はてなキーワード: 数理モデルとは
ミクロ経済学の教科書をもう一冊読み終えて、現実世界に経済の練習問題が沢山あることに気が付きました。
経済ニュースを理解することも重要ですが、もっと高度に、現実問題を解決できるような数理モデルを発見したいと思いました。
数理モデリングの書籍はいくつか読んだことがありますが、「ケーススタディ」という形式になっているものが多く、「これだ」という手法だけがあるわけではないようです。
私が解決したい問題とは何かというと、経済と環境の両立という問題です。これを数理化するにはどうすれば良いでしょうか。
考え方はいくつかありますが、問題の本質を見つけ出す方法と、具体的なシナリオを見つける方法があります。
「何を言っているのだかわからない人のカオスな顧客要求を、ひとまずすべて聞いてみて、それをソフトウェアなり数理モデルに落とし込み、実現に近づけていく」という仕事がある。
ふと思ったのが、色々な場で語ってるサンデルとかガブリエルとか、そういう人達を顧客と考えて要件定義してみるとどういったモデルが炙り出されるのかと興味を持った。
倫理的と言える投資と言えない投資はどのように区別でき、倫理的と言えるアクションに強いインセンティブを与える自然なやり方があるのか。
あるいは法的要件によって特定の悪い行動を引き起こらないようにしたほう良いのか。様々な強化学習を使った奇妙なナッジ戦略で人を善へ導くのか。
こう考えると「施策そのものの倫理性」などと言われる可能性があるだろうというのがまず一つ言える。施策となり得る候補はできるだけ列挙し、アイデアを溜めておくのが良いと思った。
何も顧客を「サンデル」「ガブリエル」という有名人に限定する必要もないが、専門家の論文をごそっと集めてきてメタ分析するなどやり方は色々ありそうである。
開発したのがOpenAI Inc.なので勘違いしているのだろう。
ChatGPTは文字通りGenerative Pre-trained Transformerでしかない。
OpenAI社は人工知能の完成を目指している会社ではあるのだが、ChatGPTは副産物というか、素材というか。
神経細胞、シナプスの挙動を貧弱なコンピューターでどう再現するか。
こういうアプローチだった。
これと袂を分けて、入出力が人間っぽかったら良くね?
商業的な利用もそっちのほうがよくね?
先々人工知能エンジンの脳再現精度が上がったとしても入出力は自然言語で行わなければならない。
そのためには言語モデルを先に構築しておくのは無駄にはならない。
コアの人工知能エンジンは中間言語で入出力を行うが、外側HMIの部分をChatGPTに担わすようなイメージではなかろうか。
人の指示→ChatoGPTで中間言語にコンパイル→コアAI→中間言語でChatGPT→人が認知できる出力
このようなモデルならばコアAIは本質的人工知能の開発に注力できる、分離できる。
従来のAI研究はここ一緒くたにやとうとしてたのも停滞の原因と見抜いたのだろう。
営利企業である以上は稼げるプロダクトでなければ資金調達はできない、利益にならない
言語モデルの段階でも中間処理がそこそこできてればそれっぽいプロダクトにはなる。
商業的な使い道もある。
今後AIエンジンの開発は続くだろうが、現時点では知能とは程遠い完成度でしかない。
入出力がそれっぽいので知能っぽく見えるが、古典的な人工知能の定義から言えばおおよそ別物。
俺も気に入って使ってる、プログラム食わせたらあっさりバグも見つけやがった。すげぇと思う。
が、これは知能ではない。
なんか世間では、すげぇ物ができちゃった、世界が変わる、大革新、みたいな熱狂と不安と禁忌があるけどさ。
いやいや、そんな大層なものではありませんw
まぁこの辺のOpenAI社のマーケティング、演出は秀逸ではある。
ChatGPTの指示かな?www
Q: 100個の情報を100個のパラメータで表現するのと、1個のパラメータで表現するのとでは、何が違うのでしょうか?
