「数学書」を含む日記 RSS

はてなキーワード: 数学書とは

2021-03-26

anond:20210326001229

今の日本は知力と財力を誇れても、決断力と結束力は30年前の半分にすら及ばない。

昔の数学書を今の子は読めないというのはそのため。

決断力や結束力を上げて国威発揚を行う立場だった宗教機能していない。

宗教機能しないし、子供勉強しないし、寄付大学に入れちゃうというのなら、もうだめでしょ。

どんなことがあっても国立大学は推薦入試の導入を禁止するべきだった。もう遅い。


日本はとにかく早い段階でデビュー強要する。

イスラム圏にもあるが、仏教圏も根強くある。

どっちも貧しいからね。

2021-03-17

anond:20210317145845

ネット上の日本語文章は確実に変質した。

Hagex死ぬから、変わりつつはあった。

みんな大学を目指すので、即レスに耐えられる言論が最優先で、他は何もなくなってしまっている。

これだと、昭和期の数学書を読むのはつらいだろうね。

2021-02-21

なんではてなーって医者やら理系嫌いなのでしょうか。これにはれっきとした理由があります

https://anond.hatelabo.jp/20210219124004

1.親が理系に対する理解がない。

理系に対する理解のある親が出現するようになったのはここ2-3年で、それまでは全くいませんでした。昔は大学行くなという親はまず「線形代数」のせの字も知りませんし、「ジョルダン標準形」のジの字も知りません。日本人の9割が、内田先生の集合と位相教科書を読んでいないはずです。なので、数学が好きだといっても「あっそ」と返す環境がたくさんあり、そういう環境で育つと誰だってへこみます

2.本が高い。

東京大学工学教程の基礎系数学17冊をそろえるだけでも結構な金がかかってしまます数学書はそろえようとするとお金がかかります。私は、必死地方大学生が絶版教科書を丸々一冊コピーしていたのを見ているので抵抗がないのですが、こういうしんどさはなかなか分かってくれません。まず田舎地方だとダメですね。本一冊を手に入れるために、誰も努力したことがないのですから

3.偏見が強すぎる。

おそらく、日本アメリカ合衆国と同じレヴェルに達するにはあと75年かかりますアメリカ合衆国では理系への偏見は何もないのですが、日本は強い偏見があります氷河期世代だと、世代の93%が文系ですので、文系意見が通ってしまうこともよくないですね。

4.各種数学コンテストの成績に甘い。

これはG7では信じられないことですが、日本では選手がひどい成績をとってかえってきても、誰一人怒りません。これでは成績が下がる一方でしょう。富裕層ミスをしても、富裕層は甘いので、つい見逃すのです。こういう国家では数学コンテスト総合優勝は難しいでしょう。

2021-02-08

そらそやろ!

