「複素数」を含む日記 RSS

はてなキーワード: 複素数とは

2021-02-14

anond:20210214181423

ところがセンター後期になると、どこから出すか事前に予告してしまう。

かならず統計は第5問に出すとか、すべて予告されてしまったため、攻略簡単になった。

2025年には複素数平面とベクトル二次曲線はすべて理系数学になるのだが、

あれ25年前は文系数学なんだよ。

40年前は、理系は「微分方程式写像行列と一次変換」がセットで入ってたんだからね。

50年前は、群論とポワソン分布オペレーションリサーチと初等幾何学フォイエルバッハ定理)も入っていた。

あれ全部ないんだよ。

ないほうが難しいということはあり得ない。

この部分無視した読解だよねそれ

2021-02-13

anond:20210213160230

大学受験なんか10年以上前っていうガチ文系の俺がよんだだけでノー勉強で数学とか7割は取れそうなくらい簡単なんだけど

くそ簡単でも、範囲が広かった。

センター試験初期は予告して出題するシステムではなく、どこの分野から出るかは秘匿されていた。

このため「秘匿するから易しく」という判断だった。

ところがセンター後期になると、どこから出すか事前に予告してしまう。

かならず統計は第5問に出すとか、すべて予告されてしまったため、攻略簡単になった。

2025年には複素数平面とベクトル二次曲線はすべて理系数学になるのだが、

あれ25年前は文系数学なんだよ。

40年前は、理系は「微分方程式写像行列と一次変換」がセットで入ってたんだからね。

50年前は、群論とポワソン分布オペレーションリサーチと初等幾何学フォイエルバッハ定理)も入っていた。

あれ全部ないんだよ。

ないほうが難しいということはあり得ない。

氷河期世代が何を考えていたかは、発見教授法による数学シリーズを読むとよいだろう。

2021-02-10

anond:20210210022128

30年前はそんなことはなかったんですよ。

30年前に文系数学だったベクトル複素数平面と二次曲線って、全部2025年から理系数学でしょ。

そりゃハードルこんだけ下げればそうなりますよ。あたりまえですよ。

2021-02-04

出身地差別

https://anond.hatelabo.jp/20190330172246

なぜ日本から出身地差別がなくならないのかというと、都民の席が大学受験によって、都民以外の人間に奪われる可能性があるからだ。

昭和期にほとんどそんなのはなかった。

昭和時代田舎から大学受験をしたところで国公立に落ち、親は浪人を許さないので近場の私大文系に滑り込むのが田舎常識だった。

親が大学受験システムを何も理解していない。当たり前だ。中卒あるいは高卒なのだから

昭和期に、頭がいいか理系に行った田舎の大先輩というのは、私のそばには名古屋大学理学部に現役で入れた1人しかおらず、逆算しても30年間いなかった計算になる。

私は高校理系に進学したが「おまえすごいな」「なんでできるの」といわれたことは今でも忘れられない。

「えっ?数Iができたからだよ」「そんなのできない」「しょっぱなからつまずいた」

当時は複素数高校1年で、現課程とは違っていた。今は数IIである

それなら、こんなにゆとられてしまった現課程を田舎から完璧理解する人間がいて、都民落ちこぼれたらどうなるのだろうか。

30年以上前とは比較にならないほどの屈辱が、その落ちこぼれに与えられる可能性がある。

こうして、出身地差別は強化されてしまう。

2021-01-26

anond:20210126022611

2025年に減る。

まずベクトル文系からなくなる。

その次に整数文系からなくなる。整数問題はおそらく理系数学には出ると思うが、文系では出さないように言われるだろう。

二次導関数がなくなる。

オイラーの多面体定理がなくなる。

すっかすかになる。

おそらくいくつかの大学では講義崩壊する。

複素数平面は21年前は文系数学である

2025年ゆとりりすかすか。

anond:20180921120216

2x2行列の代わりに同型の複素数平面が入った。

ゆとり以降はカリキュラム増えてばっかりで、減ってない。

2021-01-05

たとえば、自分たち自衛官というだけで、冗談にならないことはある。

ドッキリといって

道路で人にモデルガンを向けた

ドッキリですから

あとで一緒湯件名説得

どうして、ドッキリってわかってくれないんだろう

僕にはそっちのほうがドッキリだね

ドッキリなら自衛官が、モデルガンを人に向けてもいいという考え方が

僕にはドッキリ

そのドッキリがおきた道をとおっていた、自分が悪い

ひっこみがつかない

というけど

もうひっこんでも

ひっこまなくても

おなじ

次数100以上ある複素数平面で裏返して

2020-09-01

出題ミス

もう何年も前の話だが中2の数学定期試験で出題ミスがあった

詳細は覚えていないが、a + b = -1, ab = 3のとき、以下の式の値を求めよみたいな問題

前提を満たす実数存在しないことに気がついて中2の当時は困惑したのだが、とりあえず答えを出すことはできる

これは一体どういうことなのかとあとで調べたのが複素数との出会いになった

2020-08-27

中学高校数学にいわゆるユークリッド幾何学不要

ここでいう「ユークリッド幾何学」とは、座標空間ベクトル三角関数微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在高校数学カリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。

ユークリッド幾何学不要だと思う理由単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズル適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間ベクトル三角関数微分積分などの手法一般的現象記述する上で必ず必要になります

もちろん、たとえば三角比定義するには、「三角形内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学性質必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:

OABに対して、|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|cos∠AOB

