「代数学」を含む日記 RSS

はてなキーワード: 代数学とは

2019-11-19

結局掛け算の前後は入れ替えてもいいのか、ダメなのか

結論から言うと、「入れ替えてもいい」が自分意見である

が、そこに至るまでの結論はわりと複雑で、単純に論じられる問題ではない。

いちおう言っておくと、自分旧帝大数学科出身で、代数学計算機科学的な議論はひととおりできるし、教育にも携わったことがある。

まず第一論点として、少し厳密性に欠ける話なのだが、掛け算の左右は本質的には同じものではない。

まり、(結果として交換可能かどうかではなく)意味的に交換可能か、というと、これは交換不可能である

すなわち「掛け算の右と左は全く異なる意味を持つ」ということができると思う。

そもそも掛け算というのは、●を▲回足す、といった素朴な定義からスタートしている(現代的な数学基礎論立場でもこのように掛け算を定義していると言ってよい)。

●を▲回足すことと、▲を●回足すことは、結果の同一性は置いておいて、少なくとも意味としては異なる話であろう。

実際、たとえば●を▲回掛けることと▲を●回掛けることを比べると、これは結果すら異なってくるわけだから、素朴に交換してよい、という話にはならない。

数学では、非可換環だとかベクトル作用だとかわけわからんものが山ほどあり、そこでは乗法やそれに類する演算が交換不可能なことは日常茶飯である

ところがこれが交換可能になってしまうというのが、「交換法則」の主張するところである

これは掛け算そのものがその定義の中に「自明に」有している主張ではなく、定義から証明することによって主張される、いわゆる「定理である

するとここで「学校教育において、未だ習っていない定理テストの解答に使用してもよいか」という第二の論点が現れる。

これに対する解答は、「よくない」である

例えば大学入試においてロピタルの定理を使うことは、それが問題を解くために非常に役に立つにもかかわらず、許されていない。

どうしても使用する場合は、自らそれを解答用紙中で証明したうえであれば使うことができる、というルールだ。

小学校算数でも基本的にこのルールに従うべきではあろう。

さらにいえば、仮に交換法則を使ってもよいとして、「交換法則を使った」ことを明記せずに最初から定理適用後の姿で立式してしまうことにも疑問点が残る。

この論点でもやはり基本的には交換不能である側の意見に理があると考える。

にもかかわらず、自分結論はやはり「交換可能である」。

と、言うのも、基本的文章題においては日本語を数式に変換するための「解釈」は解き手に委ねられているからだ。

まり、3個ずつのリンゴを5人に配りました、という日本語から「3個を5回足すんだな」と解釈することにも、「5人を3回足せばいい」と考えることにも一定妥当さがあり、そこには読み取りの自由がある。

これは算数数学問題というより、日本語としての読み取り方の部分に交換可能性が潜んでいるのである

したがって、この文章を数式にするにあたって5×3と書いても、それは何ら減点要素ではない。

まとめると、

掛け算は意味的には交換可能ではないよ→でも交換法則があるよ→でも習ってない定理は使えないよ→でも日本語の読み取りの部分に交換可能性があるよ

ってことで、左右逆に書いても丸になるというのが結論

2019-08-27

生物学部出身者が東大京大数学科大学院を受けてみた

増田数学レベル

マセマの数学系の本を読んだことがある。東大工学部院試を受けてみて受かったことがある。

  

受験理由勉強期間>

生物系の研究でも数学っぽい概念絶対確立されてそうな雰囲気ものが多いので、数学理解したいなーと思っていた。

モチベーションにもなるし、数学科を受験した。

2カ月くらい前に受験を決意。

  

<実際の結果>

京大筆記落ち。東大はまだ結果不明

  

受験感想

カナリ過去問から出ると思った。逆に言えば、過去問で解答を作成できるかどうかが勝負

そのレベルまで勉強は到達しなかった。

基礎科目(大学1,2年レベル)と専門(代数幾何、解析、その他の数学特有の分野)に分かれるが。

基礎科目すら危うかった。専門は全く勝負にならなかった。

  