https://anond.hatelabo.jp/20210208151630

もうね、1990年代地方田舎だと、理系存在すら認識されてないと思う。

大学実験する人間なんて町を歩いてないんじゃないか?あの時代は。

地方田舎理系存在が熟知されてきたのは2020年代に入ってから

それもスマートフォンソシャゲやって、プログラミングって単語が出てきてようやく。

田舎東京の30年遅れだからね。

言いすぎだと思うけど、数学書の売り上げが物語ってる。

2021-01-30

anond:20210130065409

むかし、東大は8科目だった。

それが7科目になった。

それが6科目になった。

それが5科目になった。

もう減らせないといっている。

私大医学部も4科目から、もう減らせないといっている。

5科目でハード理系に出すのは名大京大東大だけ。

そのうえ習う内容は、40年前よりは思いっきり少ない。

これで公平といえるのだろうか。

大学学部数学だってジョルダン標準形カットになった大学があると聞いている。

大学院の採点基準は年ごとに変わると聞いている。教員自分HPで言ってるんだから間違いないだろう。

適当努力をしているという証明しろというのなら、今してみようか。

もう、今の学生は昔の昭和期の数学書が読めないらしい。

レオパルディがいて、ヘルダーリンがいて、サンギネティがいて、と文学史をたどれる学生は、半分どころか1/5くらいかな。

昔のヴァイオリン学生はErnstは余裕で弾けたが、1990年代から怪しくなってしまい、2020年代では全く手につかない。

これでもレヴェルは下がっていないのだろうか。

2021-01-23

anond:20210121205759

>>理系大嫌い>>

数学で躓くからだろうなあ。

そもそも地方田舎だと、数学書ってのがほとんど売っていない。

京都名古屋まで行ってようやく読める。

日本から捨てられた街ってのは、その中に地方都市もしっかり含まれていて、理工系の本が置いていないところが多い。

から理系ヘイトが集まる。

2021-01-17

anond:20200721013244

この本は数学書ではない。あまりにも内容が無さすぎる。そして、文芸作品としても大して完成度は高くない。

バカ発見器みたいなもの数学コミュニティ出版コミュニティ内の社交辞令ではなく、この本を「面白かった」「よく分かった」なんて言ってるのは、「自分は専門書を読んで利口ぶりたいがその実考える力の無いバカです」と告白しているようなもの

2020-12-12

anond:20201212205036

ほれ、昔の人が読めた数学書を今の学生が読めないってのあるでしょ。

これね。

昔の人が読めた楽譜を今の学生が読めないってのもあるんだよ。

1970年代流行った畳一畳分のフルスコアとかね。

それならアジア13位といわれても納得なんだわ。

もう畳一畳のフルスコア作曲する奴なんてJorge E. LopezとRobin Hoffmannくらいしかいない。

2020-12-05

リア充休日を教えてあげようずwwwwwwwwwwwwwwwwwwwww

スペック:30代後半独身企業研究

06:00:起床

06:30:散歩がてら近所のコンビニにいく。朝ごはんスイーツ()を買う

07:00:熱々のコーヒーを淹れる。もちろんブラックスイーツを食らう。

07:30:数学書論文を読み始める。勉強する。

12:00:休憩。買い物に行く。近所に大型書店があるので立ち読みしにいく。帰りにお昼ごはんを買って帰る

14:00:帰宅。買ってきた飯を食らう。

14:30:はて部みたりつべみたりTwitterみたりだらだら過ごす

17:00:だらだらしながら研究が気になってくる。論文読み再開。

19:00:論文読み休憩。よるごはん食べてダラダラする。

21:00:アベプラ観始める。イケアヤが好きなのでイケアヤが出てなかったら観るのやめる。

22:30:アベプラ飽きるので論文読み再開。

24:00:就寝

10年以上だいたいこんなん。気づいたら手遅れでした。死にたい

2020-11-02

なぜ日本では天才が生まれないのか

不思議でならない。

たとえば、存命最強の数学者の一人に確実に名前が挙がるだろうピエール・ドリーニュは、ベルギーかい公用語すら統一されとらんド後進国出身だが、18歳で既に大学数学マスターし、26歳でフランスIHESの教授に就いた大天才だ。

こういう少なくとも日本よりは教育水準の低いだろう国で、数学みたいな学問自主的勉強したがって、しかも才能を開花させる人材が現れるのだから日本にはもっといてもよさそうなものだ。

アメリカ大学飛び級入学するような奴は勿論、物心ついた頃には自分の専門分野が大好きになってて、自主的大学レベルのことまで勉強している。

一方、日本に目を向けると、そういう人はほとんどいない。たとえば、東大の河東泰之先生によれば、麻布みたいな超有名進学校でも、中学生大学専門レベル数学書を読んでると変人扱いされるらしい。

この違いはどこから来るのか?

2020-10-06

anond:20201002023509

大学院数学書課金をしつづける2X歳。

誰でも知っているあの有名なNから始まる情報通信グループ新卒入社後1年目で社会人博士課程に進学して、今で3年目。

業務分析研究Pythonを使って開発経験はなし。ポートフォリオがうんたらかんたらでブラックショールズがうんたらかんたらで定理を作って博士を取るらしい。

↑というパターンだと刺さる人がTwitterだとすごく多そう

2020-07-21

宇宙宇宙をつなぐ数学 - IUT理論の衝撃」の感想

Amazonレビューなどに書くと過去レビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます

初めに断っておきますが、本稿は別に加藤文元先生人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文査読体制問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想しかありません。

----

加藤文元先生の「宇宙宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、

ほとんど内容がない」

この一言に尽きます数学書としても、一般書としてもです。

本書の内容と構成

本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学理論である、IUT理論宇宙タイミューラー理論)の一般向けの解説書です。

