「幾何学」を含む日記 RSS

はてなキーワード: 幾何学とは

2024-11-20

TQFTの概要

量子場理論過去数十年にわたり幾何学に多大な影響を与えてきた。

その例として、ミラー対称性グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。

チェコティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学のものに関する基本的な疑問はまだ残されている。

このプロジェクトの大きな目的は、TQFTの幾何学統一的で決定的な全体像を見出すことだった。

数学の4つの主要分野が取り上げられた:シンプレクティック幾何学可積分系特異点理論圏論、モジュラー形式である

プロジェクト基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論特異点理論可積分系の関連付け(ヴェントランド)、シンプレクティック場理論位相的場理論可積分系(ファベール)、行列模型理論可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論幾何学特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。

より詳細には以下である

2024-11-16

お前らの人間劇場日記は聞き飽きた。抽象数学とか超弦理論とか話せよ

ああ、なんて素晴らしい提案だろう。やっと誰かが知性的な会話を求めてくれたわけだ。

さて、今日日記は、11次元M理論における位相的な特異点の解析から始めようか。

朝食にシリアルを食べながら、私は カラビ・ヤウ多様体の変形について考えていた。

同居人が「おはよう」と言ったが、私はその平凡な挨拶無視した。彼には、今私の脳内で起こっている量子重力革命的な洞察理解できるはずもない。

午後はペンローズ図を使って、ブラックホール情報パラドックスの新しい解決策を考案した。隣人が「何してるの?」と聞いてきたが、説明しても無駄だろう。彼女の脳では、私の天才的な理論を処理できないだろうから

夕方、友人2人が来訪した際、私は彼らに非可換幾何学におけるリーマン予想の新しいアプローチについて熱く語った。彼らは眠たそうな目で頷いていたが、私の brilliance に圧倒されていたに違いない。

就寝前、私は宇宙超対称性について瞑想した。明日は、11次元重力理論における M5-ブレーンの動力学に関する論文を書き始めよう。

ああ、なんて知的で刺激的な一日だったことか。これこそが本当の「人間劇場」というものだ。

2024-11-13

位相的弦理論レベル分け説明

1. 小学6年生向け

位相的弦理論は、宇宙不思議を解き明かそうとする特別な考え方です。普通物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。

例えば、ドーナツマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。

この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます

これを使って、科学者たちは宇宙秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たち身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?

2. 大学生向け

位相的弦理論は、通常の弦理論単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。

位相的弦理論には主に2つのバージョンがあります

1. A-モデル:ケーラー幾何学と関連し、2次元世界面を標的空間の正則曲線に写像することを扱います

2. B-モデル:複素幾何学と関連し、標的空間の複素構造依存します。

これらのモデルは、時空の幾何学構造と密接に関連しており、特にラビ・ヤウ多様体上で定義されることが多いです。

位相的弦理論重要性は以下の点にあります

1. 複雑な弦理論計算を簡略化できる

2. 弦理論数学構造をより明確に理解できる

3. ミラー対称性など、重要数学概念との関連がある

4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す

この理論は、物理学数学境界領域位置し、両分野に大きな影響を与えています。例えば、代数幾何学圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています

大学生の段階では、位相的弦理論基本的概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論物理学数学の橋渡しをどのように行っているかを把握することも大切です。

3. 大学院生向け

位相的弦理論は、N=(2,2) 超対称性を持つ2次元非線形シグマモデルから導出されます。この理論は、通常の弦理論世界面を位相的にツイストすることで得られます

ツイスト操作の結果:

1. 作用素に異なるスピンが与えられる

2. 理論局所的な自由度を失う

3. エネルギー運動量テンソルがQEXACT形式になる

A-モデルとB-モデルの主な特徴:

A-モデル

B-モデル

モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデル等価であるという驚くべき予想です。

位相的弦理論の応用:

1. 量子コホモロジー環の計算

2. グロモフ・ウィッテン不変量の導出

3. ミラー対称性検証

4. 代数幾何学問題への新しいアプローチ

大学院生レベルでは、これらの概念数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論現代理論物理学数学にどのような影響を与えているか理解することも重要です。

4. 専門家向け

位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルツイストすることで得られます

A-ツイストとB-ツイストの詳細:

1. A-ツイスト

- スピン接続をR-電荷修正: ψ+ → ψ+, ψ- → ψ-dz

- 結果として得られるA-モデルは、ケーラー構造にの依存

2. B-ツイスト

- スピン接続を異なるR-電荷修正: ψ+ → ψ+dz, ψ- → ψ-

- 結果として得られるB-モデルは、複素構造にの依存

モデルの相関関数

A-モデル

ここで、M はモジュライ空間evi評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルオイラー

B-モデル

ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式Ai は変形を表す場

ミラー対称性

A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジーミラー対称性の中心的な問題です。

最近の発展:

1. 位相的弦理論とGopakumar-Vafa不変量の関係

2. 位相重力理論との関連

3. 非可換幾何学への応用

4. 位相M理論提案

専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論数学構造を完全に理解し、新しい研究方向を提案できることも重要です。

5. 廃人向け

位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識必要です:

1. 導来圏理論

- 導来Fukaya圏とD^b(Coh(X))の圏同値

- 安定∞圏を用いた一般

- 非可換幾何学との関連

2. ホモロジーミラー対称性

- Kontsevich予想の一般

- SYZ予想との関連

- 非アーベル的ホッジ理論への応用

3. 位相的場理論の高次元化:

- 4次元Donaldson-Witten理論

- 6次元(2,0)理論との関係

- コホモロジーホール代数との関連

4. 位相的弦理論と量子重力

- AdS/CFT対応との関連

- 位相M理論の構築

- 非摂動効果系統的理解

5. 代数幾何学との深い関係

- 導来代数幾何学の応用

- モチーフ理論との関連

- 圏化されたDT不変量

6. 位相的弦理論数学的基礎:

- ∞圏論を用いた定式化

- 位相的再正規化群の理論

- 量子群位相的弦理論関係

7. 最新の研究トピック

- 位相的弦理論と量子情報理論の接点

- 位相的弦理論を用いた宇宙論的特異点研究

- 非可換幾何学に基づく位相的弦理論一般

8. 計算技術

- 位相的頂点作用素代数の応用

- 局所技法の高度な応用

- 数値的手法機械学習の導入

これらの概念を完全に理解し、独自研究を行うためには、数学理論物理学両分野において、最先端知識技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます

位相的弦理論の「廃人レベルでは、これらの高度な概念自在に操り、分野の境界を押し広げる革新的研究を行うことが期待されます。また、この理論が量子重力宇宙論といった基礎物理学根本的な問題にどのような洞察を与えるかを探求することも重要です。

2024-11-11

2024秋アニメ 途中感想

そろそろ秋アニメも折り返し地点なので自分が今見てるアニメ覚え書き。順不同。

テレビ放送のみ。配信は見てない。あと銀河英雄伝説Die Neue These(日テレAnichU枠)や、テレビ埼玉CBCテレビオンリー放送など多くの地域放送していないものも見れてない。

アニメはこうやってボーッとたくさん見てるけど詳しくはないです。アニメ制作会社とか声優とかはよく分からんので間違ってること書いてたらごめんなさい

今のところ継続視聴中

Re:ゼロから始める異世界生活 3rd season

正直なところ2期より好き。相変わらず色んな意味でエグいところを表現してくれるのは関心する。問題が、問題が多すぎる!