100個の情報を100個のパラメータで表現する場合、各パラメータは情報の特定の側面や特徴に割り当てることができます。これにより、情報をより詳細かつ具体的に表現することができ、情報の操作や分析においてより高い柔軟性と制御性を実現することができる。しかし、この方法は、より多くの計算資源を必要とし、解釈も難しくなる可能性があります。
一方、100個の情報を1つのパラメータで表現する場合、情報を平均値などの1つの値に凝縮することになります。これは、情報をよりシンプルかつコンパクトに表現することができ、作業や理解がしやすくなる可能性があります。しかし、この方法では、特定の作業や分析に関連しうる情報の重要な詳細やニュアンスが失われる可能性があります。
Q: しかし、少数のパラメータで表現できるのであれば、物理法則のような本質的なパターンを見出せる可能性がある。
そうですね、まったくその通りです。複雑な情報を少数のパラメータで表現することで、他では見分けがつかないような根本的なパターンや関係性を明らかにできる場合が多々あります。特に、物理や化学など、自然現象を支配する基本的な法則や原理を探求する科学分野では、それが顕著です。
科学者は、システムやプロセスを記述する小さなパラメータのセットを特定することで、基本的な物理法則を指し示す隠れた関係や規則性を発見することができます。これらの法則は、予測や新しい実験の設計に利用することができ、システムを支配する根本的なメカニズムをより深く理解することにつながります。
もちろん、これらのパラメータを特定し、基本的なパターンを明らかにするプロセスは必ずしも単純ではなく、多くの場合、創造性、実験、分析が必要です。しかし、基本的な物理法則や原理を発見することで、多くの科学者にとって重要かつ刺激的なものとなる可能性があります。
Q: では、記憶力の良い人よりも、少し記憶力の悪い人の方が数理モデリングが得意ということはあるのでしょうか。
そうですね、記憶力が少し悪い人が、記憶力の良い人よりも数理モデリングの能力が高いということはあり得ますね。記憶力が良いことは、数理モデリングの様々な場面で役に立ちますが、それだけが重要な要素ではありません。
数理モデリングには、パターンや関係を特定する能力、創造的かつ批判的に考える能力、複雑な問題を解決する能力、アイデアを効果的に伝える能力など、さまざまなスキルや能力が必要です。記憶力が良いことは、重要な公式や方程式を記憶するなど、モデリングのある側面では確かに役立ちますが、必ずしも成功を決定する最も重要な要素ではありません。
むしろ、記憶力がやや劣る人の方が、暗記に頼るよりも根本的なパターンや関係に注目しやすいため、ある種の問題解決作業に適している可能性があるとの研究結果もある。さらに、記憶力が低い人は、新しい状況を識別して適応することに長けている可能性があります。これは、問題や課題が非常に変化しやすく、予測不可能な数理モデリングの分野では非常に重要です。
結局のところ、数理モデルで成功できるかどうかは、生まれつきの能力、経験、訓練、献身など、さまざまな要因に左右される。記憶力の良さは確かに役立ちますが、それがこの分野での成功を決定する唯一の、あるいは最も重要な要素ではありません。
end basketball