証明してしまえば、原理的にはユークリッド幾何学問題は解けます。それ以降は、ユークリッド幾何学的な手法問題設定にこだわる必要はないと思いますし、実際それで問題ありません。

現状、少なくない時間ユークリッド幾何学に費やされています数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています

高校数学では以下のような事項が重要だと思いますユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。

これらの分野は数学手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的問題数学物理問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベル重要だと真剣に主張する人っていらっしゃるでしょうか?

ユークリッド幾何学初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います

  1. ユークリッド幾何学では証明の考え方を学ぶことができる
  2. 図形問題代数や解析の問題よりも直感的で親しみやす
  3. ユークリッド幾何学問題を解くことで「地頭」「数学直観」などが鍛えられる
  4. ユークリッド幾何学歴史的重要である

しかし、これらはいずれも正鵠を射ていません。

まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題証明されるべきものからです。高校教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離公式三角関数加法定理微分ライプニッツ則や部分積分公式など、どれも証明されていますそもそも数学問題はすべて証明問題です。たとえば、関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないか定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学けが特に証明の考え方を学ぶのに有効だという理由はありません。

②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトル微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理メネラウス定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学手法問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法一般方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学手法にこだわる理由はありません。

③は単なる個人思い込みであり、科学的な根拠はありません。そもそも数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要数学素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学特別視する理由になっていません。

④もおかしいです。そもそも歴史的重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的重要ならば教えるというなら、古代バビロニアインド中国などの数学特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わず数学記述するべき理由があるでしょうか。

数学重要なのはその内容であるはずです。ユークリッド幾何学擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います

大昔は代数計算方程式の解法(に対応するもの)は作図問題帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法重要な結果を導きやす方法を用いればよいに決まっています数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。

たとえば、放物線は直線と点から距離が等しい点の軌跡として定義することもできますが、初等教育重要なのは明らかに2次関数グラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから最初から2次関数グラフとして導入するのは理にかなっています数学教育の題材は「計算問題証明問題か」などではなく、このような観点で取捨選択すべきです。

三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学連立方程式を学ぶのに小学生鶴亀算を教えるのと同様に、無駄なことをしていると思います

----

(*1)

現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに

(e_i, e_j) = δ_i,j (クロネッカーデルタ)

内積定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間ベクトル微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています

(*2)

数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題ガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識必要」というわけではありません。

2020-07-19

anond:20200719183110

法令上最低限度な電気工事士2種だけだったりするなら知らない可能性はあるが、

電験3種を一つでもとっているなら虚数複素数を知らない訳が無いだろ

2020-07-17

虚数単位iの意味が分からないとか言ってる奴

学問進歩というのは、前の時代にはできなかったことが当たり前になっていくということだ。

Gaussの時代には複素数は明示的に使われていなかったが、今は使われるのだから、単に認めればよい。

頭の中で歴史を繰り返してる奴は無駄なことをしている。

2020-06-10

基本的数学で覚えなければいけないことは無い

たとえば、数学がまともにできる人で、(a + b)(c + d)の展開公式を覚えている人はいないだろう。分配法則を知っていれば計算できるからだ。そして、多項式に対して分配法則が成り立つことは(もちろん厳密に証明することはできるが)自然感覚であり、これも覚える必要はない。