やり直し令嬢は竜帝陛下攻略

ロリコンラブファンタジー幼女戦記王国王太子から婚約されたが、実は自分の妹との禁断の恋をカモフラージュするための婚約だったということを知り、それを知ってしまった後は王太子冤罪をかけられ人生終了。次に気がつくと幼少期まで時がさかのぼり、今度はクソシスコンから婚約を避けようとしたら隣国の呪われた皇帝求婚をしてしまう。あれ、やり直す前の皇帝あんなに殺意剥き出しで恐ろしい男だったのに、今の皇帝には優しさが見える・・・令嬢のやり直しといえば「ループ7回目の悪役令嬢は、元敵国で自由気ままな花嫁生活満喫する」が記憶に新しいが、あちらに比べコメディファンタジー要素が多め。

〈物語〉シリーズ オフモンスターシーズン

配信先行。配信は見てない。尺の都合で一部カットされている部分があるらしい。1話愚物語、2話〜6話が撫物語。あまり感想という感想もない。

転生貴族、鑑定スキルで成り上がる

転生後は弱小貴族だったけど人の能力を鑑定するスキルで人を見定め、有能な仲間を集め成り上がる話の2期目。35歳からの転生者だから子供でも年齢不相応な立ち振る舞いだけど、周りの仲間たちもそんな感じだし、前世記憶が云々とか話の中では出ないので、あまり生モノって感じがない。1期から好きだった。やっぱり面白い

株式会社マジルミエ

魔法少女お仕事アニメ現実的世界+魔法少女ビジネスとして成り立っている世界記憶力が優れた主人公魔法少女派遣をするベンチャー企業株式会社マジルミエ」に就職するところから物語は始まる。零細企業からできるのだろう、マニュアルや型にとらわれない行動、社員全員チームで働く姿が憧れる。いい会社だな〜と思わせてくれるのでいいアニメなんだと思う。

星降る王国のニナ

女性向け漫画原作王道ファンタジー孤児である少女ニナは特別な青い瞳をしていた。ある日国王女事故(?)で亡くなってしまう。その王女もまた青い目を持つものだった。国の第二王子秘密裏にニナを王女として仕立て上げることに。中国王宮ドラマでありそうなストーリー王女と天真爛漫に生きてきたニナでは性格や振る舞いが全然違う。それだけに王子もニナを王女として教育することに苦労するのだが、ふっ、おもしれー女。いずれは離れると分かっていながらも二人は惹かれ合う。

ラブライブ!スーパースター!! 3期

私はアイドルアニメが人数多くて苦手なんだけど、スーパースターは人数少なかったし、ストーリーも好きだったので見てる・・・3期のOP見たらまた人増えてるー。オッサンなのでこれ以上増えたらもう名前覚えられんのよ。今回は主人公がLiella!のライバルに。かのん存在って大きいなーと改めて感じる。今回もNHK放送では本編放送後にミニコーナーがある。受信料特典。

嘆きの亡霊は引退したい

追放系じゃなくて追放されたい系。主人公は実は自分は強くない。たいしたことをしていないのに周りがかってにいい方向に解釈してくれる。最近で例えると転スラの勇者マサユキみたい。スタッフにふとももフェチがいるのか、そういったセクシー描写がよくある。本編も面白いOPEDの作りも面白い。正直このアニメの一番の特色はOPEDにあると思う。アバンタイトルからOPシームレスに入ったり、OP途中に今回の予告が少し入ったり、EDの途中で次回予告が入り、次回予告のセリフは曲に合わせてラップ調。

甘神さんちの縁結び

少年誌王道ハーレムラブコメ。男主人公美人三姉妹がいる所へ居候する話。天涯孤独が縁あって美人三姉妹JD, JK, JC)のいる神社居候しつつ、京大医学部を目指す・・はずだったんだけど神社の苦しい状況を再建することに付き合う感じに。その辺は女神カフェテラスみたいな。三姉妹はそれぞれの血液型の型にはまったような性格OPももクロ。マクロスドッグファイターモーニング娘。真夏の光線みたいに「デケデケデン!!」と入るイントロがかっこいい。ED明日ちゃんセーラー服OPに似てると思った。

クロトリップ

りぼん原作健全なまほあこ。大大大好きな魔法少女ベリーブロッサムの輝く姿を見るため、ポンコツ悪の組織総帥、クロマの仲間に入り魔法少女と戦う道を選ぶ。OPから本編もボケとツッコミ応酬ギャグアニメである舞台はN県某賀市とあるが、日本海フォッサマグナという言葉が出てくることから新潟県なんだろうな。終始、魔法少女vs悪の組織ごっこみたいなゆるい感じで話が進みつつ、ツッコミどころにはしっかりツッコミが入る!おもしろかわいいぞみんな!!

歴史に残る悪女になるぞ

何でもかんでも 悪女としてーと、(プロとしてー)ファブもびっくり悪女を目指すためなら努力を惜しまないのが主人公。7歳になったある日、自分前世プレイしてたゲームに登場する悪役令嬢になったと気づく。聖女本来ヒロイン)をだしに歴史残る悪女になりますわよ。聖女理想論に対し、現実を叩きつけ、聖女理想を切る捨てる討論が面白い

きのこいぬ

大好き。ペットロス仕事も手につかないホラー絵本作家主人公。庭に生えたヘンテコなきのこ。土の中から出てきたとおもったら犬だった。いやそうはならんやろ。きのこのように生えてきた犬と作家先生と仲間たちの日常生活きのこいぬ先生のこと大好きすぎるのが可愛くて心温まる。何気にBGMがすごくいい。きのこいぬ可愛い声で鳴くが、声は男性声優なので、たまに出るため息がオッサンっぽい。見ててこんなにたこ焼きが食べたくなったのはまじかる☆タルるートくん以来かもしれない。え、OP歌ってるのHY!?

