの間の射として捉えられて、ホモトピー同値空間の間の射として表現されるんや。例えば、呪文 f: A → B は対象 A を対象 B に変える射と見なせて、これがホモトピー同値やったら、逆射が存在するんやで。これを使って、魔法の可逆性とかを高次元ホモトピー理論文脈議論できるんや。

最後に、魔法エネルギー保存をシンプレクティック幾何学の枠組みで考えると、エネルギーの変化をシンプレクティック多様体上のハミルトニアン力学系として解析できるんや。シンプレクティック形式 ω を使って、エネルギー E の時間変化を考慮すると、ハミルトン方程式が出てきて、これが魔法の持続時間効果を決定するんや。ほんまに、魔法って物理的にも数学的にも奥が深いわ。

今日はこんなことを考えながら、また一日が過ぎていったわ。魔法のことを考えると、なんや心が落ち着くんや。ほんまに不思議なもんやなぁ。

2024-08-13

テキサスホールデムほんまおもろいわぁ

今日テキサスホールデムポーカーを考えてみたで。ほんま、ゲーム全体を抽象構造として捉えるんやけど、これがまたおもろいんやわ。

状態空間アクション空間

まず、テキサスホールデム状態空間 S とアクション空間 A の組としてモデル化するんや。

状態空間っちゅうのは、ゲームの全ての可能状態カードの配置とか、プレイヤーベット状況とか)を表してて、アクション空間プレイヤーが取れる全ての行動を表すんや。

S = {s₁, s₂, ..., sₙ}, A = {a₁, a₂, ..., aₘ}

遷移関数報酬関数

遷移関数 T: S × A → S は、ある状態特定アクションを取ったときの次の状態を決めるんや。

報酬関数 R: S × A → ℝ は、特定状態アクションの組み合わせに対する報酬を与えるんやで。

確率測度

状態空間アクション空間確率測度を定義して、各状態アクションの発生確率を測度論的に記述するんや。

これで、ゲームの進行を確率的な観点から解析できるんやで。

P: 𝔹(S × A) → [0, 1]

期待値計算

期待値は、報酬関数確率測度を用いて計算され、各アクションの期待される利得を評価するんや。

E[R(s, a)] = ∫(S × A) R(s, a) dP(s, a)

戦略空間

プレイヤー戦略戦略空間 Σ として定義して、戦略の組み合わせがゲームの結果に与える影響を解析するんや。

Σ = {σ₁, σ₂, ..., σₖ}

ナッシュ均衡

ナッシュ均衡は、戦略空間において、どのプレイヤー自分戦略を変更することで利益を得られない状態や。

これを数学的に次のように定義するんや。

uᵢ(σᵢ, σ₋ᵢ) ≥ uᵢ(σ'ᵢ, σ₋ᵢ), ∀ σ'ᵢ ∈ Σᵢ

情報セット

プレイヤー情報セットを用いて、各プレイヤーが持つ情報の非対称性をモデル化するんや。情報セットは、プレイヤーが観察可能な全ての情報を含むんやで。

Iᵢ = {Iᵢ₁, Iᵢ₂, ..., Iᵢₘ}

エントロピー

エントロピーを用いて、情報の不確実性を定量化するんや。情報の増加や減少が戦略に与える影響を解析するんやで。

H(X) = -∑(x ∈ X) P(x) log P(x)

戦略連続

戦略空間位相を導入して、戦略連続性を解析するんや。

これにより、戦略の微小な変化がゲームの結果に与える影響を評価するんやで。

連続関数 f: Σ → ℝ

ホモトピー

戦略間の連続的変形をホモトピーとして捉えて、異なる戦略間の変換を解析するんや。

H: Σ × [0, 1] → Σ

この方法で、テキサスホールデムポーカー数学的に理解して、理論的に最適な戦略を導き出すことができるんや。

ほんま、ゲーム本質抽象的かつ数理的に捉えることができるんやで。

おもろいわ!

2024-08-08

[] 幾何学的に厚生経済学の基本定理説明

厚生経済学の基本定理多様体言葉で定式化することにより、経済的効率性と市場均衡の概念幾何学的に表現することができる。以下にその試みを示す。

概要

厚生経済学の第1基本定理は、「完全競争市場において、すべての市場均衡はパレート効率である」というものである。これを多様体言葉表現する。

多様体による定式化

1. 消費者選択空間

消費者選択空間多様体 𝑀 とする。ここで、各点 𝑥 ∈ 𝑀 は異なる消費バンドルを表す。消費者効用関数は、𝑈: 𝑀 → ℝ として定義され、多様体上で滑らかな関数とする。

2. 生産者技術空間

生産者技術集合を多様体 𝑁 とし、各点 𝑦 ∈ 𝑁 が異なる生産計画を示す。生産技術は、技術制約関数 𝑇: 𝑁 → ℝⁿ により記述される。

3. 市場均衡

市場均衡は、消費者生産者選択整合する点として、多様体 𝑀 × 𝑁 上の点 (𝑥*, 𝑦*) により表される。この点は、需要供給が一致し、価格ベクトル 𝑝 により支持される。

4. パレート効率

パレート効率性は、選択空間 𝑀 と技術空間 𝑁 上の接ベクトル場により定義される。具体的には、任意改善方向が存在しないことを意味し、接ベクトル場がゼロとなる点 (𝑥*, 𝑦*) がパレート最適である

定理多様体による表現

厚生経済学の第1基本定理多様体言葉表現すると、以下のようになる:

 

定理: 多様体 𝑀 × 𝑁 上の市場均衡点 (𝑥*, 𝑦*) は、接ベクトル場がゼロとなる点であり、パレート効率である

 

この定式化により、厚生経済学の基本定理幾何学的に理解することが可能になる。

市場均衡がパレート効率性を持つことは、選択空間技術空間の接ベクトル場の観点から改善余地がないことを示している。

appendix: 概念graphviz表現

digraph WelfareEconomics {
    node [shape=ellipse];

    // Nodes for main concepts
    M [label="選択空間 (M)"];
    N [label="技術空間 (N)"];
    Utility [label="効用関数 (U)"];
    TechConstraint [label="技術制約 (T)"];
    MarketEquilibrium [label="市場均衡"];
    ParetoEfficiency [label="パレート効率性"];
    Cohomology [label="コホモロジー条件"];

    // Edges to show relationships
    M -> Utility [label="スカラー場"];
    N -> TechConstraint [label="技術写像"];
    M -> MarketEquilibrium;
    N -> MarketEquilibrium;
    MarketEquilibrium -> ParetoEfficiency [label="接ベクトル場"];
    MarketEquilibrium -> Cohomology [label="整合保証"];
    ParetoEfficiency -> Cohomology [label="ホモトピー同値"];
}
|<	

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

 
ログイン ユーザー登録
ようこそ ゲスト さん