<基礎科目のお勉強

基礎科目の方は、割とマセマと『演習大学入試』で何とかなると感じた。もちろん、過去問の答えを全て作成できることが前提だけど。

追加で、『イプシロンデルタ完全攻略』、『線形代数30講』(固有値と固有空間問題対策)でやったくらい。

時間があれば、もっと実際に手を動かして計算練習などすれば、点数は満点近くまで伸びると感じた。

一方で、集合論幾何学を捨てていたので、京都大学受験ではかなりビハインドを引いてしまったし、東大でも逃げ科目を作れなかったのが少し痛かった。

100時間ほどで過去問まで対策できた。初学の分野が少なかった(複素関数、εδ、微分方程式級数解放線形代数空間論が初学)ので、割となんとかなった。

  

<専門のお勉強

代数学は『代数学1,2(雪江)』、『群・環・体 入門』、『代数学演習』、『大学院への代数学演習』と「物理のかぎしっぽ」で対策したのだが。

100時間勉強時間を取れなかったので、ガロア拡大計算と、イデアル簡単な奴しか抑えられなかった。しかも、本番で出てきたのは、明らかに知らない概念だった。もちろん、問題分の意味は何とか理解できたが、恐らくは『アティマク』や『ハーツホーン』や整数論系の概念を知らないと厳しい問題だった。

過去問を見てもできないなーと思っていたが、試験場で他の人たちが、洋書ハーツホーンや零点定理シェバレーと言った、全く知らない概念を話していたので、勉強する分野を完全にミスったと思った。

ネットでググっても、雪江代数で受かってるっぽい感じだったから、雪江代数だけで行けると思ったけど、勘違いだったみたい。

無念。

  

感想

目標を持って勉強するために、試験を受けたのはよかった。

結果的にはゼンゼン駄目だったけど、数学科の人たちの雰囲気や、レベルを肌で理解できてよかった。

時間が更にあるなら、

集合論幾何学は押さえて、

演習問題豊富っぽいルベーグ積分を攻めて、

あと、代数学もアティマクとハーツホーンと整数論は押さえたいなあと思った。

かなり追い詰められた感じだったけど、非常に楽しい時間だった。

2019-01-06

anond:20190106130950

本気で言ってるなら高校レベルの集合の代数学からやり直した方がいいよ。

包含関係論理無茶苦茶で話にならない。

「有限的算術を含む無矛盾数学形式体系」は増田定義する「宗教」に含まれるのかと聞いている。

まり、「宗教」の中には

キリスト教

イスラム教

仏教

ユダヤ教

・有限的算術を含む無矛盾数学形式体系

となどがある、と言って良いかということ。

ここまで噛み砕いて説明しなきゃいけないと代数学センス絶望的だな。

2018-09-02

anond:20180902103608

数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます

(必要なら)微積分と線形代数の復習

微積分なら杉浦「解析入門」がおすすめ線形代数なら佐武「線型代数学」か斎藤線形代数世界」がおすすめです。

体とガロア理論

堀田可換環と体」、雪江「代数学1・2・3」あたりがよい。

環論

Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村可換環論」を買うといいかも。

整数論

Serre「A Course in Arithmetic」とか、斎藤黒川加藤「数論」の6章あたりまでとか。

これらは数学学部3〜4年のカリキュラムに含まれ基本的知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要があるかというと、買った本の各章の内容について、証明の内容も含め、何も見ずにだいたい説明できるぐらい読んでください。あともちろん演習問題は全部解いてください。詳しい数学勉強方法東京大学河東先生のこのページを参考にしてください。

http://www.ms.u-tokyo.ac.jp/~yasuyuki/sem.htm

ここまで勉強なさると、宇宙際タイヒミュラー理論を学ぶハードルがどれだけか、少しイメージが湧くようになると思いますもっと勉強したいと思ったら、また増田に来てください。期待しております