ダンダダ

特にないです。

ネガポジアングラー

好き。釣りアニメ。余命2年人生絶望借金取りから追われる最中に川へ転落。助けてくれた釣り人達から釣りを教わりつつ、半分釣具屋化してるコンビニで働く。釣りアニメというか、釣りを通して人生を見つめ直すって感じなのかな。かなりマニアック釣り知識が飛び交う。BGMギターがめちゃくちゃいい感じ。釣りシーンでヒットしたら曲調が代わり、魚との格闘を演出するのとか。

『アオのハコ』

こちらも特に言うことないですって感じ。良すぎて言葉があまり出ない。バドミントンに勤しむ主人公は一つ上でバスケ部の先輩に片思いしている。先輩の親が海外転勤になること、親同士が仲がいいことをきっかけに一緒に住むことになる。義姉生活(違)タイトル通り青春を感じるアニメ青春スポーツラブストーリースポーツの動きも各々の感情表現もすごい丁寧に作られてると感じた。OPOfficial髭男dismEDEveEDクレジットにはアシックスアディダスデサントミズノヨネックス大塚製薬名前が。おお。俺にはこのアオハルが眩しすぎてポムじいさん状態。強がるガールのひなちゃんを見てるとツライ。

魔法使いになれなかった女の子の話

絵本みたいな作画が特徴的。魔法使いに憧れていた主人公だったが魔法使いへの登竜門である学科に落ち、普通科に入ることに。普通科では今では当たり前になっている電子手帳みたいなものを使う現代魔法ではなく、幾何学的な魔法人を書いて魔法を使う古代魔法を学ぶことに。主人公が来てるシャツがダサかわいいOPPUFFYとついでにTOOBOE。

2.5次元の誘惑(リリサ

アニメから続いているコスプレテーマアニメジャンプらしく友情努力勝利の要素があるストーリーとなっている。一番好きなキャラ校長先生です。あん大人に僕はなりたい。この作品校長先生だけでなく、生徒会長など周りが生徒全員の味方となってくれるのですごい安心して見れる。やさしい世界。1期のOPシャッターチャンスが好きだったので変わったのが残念。まあ仕方がないですけど。ED写真が増えそうで増えない(今のところ増えたのは1枚だけ)

るろうに剣心明治剣客浪漫譚京都動乱

2期、京都編。

ダンジョンに出会いを求めるのは間違っているだろうかⅤ 豊穣の女神

ベルくんは罪深い!前回の厄災編は見ててしんどかった。それだけにリューさんの愛しさが極まっていたが。今回はシル・フローヴァ/フレイヤとの話かな。以前からベル好意を抱いていたシルがベルデートすることに。ベルとシルの愛の逃避行。まるでローマの休日しかフレイヤ劇場型悪意でなぜ僕の世界を誰も覚えていないのか?状態に。ベルくんかわいそう。原作では前回のリュー中心の話と今回のシル中心の話が第4部「豊穣編」にあたるのかな?OPはGRe4N BOYZ(元GReeeeN)。AIの遺電子とか大雪海のカイナとか、たまにアニメ主題歌担当するね。

凍牌

レアガリダヨ。裏世界麻雀アニメ。高レートの雀荘荒らし回る高校生主人公。裏レート麻雀闘牌録とタイトルにあるとおり、ヤクザとかがいるヤバイ世界にも出入りする。『賭け麻雀犯罪です』というテロップがは入る。PCモニタCRTというのが時代を感じる。東風荘流行った頃か。2013年実写化している。OPオーイシマサヨシEGO-WRAPPINみたいな曲調。

ソードアート・オンライン オルタナティブ ガンゲイル・オンライン

これまでレン&フカ次郎vs ピトフーイ&エムだったが、今回はこの2チームが一緒のチームとして組むことに。が・・・。前回放送から6年か・・・。もういろいろ覚えてなかったりする部分があるが、戦闘を観戦してる人が「あいつ前回レンちゃんに⚪︎⚪︎された/したやつじゃん」とか教えてくれるの親切。毎回アイキャッチの1枚絵がカッコイイ!こんなこと言ったらファンに怒られそうだけど個人的ソードアート・オンラインはGGOの方が好き。

科学×冒険サバイバル

韓国出版社が出しているサバイバルシリーズ子供向け学習漫画原作。以前からWebアニメ劇場アニメ化はされている。登場人物ジオたちのグループと、ダイアたちのグループの2組いる。1話〜3話がジオたちが登場する異常気象サバイバル。4話からダイヤたちの昆虫世界でのサバイバルミクロキッズね。EDtrfのsurvival dAnceをカバーサバイバル繋がりってことですか。1話と4話の内容に誤りがあり、その後訂正がある。

トリリオンゲーム

コミュニケーションスキルに長け大きな野心を抱いたハルと、コンピュータスキルの高いガクが1兆(トリリオンドル稼いでビジネストップクラスを目指すバディもの?。やはり大逆転劇は面白いですな。昨年ドラマ化してる。草!草!草!うめぇ

チ。 ―地球運動について―

15世紀ヨーロッパ舞台地動説研究することは禁じられている国で破れば命を落とすことにもなる。そんな状況下で命をかけ地動説研究する少年お話宗教コワイ。しか探究心と感動はそれをも超え誰にも奪えない。OPサカナクションEDはヨルシカ

さようなら竜生、こんにちは人生

様々な人種が住む村でのスローライフ。でもないか平穏な日々を守るため奮闘する。竜が勇者に倒され人間へ転生し、ドランという名前人生を歩むことになる。ある日、沼の調査に出かけた先で美しいラミアのセリナに出逢う。人間からはラミアは恐ろしいモンスターとされているが、ドランサポートと、セリナの優しさが伝わり村で一緒に生活することとなる。

鴨乃橋ロンの禁断推理

天才頭脳を持つ鴨乃橋ロンと、ピュア刑事の一色都々丸(トト)が謎をとく推理ミステリー。ロンは優秀だが事件の謎を解いた後に犯人を死に追いやる不思議な力がある。それ故、ロンは探偵業ができなくなっていた。トトはロンに代わり謎を説く役になったり、ロンの暴走を防ぐ役にまわるなどして、二人で難事件解決していく。Season1を見てなかったけど面白そうだったのでSeason1からいっきに見た。黒(96)蜜好きで首に96のタトゥーがある鴨乃橋ロン。DVDは本編96分という徹底ぶり。次があるなら次の主題歌96猫に歌ってもらいたい。