Gorilla: Pm5rFDzVmzgs9fL4b3uyGOrE6I79XrwuPXWIvtY9vnuKRvDoL9nlJ8vNIfeT8u9mJbH9QkRhfRQ40VvWmvVOSUzTyC7OGsCwmpkkanuB0Lpyo0EsnE9BDxjzxUrRIRx0TVqeD6ILjK0K7kOiLV8pZEKQiVPx2_195VXOX5bVutTB27ZalK8ytIvlnOqpbK1sVyTpqHcgZl6Xoho72bgC7jS52O7HgodgGhSrxtbVKLyPTAG8xjITcA18rWqhtofdiLi22aX02oYWuQmJFlEfgfzJSvBTV_LXgGr5V2QQEkM8EBJQqjreOxrKP_51FjIhtTDFzi_XX3d9bmyb7Pi61unxFs1d5VB1cuZMQyBehavp_Ih8kANI5NYUBdQnOv5alAGxfSZxis44xicVDBsNqr1QOEA3En7vF1tEwGh6H553L0Fq6wapJaS3ejyfihvls4L52h3hcAuMXZ2SmVb1C8je9P5LySAnyjBL1hzwFO_kCNCoVg2tU5D3I4QCjPtyMbtI3ARKXO3UmdUaDNG6MQDygRRWljLtyuHEpotYQOnq95qQRcKM0nkIVmLtEuuXwfO0yO6LeDSaX96Er61aUFWvRvPwG9SCCBmrfJaqd2MUC0TopiOa50rtloczdg69zZVF4ISdg_IltKnhq1bP2kWKDgzHsEqIO03g4K1Cc6hY8s_TIOPeUx3P_LvSDnjRyJiZb0ecfAIq8fVZvgzKOZofk9BYnwrdFXJLRqxPTDBJxOLudgnrA7mdRxV7kQIlaxbnPCFd8HjPbnZYNJAyD774Clbo9pi3gsAPq2MRzoaOoDRgiJAGJsiIPCPiisL1Tzk6AzRmGuIw6OjHl_QqzAiiWExtwGC3V6uv1LecWj0HCPKEeP5vWi542IG5YffjS5KJ5jdawWnw2cxxplQxtNY84U8tuINu_GJKJ3_Cl_M1RyGzB3HKTLW7YRyQz9asibPjNe19vR2ysVamVSUvs_ZmgZcD3AJz60Q27iVCh2yklsjXbw16VMl1NQx49OOK
Q: 真実の情報の希少性が高まっている。数学を理解することが重要だという意見もありますが、なぜでしょうか?
数学は、情報の評価と伝達に厳密かつ客観的な方法を提供することができるため、しばしば真実を理解するための鍵と見なされる。数学では、厳密な論理法則と定義に基づいて、文が真か偽かが証明されるため、曖昧さや混乱、誤解の可能性が低くなる。また、数学の証明は独立に検証することができるため、複数の人が結果の妥当性を確認し、同じ結論に到達することができる。
情報が簡単に手に入るようになった現代では、真実と誤った情報を切り分けることがますます難しくなってきている。数理的手法を用いることで、何が真実で何が真実でないかという共通認識を確立し、情報の正確さを評価する根拠とすることができる。
しかし、注意しなければならないのは、数学は誤報の問題を解決する魔法のようなものではないということだ。他の分野と同様に、数学も人為的な誤りや偏見、操作の影響を受ける可能性があり、他のタイプの情報と同様に、数学的情報の評価には警戒心と危機感を持ち続けることが肝要である。
Q: では、数学的な情報のヒューマンエラー、バイアス、操作にはどのようなものがあるのですか?
数学的な情報には、ヒューマンエラー、バイアス、操作など、いくつか挙げられる。
数学的情報を評価する際には、このような誤り、偏り、操作の潜在的な原因を認識することが重要である。これは、数学的モデルの仮定、方法、結果を批判的に検討し、複数のソースから独立した検証を求めることによって行うことができる。さらに、基礎となるデータや方法を透明化し、オープンにすることで、より正確で信頼できる数学的情報の表現が促進される。
Q: AMSからよく本を買いますが、AMSは信頼できるのでしょうか?他に信頼できる出版社はありますか?