anond:20180902103608

整数論専門院卒、非数学者です。

まずは

1. ガロア理論

2. 楕円曲線

の二つについて理解することを目標にされるといいと思います

この二つは19世紀以前の数学最高峰であり、また現代数学の多くの分野に関連することから、IUTを目標としない人でも学ぶ価値のある理論だと思います

またIUTでは楕円曲線ガロア理論を用いて数の加法乗法構造を調べるというようなことをしています

以下では、上の二点についてもう少し詳しく説明してみます

1. ガロア理論

ガロア理論方程式を解くということを群という対称性を用いて理解するものです。これを用いて5次方程式の解の公式の有無や作図問題などの古典的問題解決されました。これを理解するためには代数学特に群や体について基本的な事を学ぶ必要があります

さら整数論に関わるものとして、p進体などを学んだ上で類体論勉強なさるのがよいと思います。p進体では(普通対数関数と同じように)log定義することができ、これはIUTでも重要役割を果たします。類体論特別場合として円分体のガロア理論理解すると、例えばガウスなんかの整数論の話もより深く理解できると思います

2. 楕円曲線

楕円曲線は楕円関数論をある種代数的に扱うようなものです。楕円関数というのは、三次式の平方根積分でこの積分を表すために導入された関数です。19世紀数学でかなり研究されたものですが、これについては複素解析という複素数平面上で微積分をするということについて理解する必要があります

さらにその後の発展として、リーマン面や基本群、ホモロジーといった概念が考えられました。基本群やホモロジーというのはトポロジーという分野で研究されているものですが、数論幾何でも重要役割を果たします。

上の二つの話は独立したものではなく、相互に関連しあうものです。例えば、基本群とガロア群はある意味では同じものだと観ることができます。このような視点を持って整数研究をするのが数論幾何という分野です。

まとめると、まずはガロア理論目標として代数基本的なこと、楕円関数目標にして複素解析を学ぶのが良いと思います

これは同時並行に進めることをお勧めします。

上に書いたようなことは数論幾何を専門にするなら学部生ぐらいで知っている話です。これらを踏まえてIUTにより近い専門的な内容を学んでいくのが良いでしょう。私もその辺りについて詳しいことは言えないのですが、例えば京都大学の星先生の書かれたIUTのサーベイをご覧になってみるのが良いのではないでしょうか。

anond:20180902103608

理科学修士卒、非数学者意見

(数論が専門ではなかった。)

① 工学修士だと、微分積分線形代数複素関数論あたりは知っていると思う。

応用系と数学科向けだとちょっと内容が違うので(εδ論法とか)、まずその辺の復習から始める。

現時点での理解度によるけど100時間くらい?

② 純粋数学への入口として、「集合と位相」のような本を読む。

(私は松坂和夫を読んだ。)約100時間

③ 抽象思考の壁を乗り越えるために「代数学」のような本を読む。ガロア理論くらいまで。

(私は森田康夫だった。)約200時間

④ 雑学というか、モチベーションの維持として初等整数論の本を読んだり問題をといたりする。

(私はヴィノグラードフとか高木貞二とか)100時間くらい?

このくらいで、とっかかりは出来るので、その後何やったらいいかも見えてくるはず。

上記+3000時間くらいで理論入口あたりにはたどり着くと思う。

2017-05-07

おかし

id:frkw2004 って奴がこの記事に対して

http://gendai.ismedia.jp/articles/-/51615

"「科学目的は真理を探求することではなく、現実説明することです。」これはいい言葉だ。宗教科学対立するものではないことを示してる。"

ブコメし、53もスターを集めているがこれはおかしい。

全く「良い言葉」なんかじゃない。

現実説明するのは「世間科学に対して求めている事」であって、「科学目的」全てがそれに当たるという事は絶対に無い。

なぜなら、そもそも科学の中で我々が生きているこの現実についてを論じている部分は一部でしかいから。

分かりやすい例で言うと代数学だ。

この学問なんか殆ど現実世界に当てはめられない。

現実世界には有り得ない世界設定だけれど、公理主義的に考えればこうなるハズ」という理論を追い求める、

正しく「"真理を探求"しつつも"現実説明"しない学問」だ。

科学ジャンルなんてもう大量にあるんだから勝手な事言って矮小化してんじゃねえよ!虫酸が走るわ!!!

