「場の理論」を含む日記 RSS

はてなキーワード: 場の理論とは

2024-11-03

コボルディズムとパンツダイアグラム

コボルディズム(cobordism)とパンツダイアグラム関係は、トポロジカルな観点からポロジカル量子場理論(TQFT)や弦理論世界重要役割を果たす。コボルディズムは、異なる次元を持つ多様体の間にどのような接続可能かを調べる手法であり、特にポロジカルな場の理論において境界を介した変形(つまり、どのようにして異なる多様体が連結されるか)を表すために利用される。

パンツダイアグラムは、名前の通り「パンツ」形状をした2次元多様体で、弦理論においては2つの弦が1つに結合したり、1つの弦が2つに分裂したりするプロセス視覚的に表現する。このようなプロセスコボルディズムの一種であり、3つの境界を持つリーマン面として記述できる。特にパンツダイアグラムは、物理的には弦の結合や分裂を表現し、数学的には2次元多様体コボルディズムとして扱うことができる。

具体的には、コボルディズムの考え方に基づき、あるリーマン面が異なる境界条件を持つ複数の弦に分解される場合、それをパンツダイアグラム視覚化することができる。例えば、パンツ状のコボルディズムは、3つの穴(境界)を持ち、それぞれの境界が異なる弦の状態対応する。このようにして、パンツダイアグラムは、弦理論におけるトポロジカルな変換をコボルディズムを通して幾何学的に示す手法の一つと見なされる。

さらに、トポロジカルM理論やTQFTの枠組みでは、コボルディズムやパンツダイアグラム理論構造や不変量を計算するための基本的モジュールとして扱われる。これにより、特定物理プロセス(たとえば、弦の結合・分裂やパス積分構成)が、数学的にはコボルディズムの空間での操作として表現されることになる。

2024-10-27

M理論とはなにか

M理論は、弦理論進化形であり、最終理論候補として位置づけられている。

特にM理論11次元の時空を基盤としており、5種類の超弦理論がこの11次元時空で統合される特性を持つ。

この統合は、双対性と呼ばれる関係によって実現される。

これらの理論には、M2膜と呼ばれる2次元膜や、M5膜と呼ばれる5次元膜が含まれる。

M2膜とM5膜上の場の理論自由度は、それぞれ膜の枚数 N に依存し、具体的には:

この関係は、特に行列模型の解析において重要であり、自由エネルギー評価にも影響を与える。例えば、M2膜の場合自由エネルギー F は次のように表される:

F ∝ N^(3/2)

ABJM理論は、M2膜を記述するための3次元理論であり、超対称チャーン・サイモン理論を基盤としている。

この理論では行列模型が用いられ、分配関数計算が行われる。ABJM行列模型における分配関数 Z は以下の形をとる:

Z = ∫ ∏(i=1 to N) dμ_i ∏(j=1 to N) dν_j (∏(i < j) sinh^2((μ_i - μ_j)/2) sinh^2((ν_i - ν_j)/2)) / (∏(i,j) cosh((μ_i - ν_j)/2))

さらに、インスタント効果と呼ばれる非摂動的な効果にも焦点が当てられている。

これらは膜インスタントンと弦インスタントンとして分類され、特定パラメータ空間で発散が相殺されることが示されている。

インスタントンと弦インスタントンの寄与は次のように表される:

e^(-S_膜) + e^(-S_弦)

ABJM行列模型の解析は可積分性の観点からも行われており、その解は代数曲線の量子化条件に関連している。

このことにより、背景時空と対応するカラビ・ヤウ多様体が非摂動的な補正項として厳密に求まる。

素粒子物理学の最終理論とは

素粒子物理学における最終理論存在疑問視されている。

最終理論とは、自然界のすべての相互作用を高エネルギー領域も含めて正確に記述する理論である

素粒子物理学は、原子から陽子中性子クォークレプトンへと進化してきたが、その探求はいつか終わるのだろうか。

現在研究では、ゲージ群や超対称性による統一が見られ、これらは無限に続くものではなく、打ち止めになる構造を持つと考えられている。

暫定的な答えは超弦理論であり、これが最終理論ならば一意的であることが望ましい。10次元時空における超弦理論は5種類存在し、これらは11次元時空上のM理論を通じて互いに等価である