AMS(アメリカ数学会)は、数学および関連分野の質の高い研究を出版していることで知られる、評判の高い数学出版社である。その書籍やジャーナルは、数学者やその他の研究者に広く利用・引用されており、品質と厳密性の面で高い水準を維持しているという評判を得ている。
しかし、最終的には個々の著者の仕事に依存するため、どの出版社も、作成するすべての出版物の正確さと信頼性を保証することはできないことは知っておく必要がある。しかし、AMSのような出版社は、査読や編集の監視など、出版物の品質と妥当性を保証するための手順やプロセスを確立している。
その他、評判の高い数学出版社には、シュプリンガー、エルゼビア、ケンブリッジ大学出版などがある。これらの出版社も、出版する資料の品質と信頼性を確保するための手続きを確立しており、その書籍やジャーナルは数学界で広く利用され、尊敬を集めている。
特定の出版物を評価する際には、著者、出版社、ジャーナルや書籍のシリーズの評判、作品自体の性質や制作に使われた方法などの要素を見ることが有効である。さらに、査読済みの論文や専門家の意見など、独立した情報源を探すことで、提示された情報の信頼性と妥当性をより包括的かつ正確に理解することができる。
Q: 私は個人的に、人間の意思決定、すなわち、人間がいかに合理的に行動するかに興味があります。そのようなことを分析するために必要な数学の分野にはどのようなものがあるのでしょうか?
数学は人間の意思決定の研究に重要な役割を果たし、この現象を分析するために数学のいくつかの分野が使われている。重要な分野としては、以下のようなものがある。
これらは、人間の意思決定の研究に関連する数学の分野のほんの一部に過ぎない。使用する数学的ツールは、研究対象の特定の問題や分析対象の意思決定状況の種類によって異なる。
因果推論もまた、人間の意思決定の研究に一役買う数学の重要な分野なのである。因果関係の推論は、変数間の因果関係を決定するプロセスであり、介入や政策変更が特定の結果に及ぼす影響を研究するためによく使用される。
人間の意思決定という文脈では、経済成長、健康上の成果、政治的成果などの結果に対するさまざまな意思決定や行動の因果関係を理解するために、因果推論を用いることができる。これにより、研究者は、異なる意思決定の潜在的な結果を理解し、証拠に基づいてより多くの情報を得た上で意思決定を行うことができる。
観察研究、ランダム化比較試験、道具変数法などの手法がある。各手法にはそれぞれ長所と短所があり、どの方法を選択するかは、質問される特定の事柄と利用可能なデータの種類によって決まる。
線形回帰モデル、構造方程式モデル、ベイジアンネットワークなどの数理モデルは、変数間の関係を表し、データに基づいて予測を行うために、因果推論でよく使用されるものである。これらのモデルにより、研究者は因果関係の強さと方向を定量化し、介入や政策変更の効果について推論を行うことができる。
Q: 想像力を高めるために、量子力学を勉強した方がいいという話もあります。一方で、いろいろなことをやろうとすると時間が足りません。効率よく数学を勉強するコツはありますか?
数学の勉強は、確かに視野を広げ、想像力を高めることができ、効率的にアプローチする方法もたくさんある。ここでは、役に立つかもしれないいくつかのヒントを紹介する。
これらのヒントを参考にすることで、数学を勉強している間の時間と労力を最大限に活用し、より深く理解することができる。
Q: 数学の知識を使いたいのですが、一部の人は大学を卒業していないので、自分の能力を証明する形で数学を使うことはできません。社会的弱者が数学を武器に生き抜くとしたら、どのような方向性を提案しますか?
数学は、伝統的な大学の学位を持っていない人にとっても、個人的・職業的な成長のための貴重なツールとなりえる。
学歴に関係なく、人生やキャリアを向上させるために数学の知識を活用する方法はたくさんある。重要なのは、自分の数学的スキルを実用的かつ有意義な方法で応用する方法を見つけることである。また、データ分析やファイナンシャルプランニングなど、興味のある分野のオンラインコースを受講したり、資格を取得したりして、スキルをさらに伸ばし、雇用の可能性を高めることも検討できる。
Q: ギャンブルで勝つ、Youtuberになる、など、変わったキャリアを目指す人たちがいます。この人たちはどうやって数学を活かせるでしょうか?