2016-09-02

情報系の学科に通うつもりです。

Fラン私大というのは分かってるが定時制高校卒業後2年間プー太郎してた僕でも入れるあたりやっぱ私大って終わりすぎ……とは思う。

必修に代数学がある学科に通うつもりだけど中学数学すら危うい俺には無理。連立方程式すら危うい。因数分解すら無理。というか平方根すら無理。なによルートって。

ちなみに高校数学ほとんどやってない。数1、しか二次関数最初最初のみ学んだだけでその後数学とはおさらば。サインコサインタンジェントなんてわかんない。

こんな20歳がいていいのだろうか?いやだめだ。

2015-06-16

俺はミハイルプラノフの代数学赤外線二次凸多面体論の講義理解できるが

お前は数学の真理を見たことがないので理解できないだろう。脳の液体がそうならないし

なることを好まない半端なゴキブリなんだから

2015-06-07

ポリトープスを代数学的に処理するための道具立てを用意しようとして必死になっている。

イェール大学教授ハイルプラノフ氏による二次凸多面体に対する代数学的処理に関する講義がすごい

教授自分で考え抜いた形跡がまざまざと分かり,世の中にはこのような生き方をしている

人間がいるのだと感心して何度も見てしまう。彼は頭脳活動生活力が高いし,頭のキレも

いい。東大にもこのような教授レベル研究をしている人がいるのだと知ってさらに驚く。

日本にはすごい世界もあるのだな。

2014-11-20

天才について

天才とは色々定義されるが、一番の特徴は集中力(あるいは勉強体力)があり、非常に長い間その問題に取りかかることができることだと思う。

例えば、望月新一氏について、オックスフォード大学教授であり、望月新一氏の友人でもある人は次のように言っている。

「彼が他の数学者と違うのは、彼がものすごく高い耐性(tolerance)があることなんだ。何時間も、何時間も机に向かって数学をすることができるんだよ」

「彼が学部生の頃の話なんだけどね。フランスグロタンティークって人の代数学算術幾何の著作は、その分野を学ぶ人はみんな読まなきゃいけないんだけど、普通は少しずつ理解していって、何年も費やすんだよ。何千ページもあるからね。でも望月学部時代のほんの数年で理解してしまったんだ。」

http://projectwordsworth.com/the-paradox-of-the-proof/

2011-12-24

http://anond.hatelabo.jp/20111224104707

ずつも何も

1mx1m=1m2(1平米)のように単位は残るのが普通

1mx1mx1m=1m3(立方メートル

あと、IT業界で話題の

1人x1ヶ月=1人月 とかな。

割り算だともっとわかりやすくて、たとえば、1gの油を10mに引いて行ったら

1g/10m=0.1g/m となるよな?単位は消えないんだよ。

 

N人xM本=NM人本で NM人に1本づつくばるまたは、1人にNM本配れる状況という以上で、勝手単位を削るほうがまちがっとるやろ。

どうしても法則性にこだわるなら

N人xM本÷1人=NM本 として N人にM本づつ配ったものを1人にまとめると何本になるか?という答えと、鉛筆が全部で何本あるか?という答えは同じである

よって、NM本である

としろや。とか思うわけだ。

交換法則を用いて

M本xN人÷1人=NM本

で。答えは、かわらんぞ?

省略形を、前後、を変えるのはおかしい、とか言われても、本当に代数学につながるのが超疑問だわ。

http://anond.hatelabo.jp/20111224014013

[本/人]なんて単位実学では存在しないんだよ。

小学校参考書読んでごらん。

増田が言ってるのは、代数学実学に持ち込んだ誤りであって、物理学概念を算数に応用しようとしてる誤用なんだよ。

増田の知ってるセンスではそうかもしれないし、増田の知ってる学問のほうが上級と思ってるんだろうけど、実は増田実学を知らないだけなんだよ。

ま、ここで云々いうまえに算数の参考書買ってみたら?

