「代数幾何学」を含む日記 RSS

はてなキーワード: 代数幾何学とは

2024-11-13

位相的弦理論レベル分け説明

1. 小学6年生向け

位相的弦理論は、宇宙不思議を解き明かそうとする特別な考え方です。普通物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。

例えば、ドーナツマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。

この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます

これを使って、科学者たちは宇宙秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たち身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?

2. 大学生向け

位相的弦理論は、通常の弦理論単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。

位相的弦理論には主に2つのバージョンがあります

1. A-モデル:ケーラー幾何学と関連し、2次元世界面を標的空間の正則曲線に写像することを扱います

2. B-モデル:複素幾何学と関連し、標的空間の複素構造依存します。

これらのモデルは、時空の幾何学構造と密接に関連しており、特にラビ・ヤウ多様体上で定義されることが多いです。

位相的弦理論重要性は以下の点にあります

1. 複雑な弦理論計算を簡略化できる

2. 弦理論数学構造をより明確に理解できる

3. ミラー対称性など、重要数学概念との関連がある

4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す

この理論は、物理学数学境界領域位置し、両分野に大きな影響を与えています。例えば、代数幾何学圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています

大学生の段階では、位相的弦理論基本的概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論物理学数学の橋渡しをどのように行っているかを把握することも大切です。

3. 大学院生向け

位相的弦理論は、N=(2,2) 超対称性を持つ2次元非線形シグマモデルから導出されます。この理論は、通常の弦理論世界面を位相的にツイストすることで得られます

ツイスト操作の結果:

1. 作用素に異なるスピンが与えられる

2. 理論局所的な自由度を失う

3. エネルギー運動量テンソルがQEXACT形式になる

A-モデルとB-モデルの主な特徴:

A-モデル

B-モデル

モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデル等価であるという驚くべき予想です。

位相的弦理論の応用:

1. 量子コホモロジー環の計算

2. グロモフ・ウィッテン不変量の導出

3. ミラー対称性検証

4. 代数幾何学問題への新しいアプローチ

大学院生レベルでは、これらの概念数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論現代理論物理学数学にどのような影響を与えているか理解することも重要です。

4. 専門家向け

位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルツイストすることで得られます

A-ツイストとB-ツイストの詳細:

1. A-ツイスト

- スピン接続をR-電荷修正: ψ+ → ψ+, ψ- → ψ-dz

- 結果として得られるA-モデルは、ケーラー構造にの依存

2. B-ツイスト

- スピン接続を異なるR-電荷修正: ψ+ → ψ+dz, ψ- → ψ-

- 結果として得られるB-モデルは、複素構造にの依存

モデルの相関関数

A-モデル

ここで、M はモジュライ空間evi評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルオイラー

B-モデル

ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式Ai は変形を表す場

ミラー対称性

A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジーミラー対称性の中心的な問題です。

最近の発展:

1. 位相的弦理論とGopakumar-Vafa不変量の関係

2. 位相重力理論との関連

3. 非可換幾何学への応用

4. 位相M理論提案

専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論数学構造を完全に理解し、新しい研究方向を提案できることも重要です。

5. 廃人向け

位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識必要です:

1. 導来圏理論

- 導来Fukaya圏とD^b(Coh(X))の圏同値

- 安定∞圏を用いた一般

- 非可換幾何学との関連

2. ホモロジーミラー対称性

- Kontsevich予想の一般

- SYZ予想との関連

- 非アーベル的ホッジ理論への応用

3. 位相的場理論の高次元化:

- 4次元Donaldson-Witten理論

- 6次元(2,0)理論との関係

- コホモロジーホール代数との関連

4. 位相的弦理論と量子重力

- AdS/CFT対応との関連

- 位相M理論の構築

- 非摂動効果系統的理解

5. 代数幾何学との深い関係

- 導来代数幾何学の応用

- モチーフ理論との関連

- 圏化されたDT不変量

6. 位相的弦理論数学的基礎:

- ∞圏論を用いた定式化

- 位相的再正規化群の理論

- 量子群位相的弦理論関係

7. 最新の研究トピック

- 位相的弦理論と量子情報理論の接点

- 位相的弦理論を用いた宇宙論的特異点研究

- 非可換幾何学に基づく位相的弦理論一般

8. 計算技術

- 位相的頂点作用素代数の応用

- 局所技法の高度な応用

- 数値的手法機械学習の導入

これらの概念を完全に理解し、独自研究を行うためには、数学理論物理学両分野において、最先端知識技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます

位相的弦理論の「廃人レベルでは、これらの高度な概念自在に操り、分野の境界を押し広げる革新的研究を行うことが期待されます。また、この理論が量子重力宇宙論といった基礎物理学根本的な問題にどのような洞察を与えるかを探求することも重要です。