こんな自明な例に限らず、数学で何かを覚えることが、遠回りであり、本末転倒であることを説明する。

また、読解力の低い奴のために補足しておくが、「覚えなくていい」というのは「勉強しなくていい」ということではない。まあ、こういう勘違いをする奴らはこの一文自体読めないか無駄なんだが、少なくとも俺が「ここに書いてあるだろボケ」と言うための根拠にはなる。

定義は覚える必要があるか

無い。

定義公理は他の事実から導かれないので覚える必要がある」という意見があるが、間違いだ。

それは単に論理的に導かれないというだけであって、考えている問題に対してそのように概念定義すべき理由存在するからだ。

たとえば、複素数実数係数の2次方程式の解として生じるからi^2=-1と導入するのは自然であるし、三角形は2角と1辺の長さが決まれば決定されるから三角比定義自然ものである

そもそも、どのような経緯でそのような概念が導入されるのか理解することは、別に数学に限らず重要である

定理公式は覚える必要があるか

無い。

数学公式はすべて論理的に導出できるのだから、覚える必要はない。特に高校数学程度の定理公式などに大して証明が難しいものは無いのだから、瞬時に正しく導けなければいけない。

また、大抵の公式は、その意味理解できていればいくつかの具体例で試せば分かる。たとえば、三角関数加法定理は、cos(π/2+θ)とsin(π/2+θ)さえ分かれば求められる。

用語を覚える必要があるか

無い。

用語などはどうでもいい。

たとえば、平方完成という名前を知らなくても、二次方程式の解の公式の導出や、二次関数極値問題が解ければ全く問題ない。

問題の解き方は覚える必要があるか

無い。

そもそも数学理解度を確かめるために具体的な問題があるのであって、問題の解き方を覚えるのは完全に本末転倒である

その問題で使われている概念定理、解答の論理展開などをしっかり理解することが本質的である

2020-06-05

Galois拡大って何?

分離的かつ正規代数拡大のことです。

集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。

  1. 任意のa, b, c∈Kに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Kが存在して、任意のa∈Kに対して、a + 0 = 0 + a = a
  3. 任意のa∈Kに対して、ある元-a∈Kが存在して、a + (-a) = (-a) + a = 0
  4. 任意のa, b∈Kに対して、a + b = b + a
  5. 任意のa, b, c∈Kに対して、(ab)c = a(bc)
  6. 任意のa, b, c∈Kに対して、a(b + c) = ab + ac、(a + b)c = ac + bc
  7. ある元1∈Kが存在して、任意のa∈Kに対して、1a = a1 = a
  8. 任意のa∈K\{0}に対して、ある元a^(-1)∈Kが存在して、aa^(-1) = a^(-1)a = 1
  9. 任意のa, b∈Kに対して、ab = ba

体の例
  • 有理数全体の集合Q、実数全体の集合R、複素数全体の集合Cは、通常の和と積について体になる。一方、整数全体の集合Zは体にはならない。
  • 素数pについて、整数をpで割ったあまりの集合Z/pZ := {0, 1, ..., p-1}は、自然な和と積によって体になる。

代数拡大

K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。

C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である

L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。

そのような多項式存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。

代数拡大の例

C/Rは代数拡大である

なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式

X^2 -(z + z*)X + zz* = 0

の解だから

Kを体とする。K上の任意多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで

F(X) = a(X - a1)...(X - an)

と一次の積に分解する。このようなLのうち最小のもの存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である

最後の一文を証明する。

LをFの分解体とする。Lの部分環Vを

K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))

の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるからaiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元ベクトル空間である

Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である

Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである

さて、Lの元でK上のいかなる多項式の根にならないもの存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□

上の証明から特に、KにFの1つの根αを添加した体K(α)は、Kの代数拡大体である。このような拡大を単拡大という。


拡大次数と自己同型群

L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。

M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。

α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。

[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つもの存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。

Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。

任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。


Galois拡大

L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。

Galois拡大の例

L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。

[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。

α∉Kより、K⊕KαはK上2次元ベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。

σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□

C/RはGalois拡大。

Gal(C/R)={id, σ: z→z*}

平方因子のない有理数αに対して、Q(√α)/QはGalois拡大。

Gal(Q(√α)/Q) = {id, σ: 1→1, √α→-√α}。


正規拡大

L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。

L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである

K(α)/Kが正規拡大で、さらにαの最小多項式重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。

nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である


分離拡大

L/Kを有限拡大とする。任意のα∈Lの最小多項式重根を持たないとき、L/Kは分離拡大という。

体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。


Q, R, Cの標数は0である。Z/pZの標数はpである

標数0の体および有限体の代数拡大はすべて分離拡大である

F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。

実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。

Galois拡大であることの言い換え

有限拡大L/KがGalois拡大であるためには、L/Kが分離拡大かつ正規拡大となることが必要十分である


Galois拡大の性質

L/KをGalois拡大、Gal(L/K)をGalois群とする。

K⊂M⊂Lとなる体Mを、L/Kの中間体という。

部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。

逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。

次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。

L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。

  • 部分群H⊂Gal(L/K)に対して、K⊂L^H⊂L
  • 中間体Mに対して、Aut(L/M)⊂Gal(L/K)