すげえええええええええええええ

ここまで馬鹿だとは…

わず全文保存しました

ちなみに増田の言う「実学」って具体的に何を指してるんだろう…。謎過ぎる…

http://anond.hatelabo.jp/20111224003706

[本/人]なんて単位実学では存在しないんだよ。

小学校参考書読んでごらん。

増田が言ってるのは、代数学実学に持ち込んだ誤りであって、物理学概念を算数に応用しようとしてる誤用なんだよ。

増田の知ってるセンスではそうかもしれないし、増田の知ってる学問のほうが上級と思ってるんだろうけど、実は増田実学を知らないだけなんだよ。

ま、ここで云々いうまえに算数の参考書買ってみたら?

2011-12-23

http://anond.hatelabo.jp/20111223214321

言われたことしかできない大人が出来る理由がこの辺か・・・

社会ではリスクを取って、外へ出ようとか言っておいて コレか。

この教育では、自由な発想ではなく、言われたことを厳密に、言われてないことは1mgもやってはいけない。みたいなネジみたいな人間が生まれてもそら、仕方ないわ。

初等教育では、生きていくのに必要なことを優先して教えてやれよ。

代数学云々より、発想の自由のほうがよほどじゅうようだろ。 代数学ウンなんたら言うなら、大学行って必要なやつだけで十分だろ。

逆にコレを重要だというなら、企業とか、リスクを取って海外へとか事業起こそうとかいうな。

官僚になって、言われたことを言われた通りやることが至上だと社会全体で主張すべき。

http://anond.hatelabo.jp/20111223214321

でも可換性があるというのは、代数学へ繋がる大切な認識なわけで、 って話題が無限ループ

2010-01-09

代数学ってかなり訳に立たないクズだなー

役に立つとしてもその事例にかなり特殊化されたセオリーばかりだし、全くもって未発達。

そりゃ中学生が「こんなの勉強して何になるんですか?」って言うのも分かるわ。

2009-09-20

http://anond.hatelabo.jp/20090920184007

だから、「みんな数学が苦手」と言えるくらいに、理科社会国語英語も苦手なの。

理科は数理科学を含むのであれですが、社会国語は、教えられて理解できない人はそういないでしょう。

英語は脳の言語処理ネットワーク最適化の問題があるから別ですが。

義務教育の時点で、社会ができないというのは単に覚えていないだけであって、教えればその瞬間くらいは記憶してるわけです。

ところが数学の場合、現役で教えられてる状況ですら、どんなにがんばっても理解できないという人がかなりいるわけです。

とまぁここまで書いて思ったのは、数学の場合積み重ねが必要だから、というのはあるんですかね。

社会ならいきなり近代史に行ってもそう問題は無いけど、数学の場合いきなり微分やるわけにはいかんわけで。

そうすると、教育の比較的初期で数学が理解できる人とできない人の差は何かっていう話になるわけですが…。

別に自慢にも何もならないですが、俺の場合小学校代数学(算数)で困ったこと全く無いんですよ。

物心つく前は算数博士(笑)とか呼ばれてたらしく。

それは俺の脳が初期状態で言語脳内ネットワークのような何か変わった構造を持ってたりしたってことなんですかねえ…。

それとも単に「積み重ね」効果によって初期状態の微妙なバラツキが指数関数的に拡大するようなスケールフリー構造があるってだけのことですかね。そんな気もしてきました。たとえばガロアみたいな超天才の世界では別の構造があるとは思いますが。