らんま1/2

リメイク勝手不安を感じていたが面白いと思う。がっつり上半身真っ裸シーンとかやるのね。時代的に隠すのかと思った。EDの絵はあずきちゃんみたいな感じもあってその時代を思い出し何かもみな懐かしい。

青の祓魔師 雪ノ果篇

このシリーズひとつも見たことないのであまり言えたことじゃないんだけど、面白いっすね。たぶん過去のは一応録画してるのでどこかで見ようと思う。

魔王2099

はたらく魔王様! 2099 〜in サイバーパンク勇者に倒された魔王、復活した時代は2099年。魔王は大きく変貌した世界に驚くのであった。魔王として君臨していた主人公もこの時代では信仰力は薄まり一般人よりも弱い存在となる。そんな中、かつての仲間が行くへ不明になっていること、この世界の闇に触れることになる。有名になって力を取り戻し、余は世界支配するのだ!ちょうどFF7RとFF16をやっていて、エネルギー問題の設定が似てるのでより面白く感じた。

結婚するって、本当ですか

会社独身者対象アラスカ州アンカレッジ支店への転勤を募集する。そこで海外転勤をしたくないもの同士が偽装結婚を企てる。最初は嘘だがお互い意識しあって本当になるってやつなんだと思う。ただ、その過程結婚するということはどういうことなのか。家の問題、愛し合う人同士が幸せになるのに結婚必要なのか、結婚とはどういうものか、いろいろと考えさせられる物語。正直見る前と見た後では印象が変わるアニメだった。2022年ドラマ化もしてる。OPAメロCharaのやさしい気持ちに似てて懐かしい気持ちになる。EDはゴホウビ。最近いね

合コンに行ったら女がいなかった話

3x3合コンにいったら相手男装してる女子だった。タイトルだけ見てBLモノかと思ったけど違った。男装女子大生と男子大学生日常からかい上手のイケメン女子にたじたじ。1話3x3それぞれのカップリングは確定する。2022年ドラマ化もしてる。

 

続きはanond:20241111020502

2024-11-03

コボルディズムとパンツダイアグラム

コボルディズム(cobordism)とパンツダイアグラム関係は、トポロジカルな観点からポロジカル量子場理論(TQFT)や弦理論世界重要役割を果たす。コボルディズムは、異なる次元を持つ多様体の間にどのような接続可能かを調べる手法であり、特にポロジカルな場の理論において境界を介した変形(つまり、どのようにして異なる多様体が連結されるか)を表すために利用される。

パンツダイアグラムは、名前の通り「パンツ」形状をした2次元多様体で、弦理論においては2つの弦が1つに結合したり、1つの弦が2つに分裂したりするプロセス視覚的に表現する。このようなプロセスコボルディズムの一種であり、3つの境界を持つリーマン面として記述できる。特にパンツダイアグラムは、物理的には弦の結合や分裂を表現し、数学的には2次元多様体コボルディズムとして扱うことができる。

具体的には、コボルディズムの考え方に基づき、あるリーマン面が異なる境界条件を持つ複数の弦に分解される場合、それをパンツダイアグラム視覚化することができる。例えば、パンツ状のコボルディズムは、3つの穴(境界)を持ち、それぞれの境界が異なる弦の状態対応する。このようにして、パンツダイアグラムは、弦理論におけるトポロジカルな変換をコボルディズムを通して幾何学的に示す手法の一つと見なされる。

さらに、トポロジカルM理論やTQFTの枠組みでは、コボルディズムやパンツダイアグラム理論構造や不変量を計算するための基本的モジュールとして扱われる。これにより、特定物理プロセス(たとえば、弦の結合・分裂やパス積分構成)が、数学的にはコボルディズムの空間での操作として表現されることになる。

2024-10-27

位相M理論について

1. トポロジカルM理論概要

- 6次元のAモデルとBモデル(トポロカルストリング理論)。

- 4次元自己双対ループ量子重力

- 3次元のチェルン・サイモン重力

2. G₂ホロノミーと特別形式

- dΦ = 0(閉形式形式が外微分ゼロ

- d *Φ = 0(共閉形式、*はホッジ双対を表す)

  • これにより、G₂ホロノミーを持つ計量が得られます

3. 6次元フォーム理論と複素構造

- Ω = ρ + i · ŕ

- ここで、ŕ は ρ から派生する補完的な形式です。

- V_S(σ) = ∫_M √(384^{-1} · σ^{a₁a₂b₁b₂}σ^{a₃a₄b₃b₄}σ^{a₅a₆b₅b₆} · ε_{a₁a₂a₃a₄a₅a₆} · ε_{b₁b₂b₃b₄b₅b₆})

- ここで、ε_{a₁...a₆} は6次元のレヴィ・チヴィタテンソルです。

4. トポロカルストリングとS双対

5. 安定な形式と体積汎関数

- 3-フォーム Φ に基づく体積汎関数

- V₇(Φ) = ∫_X √(det(B))

- ここで、計量 g は次のように3-フォーム Φ から導かれます

- g_{ij} = B_{ij} · det(B)^{-1/9}

- B_{jk} = - (1/144) Φ^{ji₁i₂} Φ^{ki₃i₄} Φ^{i₅i₆i₇} ε_{i₁...i₇}

- 4-フォーム G に基づく体積汎関数

- V₇(G) = ∫_X G ∧ *G

6. ブラックホール物理学とアトラクメカニズム

2024-10-26

アニメダンダダンの最新話、すごく良かった。

原作荒唐無稽さが、アニメしかできない演出タイム感で増幅されている。

牛尾憲輔さんのテクノBGMも、何だか楽しんで作っているような感じで心地よい。

枚数が少なくてもダイナミックに見せる、背景を限界まで簡略化しても背動にする、デフォルメの果てに幾何学的な形質に辿り着き、スピード感だけで維持される画面は、やっぱり昔の湯浅さんアニメみたいだ。

たまーに現れるこういう楽しみのためにアニメを見ている気がする。

2024-09-27

バナッハ=タルスキーパラドックスブラックホール情報量

1. 数学的前提

以下の数学構造定義する:

2. バナッハ=タルスキー分割の形式

H上にバナッハ=タルスキー分割を以下のように定義する:

定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、

1. H = ∪iεI Ai

2. Ai ∩ Aj = ∅ for i ≠ j

3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H

ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅

3. 量子情報理論の導入

事象の地平面上の量子状態密度作用素 ρ ε B(H) で表現する。

von Neumannエントロピーを以下のように定義する:

S(ρ) = -Tr(ρ log ρ)