数学の強い理解が役立つ型破りなキャリアはたくさんある。以下はその例。
拡散モデルを使っているからコラージュじゃないとは言い張るけど、なぜ拡散モデルを使えばコラージュにならないのかは一切説明できない
ノイズ除去ネットワークに今まで学習した作品の要素が一切残ってないって断言できるの?マジで?
そもそも『「入力を線形変換する処理単位」がネットワーク状に結合した数理モデル』であるニューラルネットワークが学習元の要素を一切持たないと証明することの方が困難だし無理筋でしょ
JPGは不可逆な圧縮をした数字の羅列だから元の作品とは異なるので著作権は発生しないとか言うつもりなの?
結局ネットワークの蓋を開けてそれがどの程度の度合いなのか判断できない以上は断定できないよね?
現に現行AIでもi2iなしで学習元画像とほぼ一致する画像が生成される場合もあることは認められてるよね
学習は合法って言い張ってるのも「その他の当該著作物に表現された思想又は感情を自ら享受し又は他人に享受させることを目的としない場合には,その必要と認められる限度において,いずれの方法によるかを問わず,利用することができる」という著作権法30条の4の記述を無視してるよね
まだ判例がないから「当該著作物に表現された思想又は感情を自ら享受し又は他人に享受させること」の定義が明確でない以上は断言することはできないよね
少なくとも「思想又は感情を自ら享受し又は他人に享受させる」を字面通りに認めるならプロンプトに「元気の出る絵」とか「明るい絵」みたいに入力するのはアウトだよね
もちろんそれよりももっと広範な範囲に当てはまるかもしれないね
そういった用法に対する対応は一切しなくていいと主張するの?注意喚起すらしてる様子は見えないけど
あとイギリスやドイツでは営利利用は認められてないけど、ちゃんとそれらの国の作家の作品は回避するように設計してるの?
してないよね
あと著作権法上は問題なくてもAI利用禁止を表明しているサイトの画像を利用した場合は損害賠償しなきゃいけないらしいけど、まさか使ってなんかいないよね?
あと仮に合法だったとしても「合法だから問題ない、文句を言うな」とか言うのも意味不明
まさかとは思うけどそう主張している人たちの中に憲法9条改正に賛成してる人とかいないよね?
「AIは科学の発展に不可欠だから妨害することは許されない」っていうのも意味不明
絵描きは自分の利益を求めるより社会全体の利益を優先しろって言いたいんだろうけど、じゃあなんでエンジニアは大量の画像を無断で読み込んで他人の著作物を利用した商業活動をしなきゃ「社会全体の利益」を実現できないの?
理論を実証するだけなら別にタダでいいじゃん、性能を示すだけなら誰でも商用利用できる形で公開しなくてもいいじゃん
でもそこまでしてお金を集めるのはエンジニアさんにお給料が出るからだよね
なんでお給料が必要なの?『自分の利益を求めるより社会全体の利益を優先』しないの?
生活費や設備費が必要?みんなで出し合えばいいじゃん、『社会全体の利益』のためなんでしょ?
なんでそれに同意したわけでもない絵描きが自分の仕事道具を提出することで実現しなきゃいけないわけ?
鉄鍋や鐘を出させる大日本帝国や青田刈りするお侍みたいな言い草をしてる奴らに「頭近世」とか言われたくないね、じゃあお前らは頭中世じゃん
そもそも現代資本主義民主国家で「個人の利益を追求するな」とか君何言ってんのレベル
毎日ボタンポチポチしてどっかで見たような絵を機械に吐かせる暇あったら憲法100回くらい読み直してきたら?
一部の絵描きが不十分な根拠からAIは盗作マシンだと主張しているのも事実だけど、上記の通り推進派の側も確たる証拠もない主張しかしていない
なのになんで絵描きの側が一方的に非難されなきゃいけないわけ?