さらに、以下の性質を満たす。

  • H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
  • K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
  • 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
  • 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
  • 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。

K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである

この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。

2020-05-22

中学高校数学ユークリッド幾何学不要である

中学高校数学から、いわゆるユークリッド幾何学廃止してよい。理由単純明快で、何の役にも立たないからだ。

大学に入ったら、どの学部に行っても、「補助線を引いて、相似な三角形を作って〜」などと言ったパズルをやることは絶対にない。メネラウス定理高校卒業以降(高校数学指導以外で)使ったことのある現代はいないだろう。こういうことは、別に高等数学知識の無い高校生でも、常識で考えて分かると思う。たとえば工学で、弧長や面積を測定する機器必要になったとして、補助線パズル適用できるごく一部の多角形などしか測れないのでは話にならない。現代数学および科学技術を支えているのは、三角関数ベクトル微分積分などを基礎とする解析的な手法である

もちろん、たとえば三角比定義するには「三角形内角の和は180°である」とか「2角が等しい三角形は相似である」等のユークリッド幾何学定理必要になる。そういうものを全て廃止せよと言っているわけではない。しかし、余弦定理まで証明してしまえば、原理的にはユークリッド幾何学問題は解ける。また、実用上もそれで問題ない。したがって、余弦定理を初等的な方法で示したら、ユークリッド幾何学手法はお役御免でよい。

高校数学では、以下の分野が特に重要だと思われる。

これらはいずれも、高等数学を学ぶ際に欠かせない基礎となる分野である。仮にユークリッド幾何学が何らかの場面で使われるとしても、いくらなんでも微分積分などと同等以上に重要だと主張する人はいないだろう。

現在、これらの分野は十分に教えられていない。微分方程式と一次変換は現在2020年5月)のカリキュラムでは教えられておらず、ベクトル文系範囲から除かれ、代わりにほとんど内容の無い統計分野が教えられている。また、高校生にもなって、コンパスと定規による作図みたいなくだらないことをやっている。本当に、どうかしているとしか言い様がない。

ユークリッド幾何学を教えるべきとする根拠代表的ものは、証明の考えに触れられるというものだ。つまり代数や解析は計算主体であるが、ユークリッド幾何学証明主体なので、数学的な思考力を鍛えられるというものだ。

しかし、これは明らかに間違っている。別にユークリッド幾何学の分野に限らず、数学のあらゆる命題証明されなければならないからだ。実際、高校数学教科書を読めば、三角関数加法定理や、微分ライプニッツ則など、証明が載っている。そもそも数学問題は全て証明問題である関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であることを定義に基づいて示さねばならない。数学思考力を養うのに、ユークリッド幾何学が他の分野より効果的だという根拠は無い。

2020-04-29

anond:20200429110739

いやクォータニオン自体理解できんだろ。

複素数理解できても、それでなぜ回転を表せるのかを理解できる中学生はめちゃ頭いいランクだわ。

2019-12-08

anond:20191202184126

虚数の性欲かー、実のところみんな複素数の性欲を持っていてお互いの組み合わせによって正や負になったりするんだろうか

まあ複素数同士かけ合わせたら大抵複素数になって実数になることは少ないはずだけど

2019-10-19

anond:20191019214635

10進数採用している根拠は指の数だ。

指の数次第では8進数12進数がメインの世界になっていた可能性がある。

8進数がメインの世界なら指数対数が、12進数がメインの世界ならベクトル複素数平面のが、それぞれ得意な人が今より増えてたかもね。

ただ現状の指の本数で8や12を採択すると、幼児期の初期教育に難がある可能性があり、10でやる方がトータルでは効果なのだろう。

人類の指の数が5本ずつなのがねー

2019-08-21

まず、円の中心を求めます

ケーキを切るのは難しいので、円の面積を等分することを考える。

何等分するにしても、円の中心を求めるとその後が簡単になる。

適当に弦を取る。これをABとする。ABをAの方に延長してAB=AB’となる点B’を取る。

BB’について垂直二等分線の作図を行い円と交わった点をCとする。BCが直径となるので二等分できた。BCについて垂直二等分線を書くと中心が求まり四等分が出来る。中心をOとすると、BからOBと同じ長さの点を円上に取ると正三角形が出来る。中心の角度は60°なので、この方法により6等分出来る。従って三等分も出来る。2,3,4等分出来ているので、次は5等分だが、これには1の原始5乗根を求める。複素数になるけれども、実部が作図できれば、そこから垂直二等分線を描いて円との交点を求めればいい。