M理論は超重力理論と関連し、M2膜とM5膜が存在することがわかっている。

しかし、このM理論は超重力理論から得られる知見以外は謎に包まれている。

N枚のM2膜やM5膜上の場の理論はそれぞれN^{3/2}やN^3に比例する自由度を持つが、その具体的な内容は不明である

最近M2膜を記述する場の理論が超対称チャーン・サイモン理論であることが発見され、この自由エネルギーもN^{3/2}に比例し、超重力理論予言再現する。

高い超対称性により経路積分行列模型帰着し、著者らの研究ではM2膜の行列モデルが詳しく調べられた。

摂動項の展開係数には無数の発散点があるが、それらは格子状に相殺されている。

この結果は、「弦理論は弦のみではなく様々な膜も含む」を実現していると解釈できる。

この行列模型位相的弦理論や可積分非線形微分方程式と同様の構造を持つことが確認されており、それに基づいてM理論の全容が解明されつつある。

2024-09-27

M理論超弦理論数学宇宙仮説

超弦理論数学構造

超弦理論は、2次元の共形場理論を基礎としている。この理論は、以下の数学的要素で構成される:

1. 共形対称性: 2次元世界面上で定義される場の理論で、局所的なスケール不変性を持つ。これは無限次元のビラソロ代数によって記述される。

[Lₘ, Lₙ] = (m - n)Lₘ₊ₙ + c/12 m(m² - 1)δₘ₊ₙ,₀

ここで、Lₘはビラソロ演算子、cは中心電荷である

2. モジュライ空間: 弦の運動記述する際、リーマン面のモジュライ空間重要役割を果たす。これは複素多様体の変形理論と密接に関連している。

3. カラビ・ヤウ多様体: 超対称性を保つためには、6次元余剰次元がカラビ・ヤウ多様体の形をしている必要がある。これは複素3次元のケーラー多様体で、リッチ曲率テンソルが消えるという特徴を持つ。

Rᵢⱼ̄ = 0

M理論数学構造

M理論11次元の超重力理論を基礎としており、以下の数学的要素が重要である

1. 超多様体: 11次元の時空は超多様体として記述され、通常の座標に加えてグラスマン数値の座標を持つ。

2. E₈ × E₈ ゲージ群: ヘテロ型E₈理論との関連で、E₈ × E₈という例外リー群重要役割を果たす。

3. G₂ホロノミー: M理論コンパクト化において、7次元の内部空間がG₂ホロノミーを持つ多様体である必要がある。これは、7次元多様体上の3-形式ωが以下の条件を満たす場合である

dω = d*ω = 0

ここで、*はHodgeスタ演算子である

数学宇宙仮説との関連

数学宇宙仮説の観点からM理論超弦理論は以下のように解釈できる:

1. 圏論視点: これらの理論は、物理的実在圏論的な言語記述しようとする試みと見なせる。例えば、弦の世界面のカテゴリーと、それに対応する共形場理論カテゴリーの間の対応関係重要である

2. 代数幾何学的構造: カラビ・ヤウ多様体例外リー群などの登場は、宇宙根本構造代数幾何学的な性質を持つ可能性を示唆している。

3. 双対性: 様々な双対性(例:T双対性、S双対性ミラー対称性)の存在は、異なる数学記述が同じ物理的実在表現可能であることを示唆し、プラトン数学構造多様性示唆している。

4. 高次圏論: ブレーンの階層構造は、高次圏論的な記述自然対応する。n-カテゴリー概念が、p-ブレーンの理論と密接に関連している。

5. 無限次元リー代数: 弦理論における無限次元対称性(例:カッツ・ムーディ代数)の出現は、宇宙基本法則無限次元数学構造に基づいている可能性を示唆している。

これらの理論示唆する数学構造の豊かさと複雑さは、数学宇宙仮説が主張するような、宇宙根本的な数学性質を支持する証拠解釈できる。

しかし、これらの理論実験検証の困難さは、数学構造物理的実在関係についての哲学的問題を提起し続けている。

2024-09-23

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-18

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

2024-09-17

超弦理論M理論に基づく最初宇宙モデル

1. 位相的弦理論圏論的定式化

最初宇宙の基本構造記述するために、位相的弦理論圏論的定式化を用いる。

定義: 位相的A模型圏論記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である

対象: (L, E, ∇)