2024-10-29

楕円曲線暗号について

楕円曲線暗号(Elliptic Curve Cryptography, ECC)は、数論と代数幾何学に基づく公開鍵暗号方式である

特に有限体上の楕円曲線構造を利用して安全性を確保する手法として知られ、RSA暗号に比べて少ないビット数で同等の安全性を実現できる。

1. 楕円曲線の基本構造

楕円曲線とは、一般的に次の形で表される三次方程式により定義される:

y² = x³ + ax + b

ここで、係数 a, b は、定義する体 F 上の元である特に上記の式が体 F 上で非退化(特異点存在しない)であるためには、判別式ゼロでないこと、すなわち

4a³ + 27b² ≠ 0

であることが必要条件となる。

楕円曲線上の点の集合 E(F) は、無限遠点 O を加えた集合として群構造を持ち、加法演算定義できる。加法演算は、点の「和」を取る操作であり、次の規則に従う:

このように、楕円曲線上の点の集合はアーベル群となる。この群の構造活用し、暗号方式が構築される。

2. 有限体上の楕円曲線

実際の暗号応用では、有限体 Fₚ(p は素数)や拡大体 F₂ᵐ 上の楕円曲線使用する。有限体上の楕円曲線 E(Fₚ) は有限個の点から構成され、その数は次のようにハッセの定理によって評価される:

|E(Fₚ)| = p + 1 - t,

ただし、トレース t は |t| ≤ 2√p を満たす。

3. 楕円曲線ディフィー・ヘルマン鍵共有

ECC代表的な応用として、楕円曲線上のディフィー・ヘルマン鍵共有(ECDH)がある。これを次のように構成する:

1. 楕円曲線 E と基点 G ∈ E(Fₚ) を公開する。

2. ユーザーAは秘密鍵 a を選び、公開鍵として P_A = aG計算して送信する。

3. ユーザーBは秘密鍵 b を選び、公開鍵として P_B = bG を計算して送信する。

4. 双方は共通鍵として K = aP_B = bP_A = abG を計算する。

この手法安全性は、離散対数問題特に楕円曲線離散対数問題(ECDLP)」に依存している。楕円曲線上の点 P と Q = nP が与えられたとき、係数 n を求めるのは計算的に難しいため、敵対者秘密鍵を推測するのが困難である

4. 楕円曲線暗号安全性

楕円曲線暗号安全性の要因としては、以下の点が挙げられる:

5. 数論と代数幾何の関連

楕円曲線理論には数論的な性質が深く関わっている。

例えば、リーマン予想特別場合であるヴェイユ予想は、有限体上の楕円曲線の点の数に対する評価を与え、暗号設計の基礎となっている。

さらに、現代暗号学では楕円曲線とモジュラー形式関係ガロア表現といった高度な数論的構造研究されており、これらが量子耐性を持つ新たな暗号方式研究に貢献している。

楕円曲線暗号はこのようにして、抽象代数学、数論、代数幾何学の融合によって成り立ち、安全性効率を両立させた暗号技術として広く利用されている。

2024-09-27

M理論超弦理論数学宇宙仮説

超弦理論数学構造

超弦理論は、2次元の共形場理論を基礎としている。この理論は、以下の数学的要素で構成される:

1. 共形対称性: 2次元世界面上で定義される場の理論で、局所的なスケール不変性を持つ。これは無限次元のビラソロ代数によって記述される。

[Lₘ, Lₙ] = (m - n)Lₘ₊ₙ + c/12 m(m² - 1)δₘ₊ₙ,₀

ここで、Lₘはビラソロ演算子、cは中心電荷である

2. モジュライ空間: 弦の運動記述する際、リーマン面のモジュライ空間重要役割を果たす。これは複素多様体の変形理論と密接に関連している。

3. カラビ・ヤウ多様体: 超対称性を保つためには、6次元余剰次元がカラビ・ヤウ多様体の形をしている必要がある。これは複素3次元のケーラー多様体で、リッチ曲率テンソルが消えるという特徴を持つ。

Rᵢⱼ̄ = 0

M理論数学構造

M理論11次元の超重力理論を基礎としており、以下の数学的要素が重要である

1. 超多様体: 11次元の時空は超多様体として記述され、通常の座標に加えてグラスマン数値の座標を持つ。

2. E₈ × E₈ ゲージ群: ヘテロ型E₈理論との関連で、E₈ × E₈という例外リー群重要役割を果たす。

3. G₂ホロノミー: M理論コンパクト化において、7次元の内部空間がG₂ホロノミーを持つ多様体である必要がある。これは、7次元多様体上の3-形式ωが以下の条件を満たす場合である

dω = d*ω = 0

ここで、*はHodgeスタ演算子である

数学宇宙仮説との関連

数学宇宙仮説の観点からM理論超弦理論は以下のように解釈できる:

1. 圏論視点: これらの理論は、物理的実在圏論的な言語記述しようとする試みと見なせる。例えば、弦の世界面のカテゴリーと、それに対応する共形場理論カテゴリーの間の対応関係重要である