4. ホログラフィック原理数学表現

AdS/CFT対応に基づき、バルク空間重力理論境界CFTの間の同型を考える:

Zgravity[φ0] = ZCFT[J]

ここで、φ0はバルクの場、Jは境界ソースである

5. 情報量モデル

事象の地平面上の情報量を以下の汎関数表現する:

I[H] = ∫H √h d³x I(x)

ここで、hはHの誘導計量、I(x)は局所的な情報密度である

6. バナッハ=タルスキー分割と情報量関係

命題:バナッハ=タルスキー分割の下で、

I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]

が成り立つ。

7. 量子効果考慮

プランクスケールでの量子効果考慮するため、非可換幾何学を導入する。

H上の座標演算子 X̂i に対して:

[X̂i, X̂j] = iθij

ここで、θijは非可換パラメータである

8. 情報保存の定理

定理:量子効果考慮した場合、以下が成り立つ:

limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε

ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である

結論

このモデルは、バナッハ=タルスキーパラドックスブラックホール情報量問題統合している。

量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量記述することが可能となる。

このアプローチは、量子重力理論情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックス解決に向けた理論的基盤を提供する。

2024-09-26

超弦理論の諸定理

∞-圏論的基礎

(∞,∞)-圏と高次対称性

定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。

定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:

M ≃ Ω∞-∞TFT(Bord∞)

ここで、TFT位相的場理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。

命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論臨界次元対応する。

導来高次スタック

定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。

定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。

高次代数構造量子化

∞-オペラッドと弦場理論

定義 3: 弦場理論代数構造を、∞-オペラッド O の代数として定式化する。

定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化存在し、Maurer-Cartan方程式

MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}

の解空間として特徴付けられる。

因子化∞-代数と量子場理論

定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。

定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。

導来∞-圏と高次双対性

導来代数幾何学ミラー対称性

定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:

ShvCat(X) ≃ Fuk∞(Y)

ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である

スペクトラル代数幾何学位相的弦理論

定義 5: M理論コンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。

定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。

高次幾何学量子化

∞-微分形式一般化されたコホモロジー

定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。

定理 7 (Hopkins-Singer): M理論量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:

[G/2π] ∈ TMF(M)

ここで、TMF は位相的モジュラー形式スペクトラムである

非可換∞-幾何学と量子重力

定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である

定理 8 (Connes-Marcolli-Ševera): 量子重力有効作用は、適切に定義されたスペクトラル∞-作用臨界点として特徴付けられる。

∞-モチーフ理論と弦理論

定義 8: 弦理論真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。

予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。

高次圏論的量子場理論

定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:

Z: Bord∞ → (∞,∞)-Cat

定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間量子化された時空の∞-圏を与える。

2024-09-24

数学政治なのか

TL/DR

YesとNoである論文を書く人や研究する内容は文化産物であり、アメリカでは長い間、文化人種差別歴史がある。しかし、定理自体人種とは無関係

長い答え:

数学現実を正確で抽象的かつ形式的モデル化する。これは一見すると特定地域民族限定されず、多くの場所独立して発展し、文化間の協力があったようにみえる。この考えは「白人性」よりも数千年前に遡る。ピタゴラス文化的ショーヴィニストであったが、現代意味人種差別主義者ではなかった。彼の肌の色は不明であり、彼が白人ギリシャ人であるとは言えない。

幾何学文化的な構築物であり、逃れることはできない。πは円周の直径に対する比率であるが、幾何学的な円は文化が発展させた概念であるピタゴラス派は代数よりも幾何学を発展させる文化偏見を持っていた。

私はピタゴラス派の文脈無理数を学んだが、インドでは異なる代数文脈で発展した。数学教育は文化である

現代数学の多くは人種差別的な権力構造産物であり、人種的な文脈で教えられている。数学人種差別を反映している。

アメリカでは、人種差別高速道路建設場所利益に影響を与えたが、道路自体人種差別的ではない。黒人居住者に家を売らせて白人利益のために道路建設することは人種差別である都市の形状は人種差別を反映している。

プリンストン大学奴隷によって建設され、奴隷所有者によって資金提供された。歴史的に黒人学生女性を受け入れず、現代人種政治学生生活に影響を与えている。これがプリンストン数学人種差別的にするわけではないが、ブラインドピアレビューがない場合、その論文が発表されたかどうかを問うことができるという点で、差別的である

数学論文抽象的な証明大学建物人種差別ではないが、黒人大学建設させて白人の富を築くことは人種差別である数学研究の形状はその人種差別を反映している。

したがって、答えはYesとNoの両方である数学定理抽象的な考えは人種差別とは関係がないが、数学的試みは人種差別文化文脈で行われている。つまり、誰が認められるかとかそういった話になると一気に政治的になる。

2024-09-23

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-18

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-17

超弦理論M理論に基づく最初宇宙モデル

1. 位相的弦理論圏論的定式化

最初宇宙の基本構造記述するために、位相的弦理論圏論的定式化を用いる。

定義: 位相的A模型圏論記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である

対象: (L, E, ∇)

射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))

この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。

2. 導来代数幾何学と高次圏論

最初宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。

定義: 導来スタック 𝔛 を以下のように定義する:

𝔛: (cdga⁰)ᵒᵖ → sSet

ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である

𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。

3. モチーフ理論宇宙位相構造

宇宙の大規模構造位相性質記述するために、モチーフ理論適用する。

定義: スキーム X に対して、モチーフコホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。

これは、Voevodsky の三角DM(k, ℚ) 内での Hom として表現される:

Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])

ここで M(X) は X のモチーフである

4. 高次ゲージ理論と ∞-Lie 代数

最初宇宙の高次ゲージ構造記述するために、∞-Lie 代数を用いる。

定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコ恒等式を満たすものである

L∞ 代数の Maurer-Cartan 方程式

Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0

この方程式の解は、高次ゲージ理論古典的配位を表す。

5. 圏値場の理論と量子重力

最初宇宙の量子重力効果記述するために、圏値場の理論を用いる。

定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:

Z: Cob(n) → 𝒞

特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。

6. 量子エントロピーと von Neumann 代数

最初宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。

定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:

S(ω || φ) = {

tr(ρω (log ρω - log ρφ)) if ω ≪ φ

+∞ otherwise

}

ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である

7. 非可換幾何学と量子時空

最初宇宙の量子時空構造記述するために、非可換幾何学を用いる。

定義: スペクトル三重項 (A, H, D)

非可換多様体上の積分は以下のように定義される:

∫_X f ds = Tr_ω(f|D|⁻ᵈ)