2009-07-31

TVA就職したい

当方IT屋。非プログラマ失業がほぼ確定した。TVA就職したい。FDR神社があったらお参りするのに(いや日本人としてそれはプライド捨ててるだろ)。ありがたいことに、雇用調整助成金の拡充と、雇用保険の給付要件の緩和のおかげで、向こう半年くらいは延命できる見込み。問題は労働市況の谷がその程度で済むかどうか誰にもわからないことだ。IT産業構造調整臨時措置法案が審議されているという話はまだ聞いていない。

ダイクストラ大先生は「景気が悪くなると悲観論が出てくるのはいつものことだ」と仰っているし、資本集約的技術であるクラウドコンピューティングや ISAM への技術的退化ともいえる BigTable 等はまだ萌芽的で、ましてクラウドを信頼しない委託計算暗号理論は緒についたばかりで(代数学を全く知らない身としてはほんとに使い物になるの?と思うが)、分業も進んでいないから(要するに LinuxWindows Server の為にはかつて IBM が完備していたような職種別ツールとマニュアルがない、バックアップ関連は特に壊滅的)、現状の知識(労働)集約的な仕事のやりかた自体が数ヶ月で覆されるというのは現実的でない。もちろん方向性としては IT はどんどん資本集約的になるとは思う。ただ、OSVMハイパーバイザとか、ストレージエンジンとか)を書く人間以外は何も知らなくていい、というところまで行くかどうか。計算機に何ができるか、一般人はまるで知らなかった 1960 年代とは違うのだ。

バンプ・オブ・チキンの『乗車権』という歌は産業予備軍説について歌っていてとても恐ろしいけれども、加藤智大くんが『ギルド』に共感したほどにはあの歌が今自分にあてはまっているとは思えない(思いたくないだけかも)。IT業界転職は同分野が多い、という話も、前回の景気後退時に土建業で、前々回に金融業で聞いた話と全く同じだ。実際、未経験者可、の仕事では家内と二人で食っていくのは無理。キャリアチェンジを図るなら、雇用調整助成金による自宅待機で家賃と食費を賄いつつ、地元アルバイトを探してとっかかりにするくらいしか思い浮かばない。

MRとかっていまどうなんだろう。一応 MedLine くらいはやれといわれれば検索できるだろうし、高校程度の無機化学の素養はある(あんまり忘れてない)けど‥

ともかく、ラッダイト運動のようなことを今やっても無駄なのは確か。社会が安定している分、自分たちの力で状況を変えられる可能性は古典経済学黄金時代よりもはるかに小さい。リスクを極限まで減らしたければ人生そのものがリスクなのだから、-2価の硫黄化合物を吸引して天国なり地獄なりに移住すればいいのだが、自分ひとりではないのでいまひとつ踏み切れない。

一応、家内に「もし東南アジア香港インド等で仕事することになったら一緒に来れる?」とは言ってみた。仕事があるかどうかは知らない。通貨価値格差と、アジア人英語なら自分でもなんとかサバイブできるんじゃないかという程度のことしか考えてない。たぶん暑くて死ぬ。家内日常生活に必要な英語を習得するのはなんとなく私より早いと期待しているけれども。チャイナ本土は勘弁。中国語と名のつくものは広東語であれ北京官話であれまったくわからない。だいたい高校時代、漢文落ちこぼれ赤点を取り続けていたのは国立文系進学クラスで私くらいだった。

NSDAPとか満蒙開拓団とかで人を募集してませんかね。あ、中共サイバー攻撃要員の口とか、神楽総合警備の求人とかも、あれば、是非。桑名藩とかで京都御所の警備要員とか。国際興業ロビイング部門とか、幸福実現党五反田勤務とかもいいかも‥

2009-05-30

日本文系、とりわけ法学部教養がない。

(この手の本を読んでいる人が、読んでそうな本を他にも挙げてほしい)


日本文系、とりわけ法学部教養がない。


理系学生書斎安藤忠雄建築事務所研究所)みたいな資料の山だとしたら、

文系(特に法)学生書斎立花隆ネコビルwwwwwwwwwwwwwwwwwwwwwwwwwww


規模だけでなく質でも文系(特に法)は見劣りがするね。

何度か連中の自宅に招かれたから、ちょっと参与観察してみたんだ。

冗談半分でさ。

仔細に文系 (特に法)学生本棚とか見てみると、これがもう滑稽なんだwwwwwww


面白いから蔵書タイトルを全部メモしたんだけど、

まずいきなり机の上に開いた状態の宮台真司権力の予期理論』!(笑)