1~3章では、数学研究活動一般説明や、著者と望月教授交流の話をし、それを踏まえて、IUT理論画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています

4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています技術的な詳細には立ち入らず、アイデア象徴する用語フレーズを多用し、それに対する概念的な説明や喩えを与えています

8章がIUT理論解説です。

まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論本質的関係ない」ということです。これについては後述します。

各章の内容

1~3章は、論文受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。

IUT理論が多くの数学者に受け入れられないのは、従来の数学常識を覆す理論から

望月教授が公開された研究集会などを開かないのは、多数の人に概要だけを話しても理解できないから。

などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学コミュニティの中でIUT理論懐疑的人達説明すればいい話であって、一般人に長々と説明するような内容ではないと思いますもっとも、著者が一般大衆も含めほとんどの人がIUT理論懐疑的である認識して本書を書いたのなら話は別ですが。

4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的説明されていません。

正則構造とは、正方形の2辺のように独立に変形できないもの

対称性とは群のことで、回転や鏡映などの操作抽象化したもの

のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。

8章はIUT理論解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、

複数数学舞台対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。

今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要がありますしかし、これ以上は技術的になるので説明できません。

のような調子で話が進みますいくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います

本書の問題

本書の最大の問題点は、「本書の大部分がIUT理論本質的関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。

たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば

素数pに対して、√pは三角関数特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))

4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)

のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論典型的重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論一般論を説明し尽くしているわけではありません。また、類体論一般的な定理証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的現象」は説明できるわけです。

もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。

f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)

このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から

1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)

両辺を積分し、形式的にx = 1を代入すると

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

π/4 = 1 -1/3 + 1/5 - 1/7 + ...

のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば

dy/dx - Ay = B (A, B ∈ ℝ、A≠0)

のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、

Σ((n+1)a_{n+1} - Aa_n) = B

  • a_1 - Aa_0 = B
  • (n+1)a_{n+1} - Aa_n = 0 (n ≧ 1)

よって、

  • a_{n+1} = Aa_n/(n+1) = A^n (B + A a_0)/(n+1)! (n ≧ 0)

a_0 = -B/A + C (Cは任意の定数)とおけば、

  • a_n = C A^n/n! (n ≧ 1)

「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります

上の計算正当化する過程で最も困難な箇所は、このような級数収束するかどうか、または項別に微分積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になりますしかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的現象」を説明することはできるわけです。

一般向けの数学の本に期待されることは、この「典型的現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語注釈しかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的関係のない解説しかないようなものです。

もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。

繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるもの数学的に正しい命題意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうもの区別が付きません。

本書の続編があるなら望むこと

ここまでネガティブなことを書いておいて、何食わぬ顔でTwitter加藤先生ツイートを拝見したり、東工大京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます

まず、私は加藤先生ファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます

まず、上にも書いたような「IUT理論が論ずる典型的現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。

そして、IUT理論既存数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。

論理的な側面は単純です。つまり、IUT理論に用いられる既存重要定理、およびIUT理論から導かれる重要定理を、正式ステートメント証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。

直感的な側面は、既存数学からアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論位相空間における被覆空間理論類似になっているとか、そういう類のものです。

以上です。

加藤文元先生望月新一先生、およびIUT理論研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心から祈り申し上げます