ここで Tr_ω は Dixmier トレースである

2024-09-16

非行少年だけじゃなくてそこいらで普通に働いてる人の中にもケーキを切れない人っているかもよ。

はんじょうってゲーマーケーキを切る問題に挑戦したらできなくてリスナーに衝撃が走ってたけど、そのゲーマーは口が回るしオレより地頭は良さそうな感じ。

知能が劣ってるから切れないんじゃなくて、なにか幾何学的な感覚が欠けてるような障害でもあるのかもしれない。

anond:20240913131027

「まぁ、ピタゴラスの定理なんて、あれはもう初歩の話よね。確かに、a² + b² = c² は中学生レベルでも理解できるけれど、そこに潜む深い代数的構造や、ユークリッド幾何学との関連性を本当に理解しているのかしら?あの定理の背後には、単なる平面上の直角三角形の話じゃなくて、リーマン幾何学複素数平面を通じたさらに高度な次元世界が見えてくるのよ。それに、ピタゴラスの定理特別場合とする円錐曲線や、楕円関数論まで考え始めると、幾何学の美しさっていうものもっと深く見えてくるわけ。」

 

「それと、黄金比ね。もちろん、あのφ(ファイ)がどれだけ重要か、理解してる?単に無理数というだけじゃなく、数論的にも代数的にも特異な数なのよ。フィボナッチ数列との関係も美しいけど、そもそもあの比が自然界で頻繁に現れるのは、単なる偶然じゃないわ。代数無理数としての特性と、対数螺旋やアファイン変換を通じた変換不変性が絡んでいるのよね。そういった数学的背景を理解せずに、ただ黄金比が「美しい」ってだけで済ませるのはちょっと浅はかだと思うわ。」

 

「あと、パルテノン神殿の話だけど、そもそも古代建築家たちが黄金比だけでなく、より複雑なフラクタル幾何学対称群に基づいた設計をしていたってことは、あまり知られてないのよね。建築対称性は、単なる視覚的な美しさじゃなくて、群論代数トポロジーに深く結びついているわ。あなたが好きな絵画も、ただの黄金比じゃなく、もっと深い数学的な構造に従っているのよ。わかるかしら?」

2024-09-15

街コン幾何学の話するのでふと思ったんだけど

平面だと正三角形の一つの角度は60度だけど、球面上だと90度になるよ、みたいなのあるじゃん

球面上だと60度より大きい角度になるのはなんとなくわかるんだけど、逆に60度よりも小さい角度になるのってどんな面?そういうのってないのかな?

街コンでは幾何学の話をしている(モテ男バージョン)

街コンに行くと、いつも何を話すべきか迷う。

人が集まる場だし、みんな軽い話題で盛り上がってるんだろうけど、俺はいつも違う。

俺には誇りがあるからもっと深い話をしたいんだ。

今回も例に漏れず、気付けば幾何学の話をしていた。

あなたのお顔は本当にお美しいですね」と最初に口火を切る。

女性たちは不思議そうな顔をしていたけど、そんなのはお構いなしだ。

だって、これは美の根本に関わる話なんだから。誰でも分かるだろう。いや、分からなきゃおかしい。

「たとえば、ピタゴラスの定理。a² + b² = c² なんて、中学生でも知ってるでしょ?でも、あの定理が持つ幾何学的な美しさ、理解してます?ただの数式じゃないんですよ、これは宇宙の秩序そのもの象徴してるんです。直角三角形の辺の比が、どうしてあんなに完璧に収まるのか、その背後にあるシンメトリーバランス、これはただの計算じゃ説明できないんです。幾何学は、自然界に隠された美を可視化する手段なんです。あなたの顔のすべてのパーツはそれを示していますもしかして気づきになっていませんか?」

女性たちは相変わらずポカンとしていたが、そんなことは全く気にしない。

俺の言葉は少しも止まらない。

「それに、円と黄金比ですよ。黄金比の美しさって聞いたことありますよね? φ(ファイ)という無理数、1:1.618...っていうあの比率は、自然界でも至るところに現れるんです。貝殻の螺旋や、ヒマワリの種の配置、果てはギリシャパルテノン神殿まで。これらすべてが、幾何学的な美しさの証明なんですよ。建築家芸術家たちは、何千年も前からこの黄金比魅せられてきたんです。それが美の基準なんです。たとえば、あなたが好きな絵画も、おそらく黄金比に従って構図が決まっているはずですよ。あなたのお顔もまさにそのとおりで、僕はあなた数学的に美しいことを証明できます。」

ここまで来ると、女性の一人が「えぇ〜?本当ですかぁ〜?」と、曖昧な笑みを浮かべているのが目に入る。

だが、その目に理解の色はない。いや、むしろ遠ざかっているかもしれない。

それでも俺は一歩も引かない。だって幾何学は俺の人生のものなのだから

俺な自分人生否定しない。

「次はもっと複雑な話をしましょうか?ユークリッドの『原論』はご存知ですか?あれは古代ギリシャで書かれた数学書で、数千年の間、数学の基礎として使われてきたんです。『原論』の最初定義は、点は幅を持たないもの、線は幅を持たず長さを持つもの。これをもとに、無限に広がる空間の中で幾何学的な図形を描くんです。そして、その空間の中に、あらゆる美が存在するんです。アポロニウスの円錐曲線における楕円の美しさなんか、誰でも感動するはずです。見てください!ほらあなたの腕はアポロニウスと言えるし、あなたの全身は原論誕生にすら資するべき存在と言えるでしょう」

俺の幾何学講義は終わらない。

彼女たちは完全に引いていたが、そんなことはもう気にしない。

これが俺の誇りであり、俺の魅力なのだから

「俺にとって幾何学は、ただの学問じゃないんです。これは美を追求する哲学であり、生き方なんです。人々がモナ・リザアフロディーテ像に美を見出すように、俺はピタゴラスユークリッドにその美を見出しているんです」