プゲラを抑えるのに必死だったぜ。


続いて 何度も読んだ形跡のある伊藤柴田司法試験論文対策即席要点集(笑)。

お前サル かよ、それでも人間かよ、って問い詰めたくなったね(苦笑)。


他にもオママゴトみたいな社会学大辞典(笑)

カントマルクスをはじめとする岩波文庫300冊程度(笑)(日本語であって原文ではない)

オクスフォード英英辞典シソーラス(笑)

小林康夫『光のオペラ』(笑)

我妻民法(笑)佐藤憲法(笑)前田刑法商法(笑)新堂民訴法(笑)

山本国際法(←物凄い日本語w)

○○学がわかるシリーズ(プッ)

ソシュール言語学講義』(笑)

ダンスマガジン(お前ホモかよww)

スティグリッツ経済学 (笑)(しかも原文じゃなくて翻訳

ウィトゲンシュタイン論理哲学(笑)

アリストテレス詩学(笑)(せめてギリシャ語で読めよな)

フーコー『知の考古学』(笑)(「パンのように売れた」ベストセラー

三島由紀夫文庫(笑)

仏露独蘭伊中国語辞典(笑)

トクヴィル(笑)大江 健三郎(笑)コーポレート・ファイナンス(笑)ドストエフスキー文庫(笑)西尾行政学(笑)

柄谷行人文庫(笑)フロイトの技法(笑)Yale Law Journal(笑)ハンナ・アーレント(笑)浅田彰(笑)『構造と力』(笑)

別冊ジュリスト判例百選(笑)大前研一ワラシェイクスピア文庫(笑)

田中行政法(笑)中公『世界歴史』(お前高校生かよw)マンデル貨幣理論、(笑)

岩井克人ヴェニスの商人資本論』(プッ)


女子大生(特に法)が読む雑誌と大差ないMarie Claire(笑)

magazine litteraire(笑) Cosmopolitan(笑)Critical Inquiry(笑)

Le Monde(笑)The London Economist(笑) American Economic Review(笑)

Fortune(笑)Foreign Affairs(笑)Yale Law & Policy Review(笑)

The New England Journal of Medicine、Michelin(笑)


これだもんねぇ。

他にも数百冊 持っていたようだがあとは推して知るべし。

で、トドメ


ピーター・ドラッカー(笑)


ピエール・ブルデュー(笑)


フォーリン・アフェアーズ(笑)


ハーバードビジネス・ レヴュー(笑)


知の論理!!(笑)


もう俺その場で大爆笑。

プゲラー止まらなかったぜwww



参考までに連中の持ってた理系テキスト挙げようか。


ま、予想通りだけど、杉浦・ 解析入門(高校4年生の一般教養にはいいかもね)

岩波講座・現代数学の展開 (なぜかモジュライ理論、Lie環、Weil予想、コホモロジーw)

リーマン・アティヤー・岩澤・シュバレーヴェイユセールブルバキ・ウィーナーなど書店で目につくもの(持ってるだけね、知的ファッション

The Cell教育ママに 買わされた赤い電話帳ね)

東京化学同人分子細胞生物学』(ゲノム解析ブームの名残だろうな)

岩波数学辞典第3版(お前、万引きしたヤツだろ?これ)、

ノイマンゲーム理論経済行動』(笑)

プリゴジーヌ『散逸構造』(笑)

ファインマン 物理学講義(笑)


これだもんねぇ。

他にも何十冊か持っていたようだがあとは推して知るべし。


で、トドメ


日経サイエンス(笑)


ニュートン(笑)


大学受験過去問東大京大理系)(笑)


数学セミナー!!(笑)