2. 代数幾何学的構造: カラビ・ヤウ多様体例外リー群などの登場は、宇宙根本構造代数幾何学的な性質を持つ可能性を示唆している。

3. 双対性: 様々な双対性(例:T双対性、S双対性ミラー対称性)の存在は、異なる数学記述が同じ物理的実在表現可能であることを示唆し、プラトン数学構造多様性示唆している。

4. 高次圏論: ブレーンの階層構造は、高次圏論的な記述自然対応する。n-カテゴリー概念が、p-ブレーンの理論と密接に関連している。

5. 無限次元リー代数: 弦理論における無限次元対称性(例:カッツ・ムーディ代数)の出現は、宇宙基本法則無限次元数学構造に基づいている可能性を示唆している。

これらの理論示唆する数学構造の豊かさと複雑さは、数学宇宙仮説が主張するような、宇宙根本的な数学性質を支持する証拠解釈できる。

しかし、これらの理論実験検証の困難さは、数学構造物理的実在関係についての哲学的問題を提起し続けている。

2024-09-26

超弦理論の諸定理

∞-圏論的基礎

(∞,∞)-圏と高次対称性

定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。

定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:

M ≃ Ω∞-∞TFT(Bord∞)

ここで、TFT位相的場理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。

命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論臨界次元対応する。

導来高次スタック

定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。

定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。

高次代数構造量子化

∞-オペラッドと弦場理論

定義 3: 弦場理論代数構造を、∞-オペラッド O の代数として定式化する。

定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化存在し、Maurer-Cartan方程式

MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}

の解空間として特徴付けられる。

因子化∞-代数と量子場理論

定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。

定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。

導来∞-圏と高次双対性

導来代数幾何学ミラー対称性

定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:

ShvCat(X) ≃ Fuk∞(Y)

ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である

スペクトラル代数幾何学位相的弦理論

定義 5: M理論コンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。

定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。

高次幾何学量子化

∞-微分形式一般化されたコホモロジー

定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。

定理 7 (Hopkins-Singer): M理論量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:

[G/2π] ∈ TMF(M)

ここで、TMF は位相的モジュラー形式スペクトラムである

非可換∞-幾何学と量子重力

定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である

定理 8 (Connes-Marcolli-Ševera): 量子重力有効作用は、適切に定義されたスペクトラル∞-作用臨界点として特徴付けられる。

∞-モチーフ理論と弦理論

定義 8: 弦理論真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。

予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。

高次圏論的量子場理論

定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:

Z: Bord∞ → (∞,∞)-Cat

定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間量子化された時空の∞-圏を与える。

2024-09-23

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-18

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-17

超弦理論M理論に基づく最初宇宙モデル

1. 位相的弦理論圏論的定式化

最初宇宙の基本構造記述するために、位相的弦理論圏論的定式化を用いる。

定義: 位相的A模型圏論記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である

対象: (L, E, ∇)

射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))

この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。

2. 導来代数幾何学と高次圏論

最初宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。

定義: 導来スタック 𝔛 を以下のように定義する:

𝔛: (cdga⁰)ᵒᵖ → sSet

ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である

𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。

3. モチーフ理論宇宙位相構造

宇宙の大規模構造位相性質記述するために、モチーフ理論適用する。

定義: スキーム X に対して、モチーフコホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。

これは、Voevodsky の三角DM(k, ℚ) 内での Hom として表現される:

Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])

ここで M(X) は X のモチーフである

4. 高次ゲージ理論と ∞-Lie 代数

最初宇宙の高次ゲージ構造記述するために、∞-Lie 代数を用いる。

定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコ恒等式を満たすものである

L∞ 代数の Maurer-Cartan 方程式

Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0

この方程式の解は、高次ゲージ理論古典的配位を表す。

5. 圏値場の理論と量子重力

最初宇宙の量子重力効果記述するために、圏値場の理論を用いる。

定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:

Z: Cob(n) → 𝒞

特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。

6. 量子エントロピーと von Neumann 代数

最初宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。

定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:

S(ω || φ) = {

tr(ρω (log ρω - log ρφ)) if ω ≪ φ

+∞ otherwise

}

ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である

7. 非可換幾何学と量子時空

最初宇宙の量子時空構造記述するために、非可換幾何学を用いる。

定義: スペクトル三重項 (A, H, D)

非可換多様体上の積分は以下のように定義される:

∫_X f ds = Tr_ω(f|D|⁻ᵈ)

ここで Tr_ω は Dixmier トレースである

2024-09-15

量子力学観測問題

量子力学観測問題を、高次圏論、導来代数幾何学、および量子位相場の理論統合した枠組みで定式化する。

基礎構造として、(∞,n)-圏 C を導入し、その導来スタック Spec(C) を考える。観測過程表現するために、Spec(C) 上の導来量子群スタック G を定義する。G の余代数構造を (Δ: O(G) → O(G) ⊗L O(G), ε: O(G) → O(Spec(C))) とする。ここで ⊗L は導来テンソル積を表す。