2019-01-07

三角関数いらない」っていう前にやることあるだろ、橋下と乙武

元素記号サインコサインタンジェント、どこで使うの?使ったためしがない」と橋下徹氏が語ったことについて、話題だ。橋下氏は「最低限学ばなきゃいけないこと」以外の例としてこれらを挙げており、「(学ぶかどうかは)選択制でいいと思う」としている。

ソースhttps://abematimes.com/posts/5496054

これに対してネット(主にTwitter)では、「あれにも使うしこれにも使う。お前の人生で使ってこなかっただけだろう」と非難轟々。

橋下はインターネットで調べてから発言しような

同氏は同じ場で「勉強のできる人たちは"そういうのも教養だ"というが、今はインターネットで色々なことは調べられる」と語ったそうだが、まずは自分以外の人たちが元素記号三角関数をどのように使っているのか、インターネットで調べてから発言すべきだったといえる。

まあ、数学学習指導要領の中でも例えば複素数平面や合同式あたりは入ったり外れたりしているので、そういう意味では「何が学習指導要領として重要か」という議論はあってもいいだろう(氏は複素数平面も合同式も使ったことがないかもしれないが)。

まりインターネットでろくに調べもせずに元素記号三角関数を「いらない教養」として発言してしまたこ自体が橋下氏の失敗であることに他ならないのだが、その辺には目をつむって最大限良い方向に気持ちを汲み取ってあげると、氏は「教養かいろいろあるけどさ、いろんな子がいるんだしみんなに画一的教育じゃなくてその子特性を伸ばせる教育作ろうよ」と言いたかったのだと思う。

そう取れるのは、話の前段で乙武氏が「型破りな子を伸ばせる人材として、今までの教員免許の枠組み以外から教員を一部採用するべきだ」(意訳)と主張しているからだ。

乙武はもうちょっと具体案出そうな

乙武氏は新しい採用方法を取るべき理由について、「(現システムでは)免許を取る人はめちゃくちゃ真面目な人ばかりで、レールの上を歩くような人しか教員になれない」から、型破りな子を伸ばせないとしている。

まり乙武氏は、教員免許を取る教養がなくても教師として教えることができてもいいんじゃないかと主張している。

スポーツにのめり込むのもいい。旅に明け暮れるのもいい。

その上で、大学教員免許を取る過程も踏めない人が常勤教師として「型破りな子たち」(学校に何人いるんだ)に義務教育で何を教えるのだろうか。きっと元素記号三角関数よりも大事な新しい単元があるのだろうから、ぜひ乙武氏には具体的な案を提示してもらいたい。さぞ義務教育期間にやるべき大切なことなんだろう。

そもそも乙武氏の「教員免許を取るためには、大学で相当な数の授業を取らなければいけない。その時点で、何かにのめり込んだり、旅に行きまくったような人たちは厳しい」という発言自体が、教養を放り投げると未来職業選択肢が狭まるという当たり前の事実を映していて香ばしい