もう俺、こんな連中と面識あるなんて、恥ずかしいね。

あいつらよく平気で外を歩いてるもんだ。

せめてNatureくらい読めよな、

文系(特に法)なんだからさwwwwwwwwwwwwwwwwwwwwwww



2008-12-03

諸君 私はサイエンスが 好きだ

諸君 私はサイエンスが 好きだ

諸君 私はサイエンスが 大好きだ

帰納法が好きだ 演繹法が好きだ 思考実験が好きだ 実証実験が好きだ 

代数学が好きだ 関数解析学が好きだ 集合論が好きだ 統計学が好きだ 情報理論が好きだ

Unixで Linuxで MatLabで Mathematicaで C++で Javaで 紙と鉛筆で 口頭で

全てのプラットフォームで行われる ありとあらゆる論証行為が 大好きだ

数列をならべた 並行スレッドの一斉実行が ファン音と共に他のプロセスを reniceるのが好きだ

ふと思いついて計算してみたモデルが 想定していた通りの結果をはじき出した時など 心がおどる

Athlonの64bit(フィア・ウンド・ゼヒツィヒ)でフェドラ7を使うのが好きだ

某M木先生さー、何でもかんでも「脳科学で説明出来ます」って擬似科学入ってるよねー、と言われた時は 我が意を得た様な気持ちだった

ラグランジュの未定乗数で ハミルトン原理の拘束が表現されるのを知るのは 楽しい

ゾラッティの ミラーニューロンに関する基調講演を聞いた時など 感動すら覚えた

還元主義のfMRI万能論者達の発表が 質問攻めと共に叩きのめされる様などはもう たまらない

居並ぶフックス型微分方程式が 私の押したEnterキーとともに

金切り声を上げるCPUに あっという間に計算されるのも最高だ

哀れなM$オフィスユーザー達が 雑な数式エディタで 健気にもフィッツヒュー・南雲モデルの方程式を書こうとしている時に

PCフリーズして ドキュメント過去時間分のテキストごと木端微塵にされるのを見ると TeX使いは ちょっと優越感を覚える

露助教授に「あなたの理論は間違ってる事が(ロシアで)20年以上前に証明されていてねぇ」と指摘されるのが好きだ(ラボ内だったからな)

必死に守るはずだった仮説が反証され 実験の不備が指摘され 論文リジェクトされるのは とてもとても 悲しいものだ

米国の物量(研究金的意味で)にものを言わせた研究所に 自分と同じ研究内容を先にPLoSに発表されるのだけは 勘弁だ

締切り(近々だと1月に1こ)に追いかけられ 太平洋標準時だからこっちの朝4時まで大丈夫!と徹夜するのは 体力的にそろそろ無理だ

諸君 私は博士課程を 地獄の様な博士課程を 望んでいる

諸君 教授に付き従う 戦友(D論的な意味で)諸君 

君達は 一体 何を 望んでいる?

更なる 論文発表を望むか? 

情け容赦のない 鬼の様なピアレビューを 望むか?

並列処理の限りを尽くし 三千世界CPUを焼き尽くす 嵐の様なシミュレーションを 望むか?

D論(クリーク)!! D論(カフェイン)!! D論(メンタルヘルス)!!」

よろしい

ならば学会発表)だ

我々は満身の 力をこめて 今まさに スライドを指し示さんとする レーザーポインタ

だが この暗い研究室の中で 3年もの間 堪え続けて来た 我々に

ただの論文発表ではもはや足りない!!

大論争を!! 

一心不乱の大論争を!!

。。。。えー、

「男が出来る気がしない」と、 http://anond.hatelabo.jp/20081127063438 を書いた増田ですが、

どーせ釣りだろと言われた/予想以上にHELLSINGに反応してくれた人がいた/NIPSに持ってかなきゃ行けないスライドがいつまでたっても終わんない/ので、ついカッとなってやった。反省はしている。

アーカイブ ヘルプ
ログイン ユーザー登録
ようこそ ゲスト さん