観測を ω: O(G) → O(Spec(C)) とし、観測後の状態を (id ⊗L ω) ∘ Δ: O(G) → O(G) で表す。エントロピーを高次von Neumannエントロピー一般化として、S: RMap(O(G), O(G)) → Sp^n として定義する。ここで RMap は導来写像空間Sp^n は n-fold loop space のスペクトラム対象である観測によるエントロピー減少は S((id ⊗L ω) ∘ Δ) < S(id) で表現される。

デコヒーレンスを表す完全正(∞,n)-関手 D: RMap(O(G), O(G)) → RMap(O(G), O(G)) を導入し、S(D(f)) > S(f) for f ∈ RMap(O(G), O(G)) とする。

観測者の知識状態表現するために、G-余加群スタック M を導入する。観測過程における知識状態の変化を (ω ⊗L id) ∘ ρ: M → M で表す。ここで ρ: M → O(G) ⊗L M は余作用である

分岐表現するために、O(G) の余イデアルの(∞,n)-族 {Ii}i∈I を導入する。各分岐対応する射影を πi: O(G) → O(G)/LIi とする。観測者の知識による分岐選択は、自然(∞,n)-変換 η: id → ∏i∈I ((O(G)/LIi) ⊗L -) として表現される。

知識状態の重ね合わせは、M の余積構造 δ: M → M ⊗L M を用いて表現される。

さらに、量子位相場の理論との統合のために、Lurie の圏化された量子場の理論の枠組みを採用する。n次元ボルディズム(∞,n)-圏 Bord_n に対し、量子場理論を表す対称モノイダル(∞,n)-関手 Z: Bord_n → C と定義する。

観測過程は、この関手の値域における状態制限として記述される。具体的には、閉じたn-1次元多様体 Σ に対する状態 φ: Z(Σ) → O(Spec(C)) を考え、ボルディズム W: Σ → Σ' に対する制限 φ|W: Z(W) → O(Spec(C)) を観測過程として解釈する。

2024-09-10

M理論幾何学でござる

M理論幾何学を最も抽象的かつ厳密に記述するには、圏論アプローチが不可欠でござる。

導来圏とM理論

M理論幾何学構造は、三角圏の枠組みで捉えることができるのでござる。特に、カラビ・ヤウ多様体 X の導来圏 D⁰(Coh(X)) が中心的役割を果たすのでござる。

定義:D⁰(Coh(X)) は連接層の有界導来圏であり、以下の性質を持つのでござる:

1. 対象:連接層の複体

2. 射:準同型の導来クラス

3. 三角構造:完全三角形の存在

この圏上で、Fourier-向井変換 Φ: D⁰(Coh(X)) → D⁰(Coh(X̂)) が定義され、これがミラー対称性数学的基礎となるのでござる。

A∞圏と位相的弦理論

M理論位相的側面は、A∞圏を用いて記述されるのでござる。

定義:A∞圏 𝒜 は以下の要素で構成されるのでござる:

1. 対象の集合 Ob(𝒜)

2. 各対の対象 X,Y に対する次数付きベクトル空間 hom𝒜(X,Y)

3. 次数 2-n の演算 mₙ: hom𝒜(Xₙ₋₁,Xₙ) ⊗ ⋯ ⊗ hom𝒜(X₀,X₁) → hom𝒜(X₀,Xₙ)

これらは以下のA∞関係式を満たすのでござる:

∑ᵣ₊ₛ₊ₜ₌ₙ (-1)ʳ⁺ˢᵗ mᵣ₊₁₊ₜ(1⊗ʳ ⊗ mₛ ⊗ 1⊗ᵗ) = 0

この構造は、Fukaya圏の基礎となり、シンプレクティック幾何学M理論を結びつけるのでござる。

高次圏論M理論

(∞,1)-圏

M理論の完全な幾何学記述には、高次圏論特に(∞,1)-圏が必要でござる。

定義:(∞,1)-圏 C は以下の要素で構成されるのでござる:

1. 対象の∞-グルーポイド Ob(C)

2. 各対の対象 x,y に対する写像空間 MapC(x,y)(これも∞-グルーポイド)

3. 合成則 MapC(y,z) × MapC(x,y) → MapC(x,z)(これはホモトピー整合的)

この構造により、M理論における高次ゲージ変換や高次対称性を厳密に扱うことが可能になるのでござる。

導来代数幾何学

M理論幾何学は、導来代数幾何学の枠組みでより深く理解できるのでござる。

定義:導来スタック X は、以下の関手として定義されるのでござる:

X: CAlg𝔻 → sSet

ここで、CAlg𝔻 は単体的可換環の∞-圏、sSet は単体的集合の∞-圏でござる。

この枠組みにおいて、M理論のモジュライ空間は導来スタックとして記述され、その特異性や高次構造を厳密に扱うことが可能になるのでござる。

量子コホモロジーとGromov-Witten不変量

M理論幾何学的側面は、量子コホモロジー環 QH*(X) を通じて深く理解されるのでござる。

定義:QH*(X) = H*(X) ⊗ ℂ[[q]] で、積構造は以下で与えられるのでござる:

α *q β = ∑A∈H₂(X,ℤ) (α *A β) qᴬ

ここで、*A はGromov-Witten不変量によって定義される積でござる:

α *A β = ∑γ ⟨α, β, γ∨⟩₀,₃,A γ

この構造は、M理論における量子補正を厳密に記述し、ミラー対称性数学的基礎を与えるのでござる。

2024-09-08

M理論ビッグバン関係

M理論を用いたビッグバンの数理的解明は、現代理論物理学最前線位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題アプローチする。

1. 多様体位相構造

M理論の基底となる11次元時空は、以下のように定義される:

(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)

ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である

2. 超対称性とスピノー構造

M理論超対称性は、以下のスピノー方程式で特徴づけられる:

D_μ ε = 0

ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノーである

3. 膜力学作用汎関数

M2-ブレーンの動力学は、以下のNambu-Goto作用記述される:

S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))

ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である

4. ビッグバンのトポロジカルモデル

ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:

M¹¹ ⊃ M₁ ∪ M₂ → M'

ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。

5. 重力階層問題

11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:

1/G₄ = Vol(X⁷)/G₁₁

ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である

6. アノマリー相殺整合性条件

M理論の無矛盾性は、以下のBianchi恒等式アノマリー相殺条件によって保証される:

dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]

ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である

7. 多元宇宙位相的分類

多元宇宙構造は、以下のような圏論的枠組みで記述される:

Multiverse ≅ lim→ (M_i, φ_ij)

ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である

これらの数学構造は、M理論を用いたビッグバン理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験検証可能性問題が残されている。今後、代数幾何学位相的場理論などの高度な数学手法を用いた更なる研究が期待される。

2024-08-30

レベル分け説明: SVDとはなにか

SVD (特異値分解) について、異なる難易度説明します。

レベル1: 幼児向け

SVDは、大きな絵を小さなパーツに分ける魔法のようなものです。この魔法を使うと、複雑な絵をシンプルな形に分けることができます。例えば、虹色の絵を赤、青、黄色の3つの基本的な色に分けるようなものです。

レベル2: 大学生向け

SVD (Singular Value Decomposition) は、行列を3つの特別行列の積に分解する線形代数手法です。

A = UΣV^T

ここで:

SVDは次元削減、ノイズ除去、データ圧縮などの応用があります。主成分分析 (PCA) とも密接な関係があり、多変量解析や機械学習で広く使用されています

レベル3: 専門家向け

SVDは任意複素数体上の m×n 行列 A に対して以下の分解を提供します:

A = UΣV*

ここで:

主要な理論性質:

1. A の階数 r は、非ゼロ特異値の数に等しい

2. A の核空間は V の r+1 列目から n 列目によってスパンされる

3. A の値域は U の最初の r 列によってスパンされる

4. σ_i^2 は A*A (または AA*) の固有値

5. ||A||_2 = σ_1, ||A||_F = √(Σσ_i^2)

数値計算観点:

応用:

1. 低ランク行列近似 (Eckart–Young–Mirsky の定理)

2. 総最小二乗問題の解法

3. 擬似逆行列 (Moore-Penrose) の計算

4. 条件数評価: κ(A) = σ_1 / σ_r

高度な話題:

レベル4: 廃人向け

1. 関数解析一般化:

  • コンパクト作用素 T: X → Y (X, Y はHilbert空間) に対するSVD
  • Schmidt分解との関連: T = Σσ_n(·,v_n)u_n
  • 特異値の漸近挙動: Weyl's inequality と Lidskii's theorem

2. 無限次元への拡張:

3. 微分幾何学解釈:

4. 代数幾何学視点:

5. 高次元データ解析:

6. 量子アルゴリズム:

7. 非線形SVD:

8. 確率論的アプローチ:

9. 計算複雑性理論:

10. 偏微分方程式との関連:

- SVDを用いた固有値問題の解法 (Sturm-Liouville問題等)

- 非線形PDEの低次元モデル化 (Proper Orthogonal Decomposition)

2024-08-28

抽象代数学の魅力とは

抽象代数学は、代数的構造を探求する数学の一分野である

その核心は、具体的な数や図形から離れ、演算性質のものに着目することにある。

群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元存在し、各元に逆元が存在するという公理を満たす代数的構造である