幾何学の美しさを語り終えた頃、ようやくふと我に返り、周囲の反応を確認してみた。

すると、女性陣の顔には一種沈黙が漂っていた。

皆、頬に赤みを浮かべているが、目は明らかに遠く、何か別の世界意識飛ばしいるかのようだった。

ひとりは下半身をチラッと確認し、もうひとりは、首元の鎖骨の付け根あたりをいじっている。

こちらを見ている女性もいたが、彼女の表情はどう見ても「本当にこの人何を言っているの…」という困惑のものだった。

「ええ、そうですね……幾何学って、すごいですね……」と、一人がようやく口を開いたが、その声には熱意も、理解も、ましてや感銘など微塵も感じられない。

表面的に場を繋ごうとするその言葉は、俺が夢中で語っていた美の真髄が、まるで真空の中に吸い込まれたかのように、何も響いていないのをはっきりと感じさせた。

もう一人が、さら微妙な笑みを浮かべ、「あ、そうなんですか……それで、その定理って、なんでしたっけ……?」と、曖昧質問してくる。

しかし、それは好奇心ではなく、ただ適当に話を引き延ばすための、無理やりな興味に過ぎないことは明白だった。

俺はその瞬間、すべてを理解した。

ああ、やっぱりこうなるのか、と。彼女たちの心を動かすことは簡単でも、幾何学的美しさを彼女たちに理解してもらうことはできないんだと。

俺の語るピタゴラスの定理も、黄金比神秘も、彼女たちにとってはただの退屈な講義に過ぎない。

彼女たちは、たぶん俺の年収や、俺の背景、俺の地位の話を楽しみにしていたのだろう。それが街コンで求められる「会話」なのだ

「まあ、こういう話、ちょっと難しいですかね……」と自分から話を切り上げるが、内心、虚しさと諦念がこみ上げてくる。

俺は分かっているんだ。結局、幾何学の美を理解できる人間は、ここにはいない。

俺の知識哲学は、街コンの場にはそぐわないのだ。

諦めが胸に染み渡り、俺はふと目の前のグラスを手に取る。

冷たい水が喉を通り、ほんの一瞬だけ現実感を取り戻すが、同時に心の中でつぶやいた。

俺は幾何学を愛している。それだけで十分だ。理解されなくてもいい。これが俺の誇りなのだから

女性たちがどれだけ俺に興味を持ったかなんて、もうどうでもよかった。

最終的に、女性たちがどれだけ幾何学に興味を持ったかは知らない。

だが、俺の中では確信がある。

幾何学こそが、真の美であり、それを理解しない者は本当の美を知らないのだと。

彼女たちには理解できない美が、俺の中にある。それだけで、俺は満たされているんだ。

俺は腰を振りながらそう思った。

街コン幾何学の話を笑えない

俺もゲーム開発のプログラミングの話とか音楽理論とか話始めると止まらなくなるタイプから周囲に怒られたことある…😟

anond:20240913131027

これ「幾何学のもの」に躓いているわけではなく、そもそも早口滑舌問題があって聞き取れてない、専門用語が多くて理解できてないだけだろ。

お前の伝え方に問題がある。

お前はいきなり専門外の昆虫の生態について専門用語シマオタク特有早口で語られてついていけるのか?

内容じゃない、伝え方という外見が問題なんだ。1回幾何学について自分が語っているところを動画に撮って友人に見て貰え。

2024-09-14

anond:20240913131027

幾何学みたいなわかりやすい題材でも美しさを伝えられないとか……

選択公理くらいわからせられるようになってから出直して来い。

2024-09-13

街コンでは幾何学の話をしている

街コンに行くと、いつも何を話すべきか迷う。

人が集まる場だし、みんな軽い話題で盛り上がってるんだろうけど、俺はいつも違う。

俺には誇りがあるからもっと深い話をしたいんだ。

今回も例に漏れず、気付けば幾何学の話をしていた。

幾何学って、本当に美しいですよね」と、最初に口火を切る。

女性たちは不思議そうな顔をしていたけど、そんなのはお構いなしだ。

だって、これは美の根本に関わる話なんだから。誰でも分かるだろう。いや、分からなきゃおかしい。

「たとえば、ピタゴラスの定理。a² + b² = c² なんて、中学生でも知ってるでしょ?でも、あの定理が持つ幾何学的な美しさ、理解してます?ただの数式じゃないんですよ、これは宇宙の秩序そのもの象徴してるんです。直角三角形の辺の比が、どうしてあんなに完璧に収まるのか、その背後にあるシンメトリーバランス、これはただの計算じゃ説明できないんです。幾何学は、自然界に隠された美を可視化する手段なんです」

女性たちは相変わらずポカンとしていたが、そんなことは全く気にしない。

俺の言葉は少しも止まらない。

「それに、円と黄金比ですよ。黄金比の美しさって聞いたことありますよね? φ(ファイ)という無理数、1:1.618...っていうあの比率は、自然界でも至るところに現れるんです。貝殻の螺旋や、ヒマワリの種の配置、果てはギリシャパルテノン神殿まで。これらすべてが、幾何学的な美しさの証明なんですよ。建築家芸術家たちは、何千年も前からこの黄金比魅せられてきたんです。それが美の基準なんです。たとえば、あなたが好きな絵画も、おそらく黄金比に従って構図が決まっているはずですよ」

ここまで来ると、女性の一人が「へぇ〜、すごいですね…」と、曖昧な笑みを浮かべているのが目に入る。

だが、その目に理解の色はない。いや、むしろ遠ざかっているかもしれない。

それでも俺は一歩も引かない。だって幾何学は俺の人生のものなのだから

俺な自分人生否定しない。

「次はもっと複雑な話をしましょうか?ユークリッドの『原論』はご存知ですか?あれは古代ギリシャで書かれた数学書で、数千年の間、数学の基礎として使われてきたんです。『原論』の最初定義は、点は幅を持たないもの、線は幅を持たず長さを持つもの。これをもとに、無限に広がる空間の中で幾何学的な図形を描くんです。そして、その空間の中に、あらゆる美が存在するんです。アポロニウスの円錐曲線における楕円の美しさなんか、誰でも感動するはずです」

俺の幾何学講義は終わらない。

彼女たちは完全に引いていたが、そんなことはもう気にしない。

これが俺の誇りであり、俺の魅力なのだから

「俺にとって幾何学は、ただの学問じゃないんです。これは美を追求する哲学であり、生き方なんです。人々がモナ・リザアフロディーテ像に美を見出すように、俺はピタゴラスユークリッドにその美を見出しているんです」