2020-06-30

導関数計算するまでに100ページ以上もイプシロンデルタしてる数学書なんか読めるかよ

こういう教科書を書いたり、他人に薦めたりしてる連中の自己満足は、本当に目に余る。

商売相手がついこないだまで高校生であったということに想像が行っていない。

そして、どう見ても大して頭の良さそうじゃない連中が、得意げな顔して「厳密性こそが数学正統性だ」みたいなことを言っている。

そういう連中ほど、一生微分積分教科書だけ読んでて、「解析概論は多変数微分積分議論曖昧」とかそんな話しかしてない。

で、数学ができる連中は微分積分なんかさっさと済ませて、より進んだ数学をやっている。

2019-11-05

なんで数学書って分かりにくく書くの

もっと数式の心とか意味合いとか具体的に書いてくれればいいのに

多分書いてる教授脳内抽象的な意味合いを描けてるんだろうけど、それを言語化することはあまりしないよね

2019-10-19

アニメ「ぬるぺた」で物理数学

アニメ見てたら3話で物理数学ネタが出てきてすごく嬉しい。

ぬるぺたにはこの調子ディープネタを続けてほしい



唐突位相幾何ネタNewtonを読んでイキる大学1年生には鉄板ネタだよね。

2019-04-24

anond:20190424054053

コスパで言うなら数学の本だね。

特に〇〇入門とかい数学書がよい。

時間読める。

情報量が凄い。

前もって知っておくべき数学知識はない。

面白ければ、その先の本もある。

問題点全然入門レベルではないこと。

2019-04-13

分かりやす数学教科書は返ってわかりにくい

分かりやすいという触れ込みの数学書にありがちだけど、現実世界への応用例や自然現象とのつながりを上手に説明してて、

なんとなく博識になった気にはさせてくれるけど、中身は表面をさらっとなぞっただけにとどまっていてあまり役に立たないものがある。

数学言語的な理解よりも何度も叩き込んで身体で覚えることの方が大事意味理解はあとからいくらもついてくる。

抽象概念の具体化と正確なルール運用こそが数学本質であって、かけ算九九の段階でそれに気付いてる人だけがマスターできるのだ。

https://anond.hatelabo.jp/20190411221341

2018-11-26

[] ギフテッドよかった(思い切りネタバレ感想

フロリダ海辺の街で、ボートの修理をして生計を立てている独り身のフランク。彼は、天才数学者だったが志半ばで自殺してしまった姉の一人娘、メアリーを養っている。彼女は、先天的数学天才児“ギフテッド”であり、周りは特別教育を受けることを勧めるが、フランクは「メアリー普通に育てる」という姉との約束を守っていた。しかし、天才児にはそれ相応の教育を望むフランクの母イブリンが現れ、フランクメアリーの仲を裂く親権問題にまで発展していく――。

映画『ギフテッド』オフィシャルサイト| 20世紀フォックス ホーム エンターテイメント

ストーリーはあちこちで語られまくっているからここではもう書かない。

本作のもうひとつの魅力はキャラクターが魅力的なことだと思う。

ただし直接言葉描写されるのではなく、会話の断片やちらりと映る写真からキャラクターの背景が浮かび上がってくるスタイルなので人によっては伝わりにくいかもしれない。語りたいので勝手に語る。以下全部ネタバレ


主人公

彼の最初イメージは、バーに入り浸り汚い家でいい加減な生活をしている駄目おやじだ。

軽口を言い合う娘との関係がなんともいえず良い。

主人公は娘を一人の人間として対等に扱い誠実に会話をする。その様子が心地よく暖かい。2人は強い信頼と愛情で結ばれている。

物語中盤で主人公の背景が徐々に明らかになる。

母親から娘を託された時点では彼はオックスフォード准教授であったらしい。

仕事育児が両立できずに辞職し、現在ではボートの修理工として不安定生活を送る。

浮かび上がってくるのは、育児のためにキャリア収入も捨てその苦労を娘にわからないように振る舞う気丈な男親の姿だ。

人生ほとんどを育児に捧げたその結果、家が汚いことと収入不安定さを理由に娘を取り上げられてしまうのはあまりにも理不尽だ。つらい。

「五分でいいか自由時間が欲しい」とうっかりこぼし、娘が激しく傷ついてしまうシーンがある。

彼は行政にも保育園にも頼らずたった1人で子供を育てて来た。娘が天才であることがバレたら取り上げられてしまうのではないか、という危惧からだ。彼の危惧現実となった。小学校天才であることがバレ、またトラブルを起こしたことからほぼ放校処分英才教育校への転入するように言われる。英才教育を望むおばあちゃんにより養育権を巡る裁判が起こされるという事態になる。

ところで彼の言動子供を育てる親の「あるある」が詰まっていてとてもよい。

LEGOを踏んで絶叫するとか。五分でも時間が欲しいとか。

『育て始めて最初の2週間で自分の手には負えないことがわかっていた。明日こそ児童相談所に行こうと毎日思った。でもその度にあの子は何かをしでかすんだ。思いもよらないことをね。』泣いたり笑ったり。あの子はいろんなことをするんだ。それでいつのまにか手放せなくなっていたと彼は続ける。