この抽象的な定義により、整数加法群(Z,+)や置換群S_nなど、一見異なる対象統一的に扱うことが可能となる。

群論の発展は、ガロア理論を生み出し、5次以上の代数方程式代数的解法が存在しないことの証明につながった。

環論では、可換環を中心に、イデアルや素イデアル概念が導入され、代数幾何学との深い関連が明らかになった。

体論は、代数的閉体や有限体の理論を通じて、ガロア理論暗号理論の基礎を提供している。

これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。

例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造標準模型対称性記述している。

また、抽象代数学概念圏論によってさら一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。

圏論視点は、代数位相幾何学代数的K理論などの現代数学の発展に不可欠な役割果たしている。

抽象代数学の魅力は、その普遍性と深遠さにある。

単純な公理から出発し、複雑な数学構造を解明していく過程は、純粋数学醍醐味であり、同時に自然界の根本法則理解する上で重要洞察を与えてくれるのである

2024-08-19

ヒルベルト空間分析

1. 多様体としてのヒルベルト空間

ヒルベルト空間無限次元線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態位相特性を解析することが可能となる。

2. スキームとしてのヒルベルト空間

スキーム理論代数幾何学概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に自己共役作用素スペクトル分解を考慮し、各点を極大イデアル対応させる。このアプローチにより、量子状態観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態代数特性を解析することが可能となる。

3. Hom(-, S)による記述

ヒルベルト空間における射は、線形作用素として表現される。特にユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。

4. コホモロジー

ヒルベルト空間コホモロジーは、量子系のトポロジカル不変量を解析するための手段提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態パラメータ空間における幾何学位相性質記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。

5. 局所的断片からの再構築

ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態表現簡素化し、特定物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要役割を果たす。

6. 構造を保つ変換の群

ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性記述し、保存量や選択則の解析に利用される。例えば、回転対称性角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。

7. 距離空間としてのヒルベルト空間

ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態類似性を測る指標として用いられ、状態間の遷移確率やフィデリティ計算に利用される。これにより、量子状態距離特性を解析することが可能となる。

2024-06-05

幾何学ラングランズ、ホバノフホモロジー、弦理論

エドワードウィッテンは、幾何学的なラングランズ・プログラムの一部とアイデアとの関係について「電気磁気の二重性と幾何学的なラングランズ・プログラム」を執筆した。

ラングランズ プログラムに関する背景: 1967 年、ロバート ラングランズは、当時同研究所教授だったアンドレ ヴェイユ17ページの手書き手紙を書き、その中で大統一理論提案した。それは、数論、代数幾何学、保型形式理論における一見無関係概念を関連付ける。読みやすくするためにヴェイユ要望作成されたこ手紙タイプされたコピーは、1960 年代後半から 1970 年代にかけて数学者の間で広く流通し、数学者たちは 40 年以上にわたりラングランズ プログラムとして総称されるその予想に取り組んできた。

理論ゲージ理論双対性の背景を持つ物理学者は、カプースチンとの幾何学ラングランズに関する論文理解できるが、ほとんどの物理学者にとって、このトピックは詳細すぎて興味をそそるものではない。

一方で、数学者にとっては興味深いテーマだが、場の量子論や弦理論の背景には馴染みのない部分が多すぎるため、理解するのは困難(厳密に定式化するのは困難)。

短期的にどのような進歩があれば、数学者にとって幾何学的なラングランズのゲージ理論解釈が利用できるようになるのかを見極めるのは、実際には非常に難しい。

ゲージ理論とホバノフホモロジー数学者によって認識され評価されるのを見られるだろうか。

数論者が好むものの多くは物理学に登場している。

理論研究者として取り組んでいる物理理論が数論として興味深いものであることを示す多くのことがわかっている。

ここ数年、4 次元の超対称ゲージ理論とその親戚である 6 次元に取り組んでいる物理学者は、臨界レベルでの共形場理論役割に関わるいくつかの発見を行っているため、この点を解決する時期が来たのかもしれない。

過去20年間、数学物理学相互作用は非常に豊かであり続けただけでなく、その多様性が発展したが、私は恥ずかしいことにほとんど理解できていない。

これは今後も続くだろう、それが続く理由は場の量子論と弦理論がどういうわけか豊かな数学秘密を持っているからだ。

これらの秘密の一部が表面化すると、物理学者にとってはしばしば驚きとなることがよくある。

なぜなら、超弦理論物理学として正しく理解していないから。つまり、その背後にある核となる考え方を理解していない。

数学者は場の量子論を完全に理解することができていないため、そこから得られる事柄は驚くべきものである

したがって、生み出される物理学数学アイデアは長い間驚くべきものになるだろう。

1990 年代に、さまざまな弦理論が非摂動双対性によって統合されており、弦理論ある意味本質的量子力学的なものであることが明らかになり、より広い視野を得ることができた。

しかし、その根底にある原理が明確になっていない主題について、さまざまな側面を数学者物理学者研究である

今日若者にはさらに大きな発見のチャンスがある。

2023-08-23

日本研究は広く浅くやるべきなのか

判断材料をChat GPT先生に教えてもらいました。

関連ブクマhttps://b.hatena.ne.jp/entry/s/mainichi.jp/articles/20230822/k00/00m/040/214000c

アメリカ日本で盛んな分野のトップ5は?