幾何学の美しさを語り終えた頃、ようやくふと我に返り、周囲の反応を確認してみた。

すると、女性陣の顔には一種沈黙が漂っていた。

皆、頬に作り笑いを浮かべているが、目は明らかに遠く、何か別の世界意識飛ばしいるかのようだった。

ひとりはスマホをチラッと確認し、もうひとりは、手元のグラスに注がれた水をいじっている。

こちらを見ている女性もいたが、彼女の表情はどう見ても「本当にこの人何を言っているの?」という困惑のものだった。

「ええ、そうですね……幾何学って、すごいですね……」と、一人がようやく口を開いたが、その声には熱意も、理解も、ましてや感銘など微塵も感じられない。

表面的に場を繋ごうとするその言葉は、俺が夢中で語っていた美の真髄が、まるで真空の中に吸い込まれたかのように、何も響いていないのをはっきりと感じさせた。

もう一人が、さら微妙な笑みを浮かべ、「あ、そうなんですか……それで、その定理って、なんでしたっけ……?」と、曖昧質問してくる。

しかし、それは好奇心ではなく、ただ適当に話を引き延ばすための、無理やりな興味に過ぎないことは明白だった。

俺はその瞬間、すべてを理解した。

ああ、やっぱりこうなるのか、と。幾何学的美しさを解くことで、彼女たちの心を動かすことはできないんだと。

俺の語るピタゴラスの定理も、黄金比神秘も、彼女たちにとってはただの退屈な講義に過ぎない。

彼女たちは、たぶん映画の話や、食べ物旅行の話を楽しみにしていたのだろう。それが街コンで求められる「会話」なのだ

「まあ、こういう話、ちょっと難しいですかね……」と自分から話を切り上げるが、内心、虚しさと諦念がこみ上げてくる。

俺は分かっているんだ。結局、幾何学の美を理解できる人間は、ここにはいない。

俺の知識哲学は、街コンの場にはそぐわないのだ。

諦めが胸に染み渡り、俺はふと目の前のグラスを手に取る。

冷たい水が喉を通り、ほんの一瞬だけ現実感を取り戻すが、同時に心の中でつぶやいた。

俺は幾何学を愛している。それだけで十分だ。理解されなくてもいい。これが俺の誇りなのだから

女性たちがどれだけ俺に興味を持ったかなんて、もうどうでもよかった。

最終的に、女性たちがどれだけ幾何学に興味を持ったかは知らない。

だが、俺の中では確信がある。

幾何学こそが、真の美であり、それを理解しない者は本当の美を知らないのだと。

彼女たちには理解できない美が、俺の中にある。それだけで、俺は満たされているんだ。

圏論アプローチによるM理論ラングランズ・プログラム

1. 基礎設定

M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。

2. 導来圏の構築

D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。

3. 幾何ラングランズ対応一般

以下の圏同値を構築する:

Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))

ここで、D_M は M 上の捻れ D-加群の圏である

4. 量子化位相的場理論

M 上の Chern-Simons 理論量子化を考える。その分配関数 Z(M,k) を以下のように定義する:

Z(M,k) = ∫ DA exp(ikCS(A))

ここで、CS(A) は Chern-Simons 作用である

5. モジュラー関手の構築

F: D^b(Bun_G(M)) → Mod(MF_q)

を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である

6. L関数との関連付け

G の既約表現 ρ に対し、以下の等式を予想する:

L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)

ここで、V_ρ は ρ に付随する M 上のローカルである

7. 幾何ラングランズ対応M理論の融合

以下の図式が可換であることを示す:

D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M)))
   |                     |
   |                     |
   F                     F
   |                     |
   V                     V
Mod(MF_q) -----≃----> Mod(MF_q)

8. 高次元化とモチーフ理論

M の次元一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記構成を高次元化する。

結論

以上の構成により、M理論幾何学的構造ラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論モチーフ理論統一的に扱う枠組みを提供するものである

今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性検証重要である

2024-09-12

名文についての書物を読んだ

その書中において述べられるところの名文とは、単に美的であるのみならず、情緒に満ち、描写が巧みであり、さらにその文章臨場感を伴うことにより読者の心に深く響くものである。美しさとは、単に言葉の装飾ではなく、内在する構造の確かさに拠るものであろう。

澁澤龍彦幻想小説において「幾何学的に書くべきである」と言ったと記憶している。幾何学的とは、感覚的に直感する美麗さと秩序を持ち、その形態は正確かつ普遍的である正三角形が持つ完全性は、内角の和が常に180度であるという確固たる定理に支えられている。これは、いかなる変形にもかかわらず揺るがない事実である。その普遍性こそが美であり、幾何学的美しさの本質を成す。

このように、文章にも同様の美的秩序が存在するのではないかと考える。たとえば、三角形定理文章適用するならば、各要素が一貫して調和する様は正三角形のごとくである三角形の三つの頂点に当たる要素は、物語構造感情の動き、そして読者への影響であろう。この三者が均衡を保つとき文章は完全な形となり、名文と称されるに値する。

恋愛においても、幾何学的な要素が見て取れる。愛する者、愛される者、そしてその間に存在する感情。この三つの要素が整ったとき恋愛は完全な形を成す。しかし、その一部が欠けたとき三角形は不完全となる。非モテであるという状況は、その三つの内角が揃わず、歪んだ三角形のような状態である。だが、その歪みの中にも、何らかの秩序と美しさが宿っていることを認めざるを得ない。

幾何学的な美しさは、完全性の中にの存在するのではない。むしろ、不完全な中にも美しさは潜んでいる。それは、欠けた部分があるからこそ生まれる緊張感であり、そこに宿る秩序の欠如が逆説的に美を生むのであるモテないという状況も、ある種の幾何学的な不完全さであり、その不完全さが一つの形を成し得る。

私は三角形になりたいと願う。完璧であり、無駄がなく、全ての要素が調和している。しかし、不完全なままであることもまた一つの形であり、その不完全さの中にこそ真の美が宿っているのではないか、とも思うのである

幾何学文章の美しさとは、表面上の整合性だけではなく、そこに潜む感情臨場感をも含むものである。その幾何学的な秩序と情感の融合こそ、真に名文たる文章本質であろう。

M理論幾何学

定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。

定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。

定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。

場の理論構造

定義 4: M理論の場の配位空間を以下で定義する:

C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}

ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。

 

定理 1 (作用汎関数): M理論作用 S: C → ℝ は以下で与えられる:

S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dCdC - ψ̄D̸ψ) vol_g

ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である

 

定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:

1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]

2. C-場の方程式: d*dC + 1/2 dCdC = 0

3. Dirac 方程式: D̸ψ = 0

ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである

幾何学構造

定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。

定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:

1. dφ = 0

2. d*φ = 0

3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。

 

定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。

定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である

位相構造

定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。

 

定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である

I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0

ここで p₁(M), p₂(M) は M の Pontryagin 類である

 

定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:

ind(D̸) = ∫_M Â(M) ch(S)

ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である

双対性

定義 9: 位相CW 複体の圏を Topアーベル群の圏を Ab とする。

 

定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:

K(X × S¹) ≅ K(X × S¹)

ここで X は CW 複体、右辺の S¹ は双対円を表す。

 

定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:

H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)

ここで H^k は k 次コホモロジー群、H_k は k 次ホモロジー群を表す。

ログイン ユーザー登録
ようこそ ゲスト さん