射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))

この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。

2. 導来代数幾何学と高次圏論

最初宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。

定義: 導来スタック 𝔛 を以下のように定義する:

𝔛: (cdga⁰)ᵒᵖ → sSet

ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である

𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。

3. モチーフ理論宇宙位相構造

宇宙の大規模構造位相性質記述するために、モチーフ理論適用する。

定義: スキーム X に対して、モチーフコホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。

これは、Voevodsky の三角DM(k, ℚ) 内での Hom として表現される:

Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])

ここで M(X) は X のモチーフである

4. 高次ゲージ理論と ∞-Lie 代数

最初宇宙の高次ゲージ構造記述するために、∞-Lie 代数を用いる。

定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコ恒等式を満たすものである

L∞ 代数の Maurer-Cartan 方程式

Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0

この方程式の解は、高次ゲージ理論古典的配位を表す。

5. 圏値場の理論と量子重力

最初宇宙の量子重力効果記述するために、圏値場の理論を用いる。

定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:

Z: Cob(n) → 𝒞

特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。

6. 量子エントロピーと von Neumann 代数

最初宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。

定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:

S(ω || φ) = {

tr(ρω (log ρω - log ρφ)) if ω ≪ φ

+∞ otherwise

}

ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である

7. 非可換幾何学と量子時空

最初宇宙の量子時空構造記述するために、非可換幾何学を用いる。

定義: スペクトル三重項 (A, H, D)

非可換多様体上の積分は以下のように定義される:

∫_X f ds = Tr_ω(f|D|⁻ᵈ)

ここで Tr_ω は Dixmier トレースである

2024-09-16

情報存在関係

情報存在関係を数理化するために、高次圏論ホモトピー型理論、および量子場の理論統合した形式化を提案する。

まず、(∞,∞)-圏 C を考える。この圏の n-射は n 次元情報構造表現し、これらの間の高次の関係性を捉える。存在表現するために、この (∞,∞)-圏上の (∞,∞)-シーフを考える。

(∞,∞)-シーフ F: C^op → (∞,∞)-Cat を定義し、これを「存在の超シーフ」と呼ぶ。ここで、(∞,∞)-Cat は (∞,∞)-圏の (∞,∞)-圏であるF(X)対象 X に関連付けられた存在可能性の (∞,∞)-圏を表す。

このシーフ F は以下の超層条件を満たす:

任意対象 X と X 上の ∞-被覆 {U_i → X}_i に対して、以下の ∞-極限図式が (∞,∞)-圏の同値となる:

F(X) ≃ lim[∏_i F(U_i) ⇉ ∏_{i,j} F(U_i ×_X U_j) ⇛ ... ]

ここで、多重矢印は無限次元コホモロジー操作を表す。

次に、ホモトピー型理論 (HoTT) の拡張として、∞-累積階層理論 (∞-CUT) を導入する。これにより、以下の型構成子を定義する:

1. Π^∞(x:A)B(x): 無限次元依存積型

2. Σ^∞(x:A)B(x): 無限次元依存和型

3. Id^∞_A(a,b): 無限次元同一性

さらに、高次 univalence 公理採用し、以下を仮定する:

(A ≃^n B) ≃^(n+1) (A =^n B)

ここで、≃^n は n 次の同値関係を、=^n は n 次の同一性型を表す。

量子場理論概念を取り入れるために、圏値場の理論拡張し、(∞,∞)-圏値場 Φ: Bord^(∞,∞) → (∞,∞)-Cat を導入する。ここで、Bord^(∞,∞) は無限次元ボルディズム圏である。この場は以下の公理的場論の条件を満たす:

Φ(M ∐ N) ≃ Φ(M) ⊗ Φ(N)