アメリカ日本大学における理系研究で、盛んな分野のトップ5をそれぞれ箇条書きにしてお答えします。

アメリカ大学で盛んな理系研究分野は以下の通りです。


日本大学で盛んな理系研究分野は以下の通りです。




アメリカ日本理系大学研究成果が経済に結びつきやすいのはどちら? その理由は?

一般的に言えば、アメリカの方が日本よりも大学研究経済に与える貢献度は高いと考えられます。その理由として、以下の点が挙げられます

アメリカでは、大学研究成果を産業界に移転する仕組みが整っており、特にベンチャー企業の創出や成長につながっています。例えば、スタンフォード大学マサチューセッツ工科大学MIT)などは、シリコンバレーボストンエリアといったイノベーションの中心地に位置し、多くのハイテク企業スタートアップ企業連携しています。また、大学発ベンチャーの成功事例としては、グーグルフェイスブックなどが有名です。

日本では、大学研究成果を産業界に移転する仕組みが十分ではなく、特にベンチャー企業の創出や成長につながっていません。例えば、日本大学発ベンチャーは、アメリカ欧州と比べて少なく、また規模も小さいです。その原因としては、日本大学知的財産管理ライセンス交渉能力が低いことや、日本産業界が新技術や新製品に対する需要が低いことなどが挙げられます

以上のことからアメリカでは大学研究経済に与える貢献度は高く、日本では低いと言えるでしょう。もちろん、これはあくま一般的な傾向であり、日本でも優れた大学発ベンチャーは存在しますし、アメリカでも大学研究経済に貢献しない場合もありますしかし、日本アメリカから学ぶべき点が多いと思います


日本アメリカにおいて、お金になりやす研究分野をそれぞれ挙げてください。

アメリカ日本において、お金を生みやす研究の分野は、それぞれ異なる傾向があります

一般的に、アメリカでは、医学生命科学コンピュータ情報科学工学などの分野研究開発費の多くを占めており、高い経済効果や社会的影響力を持っています1。

日本では、自動車ロボットなどの製造業に関連する分野研究開発費の大部分を占めており、国際競争力を高めていますしかし、日本研究開発費は、GDP比で3.3%と先進国の中で低い水準にとどまっており、基礎研究や新領域研究に対する投資が不足しているという課題があります。そのため、日本では、エネルギー環境生命科学医療人工知能ビッグデータなどの分野において、イノベーションを生み出すための研究開発費の拡充が必要とされています

2023-06-08

理系大学院生教養ってどのくらいまで行くんだろう

最近理系大学生レベルは?

理工系だと、

量子力学とか、解析力学とか、熱力学は、普通に院試で出るから普通に理解しているでしょう。

でも、数学とかは一般的院試レベルだと、線形代数微積テクニックくらいか

  

欲しいレベル

自分個人とか、アカデミアのレベルとかではなく、

普通に教養レベル理系知識は、どの程度だといい感じになりそうか。

研究必要なら学べばいいのはその通りだけど。

  

個人的には、

電弱理論とか、代数幾何学、楕円関数レベル教養みたいなのがいいなあって思う。

う〜ん。なかなか難しいのかなあ。

モノすげー簡単に書いてくれる、マセマレベル代数幾何学、電弱理論の本ってないのかな。

2023-03-11

anond:20230311192703

↓どこの大学

経済学部文系の人でも、リーマン曲線の概念理解することは可能です。ただし、リーマン曲線は数学的に高度な概念であり、複素解析幾何学代数幾何学などの専門的な数学分野における概念であるため、学習には時間努力必要です。

リーマン曲線を学習するためには、まず複素数複素平面などの基礎的な概念理解する必要があります。その後、代数幾何学複素解析幾何学の基礎的な知識を身につけることが望ましいです。これらの分野は、経済学部で必修科目として扱われることは稀であり、自己学習や別の学部大学院での履修が必要となる場合があります

しかし、経済学部文系の人でも、リーマン曲線が経済学において重要役割果たしていることや、リーマン曲線を用いた代数幾何学手法経済学に応用されていることを理解することは可能です。また、経済学において重要概念モデル理解するためには、数学的な知識を身につけることが役立つため、数学的な概念に対して理解を深めることは重要です。

リーマン曲線を扱う経済学部なんて限られてくるんじゃないか

2023-03-09

anond:20230309113735

おれ、chatGPT使えるようになって真っ先に望月新一ABC予想についての海外数学コミュニティでの受け止めについて聞いてみたんだけど、その時はまあまあちゃんとした内容(通り一遍ではあるが)が返ってきた。いま望月新一について尋ねてみたらこんなのが戻ってきた。