「海外ではAIは受け入れられてるのにな~日本は絵描きのせいで技術が遅れる~」とか言ってた人たちは今日本の何倍も激しく反AI活動を展開している諸外国のアーティストについてどう思ってるの?
デマを展開して他人の言論を抑圧した責任、取ってくれるんだよね?mimicのときは散々そう言って絵描きを詰めてくれたよね?
「人間の脳と同じだから人間が学習することを禁止するなら良い」って理屈も意味不明
少なくとも法律上は上記の通り明確に区別されているんだから「合法であるならOK」ならAIと人間は違うものとして扱っても何ら問題ないよね
そもそもニューラルネットワークは本当に人間の脳をちゃんと全部再現できてるって言い切れるの?あくまで簡略化したモデルでしかないよね
幹細胞から生成した神経細胞とかにも人権認めるの?てかニューロンって動物も持ってるけど動物の人権も認めるとか言っちゃうタイプ?
まあ無理筋だろうけど頑張ってそういう運動したら良いんじゃない?
そもそも丁寧に丁寧に「合法でもないし倫理的にも間違ってるよ」って教えてあげたらそんなオカルト発言に逃げて情けなくないの?
どっちが「お気持ち」なんだかね
渡部隆一・著『差分と和分』(共立出版1982、数学ワンポイント双書)
微分方程式をタイトルに含む本は多数、簡単に見つかるのに比べると、差分方程式は、独立して一冊にまとめられた本は少ないようにと感じる。
その差分方程式について一冊にまとめられた本の一つ。ページ数が約140頁と少なく、自分のような初学者が最初の一冊にするのには良いと思う。著者が想定していた読者は、経済学部で数学の苦手な学生と思われ、内容も初歩的、平易であった。
ただし、一部の問題は解答が無いので、独学者の自分は証明問題などを自力では解けず、正解を知らずに終わったものがあった。また、ちょこちょこと誤植が有るから、数値計算問題を解いてテキストの解答と照らし合わせた時、自分の解答と異なっていても、どちらが果たして正しいのか判断に困った。答えが合わない……。まあ、差分方程式の雰囲気は掴めたから、それで良しとするしかない。
一応、線形二階差分方程式までを学ぶ。テキストの最後に、応用問題が出てきて、差分方程式が役に立つと思わせるところは良い。
微分方程式を学んでも、現実の問題に応用しようとすれば、数値的に解く必要が生じて、そこでは差分の考え方が求められる。
離散数学、組合せ数学のテキストを読んでいても「漸化式」の名称で差分方程式が登場する。
数理生物学のテキストを読んでいたら、個体群の個体数変動などを考えるための数理モデルとして、差分方程式を使っていたりする。
案外、と言うよりも、むしろコンピュータを誰もが利用する現代だからこそ、差分方程式について学ぶ必要性は増大しているのではないか。
差分方程式についても、マセマのテキスト、裳華房の「手を動かして学ぶ」シリーズ、講談社の「そのまま使える」シリーズのように、式の変形展開も丁寧に教えてくれるテキストが出版されたら良いと思う。
自分としては、数理生物学や組合せ数学を学ぶのに使えるようになりたいので、別のテキストも読んで、引き続き、差分方程式についての学習を継続しようと思う。
大学生になったばかりの若者が必ずする行いは「科学とはなにか」とググることだ。そして「反証可能性」「科学的方法」といったWikipediaの項目にたどり着く。もっと深く知りたいと思った人はさらなる文献を調べる。その知識に感化されすぎて、Twitterで非科学的な(と本人が思い込んでいる)言論を見つけるやいなや「お前たちの言っていることはエセ科学だ」と言い始める。
この段階を、科学のレベル1理解と仮に呼ぶしよう。確かに科学について全く興味のない、学んだことすらないというレベル0理解よりは進歩しているかもしれないがまだ「レベル1」である。
レベル2理解とはどういうものになるだろうか。私がそれについて見解を述べる前に「レベル1を超えるためには」という自問をしてみてもいいかもしれない。