そうだろうなあ。わかる。わかるよ。


おばあちゃん

家系図



どこからどう見ても英才教育ソババアなんだけれども、物語が進むにつれ彼女の背景も明らかになる。

どうやら彼女自身も相当に優秀な数学研究者であったらしい。はっきりとは描写されていないがミレニアム問題ひとつナビエ・ストークス方程式の解について研究していたようだ。

結婚出産研究の道を諦めたが彼女の魂は数学に囚われたままだ。出来た子供母親)が数学天才自身の夢を託してしまったようだ。

英才教育の建前のもと子供人生に介入しまくるクソ親で、子供ボーイフレンドと遊びに行くと誘拐だと言って通報する、裁判を起こすと別れるまで脅し続けるなどやっていることは無茶苦茶だ。

どうも彼女自身も男運がないようで「男はみんな駄目男」と思っているかもしれない。この辺りも子供プライベートに介入しまくる理由ひとつなのだろう。

物語を通して2つの関係が描かれる。主人公と娘、そしておばあちゃん母親関係だ。

物語ラストシーン母親に対する自身のこれまでの行いを後悔し泣く。子供である母親と向き合い、彼女の死に対して始めて涙を流す。

つのまにか母親感情移入して見ていたので救われる思いだった。ボロボロ泣いてしまった。

泣く彼女にかける主人公セリフがまた良い。

母親

一切出てこないのにすごい存在感

天才として生まれ英才教育を受け、娘を残して自殺してしまった母親

物語が進むにつれ彼女の悲痛な声が聞こえてくるようだ。

『親に愛されたかった』『親は私を愛さなかった。数学の才能にしか興味はなかった』

母親人生はおばあちゃんに完全にコントロールされてしまっている。

そのせいで母親生活能力がなく男を見る目もない。それを見ておばあちゃんは「自分がなんとかしなければ」とますます母親支配する。

自立したくとも彼女には生活能力がないのでできない。

妊娠して男に捨てられ親(おばあちゃん)に相談するも突き放され、弟である主人公に娘を託して自殺

自分のようにしないで、普通に育ててと主人公に娘を託すが・・・


ませていて可愛くて、繊細で、言動が突拍子もなくて目が離せない。本当に魅力的。

感想サイトを見ると見た人全員が絶賛している。

見ていない人はぜひトレーラーだけでも見て欲しい。

ちょっとした子供仕草が本当にリアル。すきあらば体をよじ登って来るとか、上に乗っかって寝始めるとか

あるあるある。


映画を観る前は「アイアムサム」みたいな内容かな?と思っていたのだけれども娘の立ち位置がこの映画をもう少し複雑にしている。

母親普通に育てるようにと遺言を残したけれども娘自身数学を望んでいる。

普通小学校に通うことを拒否しおばあちゃんの持ってきたPC数学書に純粋に喜ぶ。

母親はおばあちゃん価値観押し付けられ苦しんだ。母親は「自分と同じにしないように普通に育てて」というが

皮肉なことにそれが母親から娘への価値観押し付けにも見て取れる。当然だけれども母親と娘も別の人間なわけで。

主人公自分の行動が正しいのか苦悩し続けている。

もちろん娘は主人公との暮らしを望んでいるし、明らかにおばあちゃんダメすぎるのけれども。

この映画感想に「天才には適した教育をすべき」という主張の人がかなりいることにちょっと驚いたのだけれども

おそらく彼らは娘に強く感情移入ながら見たひとたちなのだろう。


数学描写

映画は素晴らしかった。たまに映るホワイトボードノートの数式もいいかんじ。娘の成長具合がなんとなくわかる。この手の映画は数式が不自然にわざとらしくなりがちだけどそんなことない。よい。けれども1箇所だけちょっといいたい。

天才を試す問題ガウス積分はないでしょーー。しか符号書き間違えるか??ぐちゃぐちゃ長い式書いていたけれどもいったい何を書いたんだ。式が長い方が絵的に映えるのかもしれないけれどー。筋の悪い人に見えちゃうよー。極座標にしようよ。

いや小学1年生がガウス積分はすごいけれども、彼女は少なくとも微分方程式までは勉強しているわけでとうに知っているでしょう。

あのシーンだけちょっと突っ込みたい。

 
ログイン ユーザー登録
ようこそ ゲスト さん