望月新一(もちづきしんいち)は、日本漫画家であり、推理小説家でもあります。彼は、特に名探偵コナン』の作者として知られています

望月新一は、1965年6月4日青森県青森市で生まれました。彼は若いから漫画小説を書くことに情熱を持っており、高校生の頃から漫画家としてのキャリアスタートさせました。

1994年に、望月新一は『名探偵コナン』を連載し始めました。この漫画は、高校生探偵江戸川コナンが、毒を飲まされて小さくなってしまった身体を利用して、事件解決するストーリーです。この作品は、世界中で大きな成功を収め、アニメ化映画化など、さまざまなメディアで展開されました。

望月新一は、漫画だけでなく、小説でも才能を発揮しています。『名探偵コナン』の小説版をはじめ、数多くの推理小説執筆しています

また、望月新一は、漫画小説以外にも、音楽にも興味を持っており、自ら作曲した楽曲使用したアニメーション作品もあります

望月新一は、日本漫画小説界に多大な影響を与えた偉大な作家の一人であり、彼の作品は今でも多くの人々に愛されています

いや数学者だろ、とツッコミを入れたら以下。もっともらしいがデタラメ多い、というか、望月拓郎とごた混ぜになっている。

望月新一あきら・もちづき)は、日本数学者であり、代数幾何学を専門としています。主に、モチヅキ理論モチヅキ加群モチヅキ因子などの研究で知られています

代数幾何学は、代数学幾何学の融合であり、代数方程式幾何学的な対象である代数多様体を研究する数学の分野です。望月新一は、代数多様体の幾何学性質研究する際に、代数手法を用いて新しい理論を発展させました。

具体的には、望月新一は、代数多様体上の「D加群」と呼ばれる特殊加群研究し、それを用いて、代数多様体の幾何学性質を解明しました。また、望月新一は、代数多様体上の「モチヅキ因子」と呼ばれるもの定義し、これを用いて、代数多様体の双有理幾何学に関する新しい理論を構築しました。

望月新一の業績は、代数幾何学の発展に大きく寄与し、現在でも代数幾何学の分野で重要研究が行われています

chatgpt、数日前の大地震守備範囲

先日トルコ大地震が起こりましたよね

はい2022年3月3日トルコ大地震が発生しました。この地震は、マグニチュードが7.4と非常に大きく、エーゲ海沿岸部首都アンカラなど広範囲被害が及んでいます。この地震により、多数の死傷者や被災者が発生しており、現在も救助・復興活動が続いています

でも望月新一名前は知らないという。

数学者望月新一がいますよね

はい望月新一(もちづきしんいち)は日本数学者であり、代数幾何学モチーフ理論などの分野で業績を残した研究者です。代表的な業績としては、ミラー対称性予想の証明に向けた研究などが挙げられます。また、一般向けの著作や講演活動積極的に行い、幅広い層からの支持を得ていました。望月新一氏は2018年急逝されました。

死んでねーよ

グーグル並みにネットからクロールして学習してるってなら望月新一ぐらい知ってそうなもんだけど。

2021-07-29

ヒルベルトガロアに並ぶ男性数学者現代にもいる

https://anond.hatelabo.jp/20210728111035

上記エントリヒルベルトガロアに並ぶ数学者について質問されたので例示するけど

その前に何故ヒルベルトガロアを挙げたかについても説明します。

まずヒルベルト集合論に基づく20世紀前半の様々な数学理論の構築に重大な貢献をした人として挙げた。

一方で現在は高次圏論に基づく数学理論の構築が進んでるけど

その中でヒルベルトみたいな貢献をしている人としてジェイコブ・ルーリーという数学者がいる。

現在代数理論根本的な部分から新しい基礎を作り位相的場理論代数幾何学の理論の構築まで行ってるのは

メチャクチャ凄い数学者だと思う。

次にガロア方程式が解ける解けないという性質の裏に隠れた対称性を見事に発見した発想力の凄い人として挙げたけど

この隠れた対称性を見つけるという発想は現在の様々な数学理論に影響が及んでいる。

現在ガロアのような発想をした人としてエドワードウィッテンという数学者がいる。

彼は物理学者という意見も多いが数学者としても凄いのは間違いないと思う。

ウィッテンは様々な幾何的な不変量に対して物理的なモデルを考える事で別の求め方が出来る事を発見した。

こうして今まで重要と考えられてきた様々な幾何的な対象について物理的なモデルを用いて

今まで分かって無かった性質を見つけるという方法現在幾何において重要なやり方として大きく発展している。

この多大な影響を及ぼした発想をしたウィッテンメチャクチャ凄い数学者だと思う。

以上現代数学者ヒルベルトくらい凄い数学者の一人としてジェイコブ・ルーリー

ガロアくらい凄い数学者の一人としてエドワードウィッテンを挙げました。

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

 
ログイン ユーザー登録
ようこそ ゲスト さん