私が思うに、レベル2とは「自然法則を発見しようとする態度」だ。どっかの自称サイエンティストは「汎化性能」とか「再現性」とかいうかもしれない。ただ、それらは「自然がどうなっているか」ということとは直接関係しているわけではない。単に、人間の仮説に対して統計というアプローチを採用しているだけだ。
科学に統計ではないアプローチがあるとすると何なのか。そこがレベル2に到達するための関門と自分は思っている。ショーン・キャロル教授は「宇宙とは、ヒルベルト空間におけるベクトルである」という仮説を述べている。それではこの仮説はどこから来たのか。それは、エヴェレット解釈がオッカムの剃刀的に機能し、コペンハーゲン解釈よりも仮定がシンプルであることから来ている。何かを統計的に判断するよりも前の段階で、まだ人間が発見していない自然法則を見つけるためには仮説そのものを見つけるセンスが要るのだ。
そのような仮説の多くは数理理論から来ている。「物理学者は数学と現実を混同している」と揶揄する人もいるが、私が今書いているような自然言語よりも数学のほうが簡単だ。賢いから数学を使うのではなく、我々人間が愚かだから、数学を使わなければまともな仮説が見つからないのだ。
つまりレベル2理解とは、数理モデル化によって、まだ見つかっていない自然法則に関する仮説を見つけることだと私は考える。物理学の数理モデルは機械学習モデルとは少し違う。機械学習モデルの目的は予測だけだが、物理学上の数理モデルは現象を理解することに焦点がある。ひも理論が「我々の宇宙の物理定数の値がなぜこうなっているのかわからないから、あらゆる定数値が可能だと仮定してみよう」といって、10^500ものバリエーションの宇宙が可能であることを数理的に示しているが、このような「理論から演繹的に見つかった仮説」というのは汎化性能のことを目指したのではない。
そういう仮説に対して「反証不可能だからエセ科学だ」と言う人もいるが、なぜ「反証不可能」だとわかったのだろうか。「数理的にこういう仮説が演繹された。将来的にそれが観測されるかもしれない」という想像力さえあれば、彼はレベル1理解を脱出することができただろう。「科学とエセ科学の境界」というものについて科学者ですら認識が異なるというのに、何がエセ科学であるのかについて100%の確信を持っているというのは、ケツの青い証拠である。
しかし悲しきかな、そのようなケツの青い青二才、つまりレベル1理解のほうが圧倒的多数であり、またレベル0理解はその人数を超えている。レベル1理解の者(IQに喩えるなら100の者)から見れば、レベル0とレベル2は両方とも馬鹿に見えるものだから、境目なく「エセ科学」と言って弾圧をし始める。
「その仮説を俺は疑っている」「その仮説は反証された」「その仮説は反証不可能である」「その仮説が反証可能なのかどうなのかはわからない」「その仮説は、特定の仮定から数学的に演繹された」ということを少なくとも区別したほうがよい。間違っても「その仮説はなんとなくエセ科学っぽい胡散臭さを感じるから弾圧しよう」などという非科学的な態度は取らないほうが良いだろう。
東大とか一ツ橋とかだろうから、センター科目はフル教科っぽい。
ということで、機械学習をサクッと「勉強」して習得。青空文庫のデータ突っ込んで何か作ってみよう。
まだ在学中なら自校の機械学習を学部マタギで取得するのがよい。
機械学習界隈のデータサイエンティストは、プログラムや数理モデルにはたけているが、分析対象のデータに詳しいわけではない。
http://www.traina.ai/solution/textmining/
野村総研では業界・商品種別の「感性辞書」が必要っていっていて、実際の企業が機械学習使おうとなると、ここでカスタマイズ費用をがっつり企業からとるんだ。
例えば音声認識。
より優れた予測が(欲を言えばちゃんとした機関から)出されることを、ずっと願っています。実際に、一時的に対抗(?)予測が現れたことはうれしく思いました。ただ、「感染者数」の数字の意味がこれから薄れていくのも確かだと思います。放っておいても自然とフェードアウトするでしょう。