教員へのモチベーションがあるのなら、旅に明け暮れて30代になろうが、その後大学に入って勉学に励めば教員免許は取れる。

強いて問題を挙げるなら、その後の教員採用試験合格するか、そして職場イレギュラー人材を受け入れられるかどうかという方ではないだろうか。

てか、現状でも大学教員免許はないし、教養を付けた型破りな子は大学で良い先生に巡り会えれば良い方向に伸びるんじゃないんですかね、知らんけど。

そういう大学に受かる程度の教養はつけようぜ。あるいはAO入試とかもあるんだからさ。

2018-11-17

数学検定2級に小1で合格ってめっちゃ凄い

 新聞に、数学検定1級に最年少で合格した子のことが載っていた。11歳で

合格したんだとか…。数学検定1級といえば、大学教養レベルであり、合格率が

1割を切るという難関資格。とにかく凄いとしか言いようがない。



 でも、もっと凄いなあ、と感じたのは、小1の時に、数学検定2級に合格した、と

いうこと。数学検定2級は高2レベルで、ベクトルや数列、複素数なども入っている。

この内容を小1で理解できた、ということが信じられない。



 数学検定は1次試験計算で、2次試験記述式の問題になっている。百歩譲って

1次試験であれば、計算問題なので、公文なんかに通って訓練しまくったら合格できる可能性は

無くはないと思われるが、それでは2次試験には通らない。だって、2次試験

問題意味数学的な概念ちゃん理解しないと解けないようになっているから。

まず、小1だと、漢字が読めないのと、単語意味が分からないのとで、問題文を読むこと

すら普通不可能だろうし…。数学能力だけでなく、一定国語力も必要になってくる。



 いったい、どうやってこの子は、そんな短期間の間に、数学力と国語力を磨いたんだろうか…。

何か、とてつもない才能を持ってるのではないか?と思う。



 あと、これだけの能力を持ってたら、学校の授業がとてつもなくヒマそう。日本には

飛び級制度がないので、大学入学まで、ヒマな授業に付き合わないといけないことに

なりそう。何らかの方法で、才能を伸ばしてあげる方法はないものか…と思う。

2018-09-22

anond:20180922033236

どれでもなくて、学生が学ぶ範囲を超えない程度のもの。だから実数範囲ax^2+bx+c=0について。

複素数入れてもいいんだけど、じゃあ四元数入れてもいいじゃねーかって(個人的には)なるからなし。

2018-09-20

学習指導要領を読んでから書いてみる

学習指導要領から○○が消えたー。あり得ない。」は、教わった世代ノスタルジーを含むケースが多い。

ベクトルが消えた!物理が教えられない!」 → 「力の合成くらい物理教師が頑張れ。どうせ微積を使わない高校物理なんか制限だらけだ。」

行列が消えた!3DCG機械学習理解できない!」 → 「大学線形代数で頑張らせろ。どうせ高校行列なんてタダの計算練習パズル行列式も固有値も教えない程度だ。」

数学Cがなくなっていた時代がかわいそう」 → 「数学Ⅲ 3単位数学C 2単位を新しい数学Ⅲ 5単位として教えていただけ。どうせ数学C取ってる奴はほぼ数学Ⅲやってたんだし。」

個人的には思うのだが、「理工系人材には高校数学の○○が必要だ」というのは高校数学に期待しすぎ。

あとは90%以上の人間高校まで進学する時代に、共通教養として必要な内容が高校数学でしょ?

から確率だけではなく統計ガンガン数学に入れているわけ。

ちなみに新しい学習指導要領でも復活する数学Cまで学習すればベクトルあるよ? 高校物理力学に間に合わないだけで。

今の学習指導要領数学Iに統計が入り、箱ひげ図や四分位図が必修だけど、40代以下はこんなのやってないっしょ。

今度はそれらは中学数学下りていく。統計の検定まで高校数学に入ってくる。

新しい学習指導要領で学ぶ内容は、これら。

数学Ⅰ:① 数と式  ② 図形と計量  ③ 二次関数  ④ データ分析(仮説検定の考え方を含む)

数学A:① 図形の性質  ②場合の数と確率期待値を含む) ③数学人間活動整数ユークリッドの互除法、2進数など)

数学Ⅱ:① いろいろな式  ② 図形と方程式指数関数対数関数 ④ 三角関数  ⑤ 微分積分の考え

数学B:① 数列 ② 統計的な推測(区間推定及び仮説検定を含む) ③数学社会生活(散布図に表したデータを一次関数などとみなして処理することも扱う)

数学Ⅲ:① 極限 ② 微分法 ③積分

数学C:① ベクトル ② 平面上の曲線と複素数平面 ③ 数学的な表現の工夫(工夫された統計グラフや離散グラフ行列などを取り扱う)

ベクトルあるよ?

行列あるよ?

今は、一般受験以外に多様な方法大学入学してくる。既習範囲理解確認や基礎の定着のために、まともな理工系大学なら昨今は非一般受験組にはe-ラーニングなどで補習や指導をしている。

そういう意味では、大学から教養部を廃止して、早くから専門バカを作り出す改革が失敗だったのでは?

教養部があったら高校学習内容を研究して大学の初年度数学の改善を続けられる教員が残れたのでは。

ログイン ユーザー登録
ようこそ ゲスト さん