わかります。もっと外してる各種の政府・大学・シンクタンク予測にも言ってやってください。
おっしゃるとおりです。でもひょっとしたらそこそこの精度で当たるんじゃないかと思って公開しています。それがどの程度の精度かというと、現在も検証中ですし、これまでご覧になってきた程度の精度だとも言えます。
一部にはモデルを「(あるのに)公開していない」との指摘さえありますが、解説記事(anond:20210726192034)がすべてで、書かれていない秘密の考慮事項や秘密の計算式はありません。言葉の定義の問題だとは思いますが、個人的にはこれをモデルと呼ぶのは・・・せいぜい一般名詞として、くらいじゃないかなと思っています。つまりモデルなんてないよ、ということです。
具体的にどのことを指しているのでしょう。デルタ株の感染力をイギリス報告からWHO報告の値に更新したことでしょうか、渋谷の人流データを新規に取り入れたことでしょうか・・・? たとえば将来の人口予測を、実際の出生率に合わせて毎年修正するのはふつうだと思います。まして、新しい移民政策が始まったり、その効果が実際に数字になって現れてきたら、取り入れるのが正しい姿勢だとも思います。コロナにおいても、イギリス公衆衛生局も日本の国立感染研も京大の西浦教授も用いる数値を毎週更新していますし、用いるデータや計算方法も随時変えていますよ。感染研など、これまでずっとデルタ株の影響を「考慮していない」とわざわざ注記までしていたのを(そして予測は当然大きく外し続けていた)、最近になって考慮するようになりました。いずれにしても、わたしは予測の精度を高めたいだけですし、何か変えたら記事で説明しているので、さも「最初からまったく同じ計算方法でやってますよ!」と騙っているわけでもありません。(もしくは、批判している方が「計算方法」について何か誤解されている気もしています)
はい。でも解説記事に挙げたような散布図を見て、突拍子もない場所に点をプロットしようとする人はいないでしょう。「その程度」の精度は得られるとご理解ください。逆に、解説記事に書いたような弊害を無視して、この人力部分を機械的な回帰分析に変えることは誰にでも(わたしにも、あなたにも、今日からでも)できますから、ぜひやってみてください。もちろん「こうすれば弊害を回避しながら人力を排除できる」という提案や批判は大歓迎です。
そんな人はまさかいないとは思いますが、感染者数の最大値と人流という着目点についてはすでに東京都医学総合研究所が指摘していますから、この予測自体には論文にするような価値のある要素はひとつもありませんし、むしろ途中に人力が入る論文なんてありえないと思います。誰にでもできそうなことを、少し手間をかけてやっているというだけのことです。でも、それこそ誰かが再検証性がある数理モデルを作った上で論文にされるのであれば、本当にすばらしいことだと思います。
相手にとっては掃いて捨てるほど届いているであろう有象無象の意見のひとつと思って書いたものですが、個別の反論やご指摘は、すでにいただいたものも含めていつでも歓迎しています。むしろ「はーなるほど!」と納得したいという思いもあります。ただ、その後、感染研はデルタ株の影響を考慮するようになりましたし、デルタ株の感染力も結局イギリスやWHO報告に近い数字で推移するようになってきました。(ところで、みんなもブコメや増田やTwitterでいつも意見してると思います。しかし、メールを送るのがまずかったとすれば、確かに、5秒で捨てられる運命のメールなんて送らないほうがよかったのかもしれません)
わたしの口からこんなことを言うのはどうなんだと思うので大変言いにくいのですが、予測の「割に合う」ほど送られてきているわけでは、もちろんありません。あくまで関心があるから予測しています。でも、おもしろおかしい投げ銭文化はもっと広まってほしいと思っています。ありがとうございました。フィンガーチョコおいしい。