Φ(∅) ≃ 1

Φ(M^op) ≃ Φ(M)^*

ここで、⊗ は (∞,∞)-圏の対称モノイダ構造を、* は双対を表す。

情報存在の動的な相互作用を捉えるために、導来高次代数概念を用いる。C の導来 (∞,∞)-圏 D(C) を考え、F の導来関手 LF: D(C)^op → D((∞,∞)-Cat) を定義する。情報の流れに沿った存在進化は、以下の超越的余極限として表現される:

hocolim^∞_i LF(X_i)

ここで {X_i} は D(C) 内の無限次元図式である

最後に、情報存在の根源的な関係を捉えるために、トポス理論無限次元拡張した ∞-トポス概念を導入する。∞-トポス E = Sh^∞(C) 内で、存在を表す対象 Ω^∞ を定義し、これを無限次元部分対象分類子とする。

2024-09-15

量子力学観測問題

量子力学観測問題を、高次圏論、導来代数幾何学、および量子位相場の理論統合した枠組みで定式化する。

基礎構造として、(∞,n)-圏 C を導入し、その導来スタック Spec(C) を考える。観測過程表現するために、Spec(C) 上の導来量子群スタック G を定義する。G の余代数構造を (Δ: O(G) → O(G) ⊗L O(G), ε: O(G) → O(Spec(C))) とする。ここで ⊗L は導来テンソル積を表す。

観測を ω: O(G) → O(Spec(C)) とし、観測後の状態を (id ⊗L ω) ∘ Δ: O(G) → O(G) で表す。エントロピーを高次von Neumannエントロピー一般化として、S: RMap(O(G), O(G)) → Sp^n として定義する。ここで RMap は導来写像空間Sp^n は n-fold loop space のスペクトラム対象である観測によるエントロピー減少は S((id ⊗L ω) ∘ Δ) < S(id) で表現される。

デコヒーレンスを表す完全正(∞,n)-関手 D: RMap(O(G), O(G)) → RMap(O(G), O(G)) を導入し、S(D(f)) > S(f) for f ∈ RMap(O(G), O(G)) とする。

観測者の知識状態表現するために、G-余加群スタック M を導入する。観測過程における知識状態の変化を (ω ⊗L id) ∘ ρ: M → M で表す。ここで ρ: M → O(G) ⊗L M は余作用である

分岐表現するために、O(G) の余イデアルの(∞,n)-族 {Ii}i∈I を導入する。各分岐対応する射影を πi: O(G) → O(G)/LIi とする。観測者の知識による分岐選択は、自然(∞,n)-変換 η: id → ∏i∈I ((O(G)/LIi) ⊗L -) として表現される。

知識状態の重ね合わせは、M の余積構造 δ: M → M ⊗L M を用いて表現される。

さらに、量子位相場の理論との統合のために、Lurie の圏化された量子場の理論の枠組みを採用する。n次元ボルディズム(∞,n)-圏 Bord_n に対し、量子場理論を表す対称モノイダル(∞,n)-関手 Z: Bord_n → C と定義する。

観測過程は、この関手の値域における状態制限として記述される。具体的には、閉じたn-1次元多様体 Σ に対する状態 φ: Z(Σ) → O(Spec(C)) を考え、ボルディズム W: Σ → Σ' に対する制限 φ|W: Z(W) → O(Spec(C)) を観測過程として解釈する。

2024-09-13

圏論アプローチによるM理論ラングランズ・プログラム

1. 基礎設定

M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。

2. 導来圏の構築

D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。

3. 幾何ラングランズ対応一般

以下の圏同値を構築する:

Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))

ここで、D_M は M 上の捻れ D-加群の圏である

4. 量子化位相的場理論

M 上の Chern-Simons 理論量子化を考える。その分配関数 Z(M,k) を以下のように定義する:

Z(M,k) = ∫ DA exp(ikCS(A))

ここで、CS(A) は Chern-Simons 作用である

5. モジュラー関手の構築

F: D^b(Bun_G(M)) → Mod(MF_q)

を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である

6. L関数との関連付け

G の既約表現 ρ に対し、以下の等式を予想する:

L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)

ここで、V_ρ は ρ に付随する M 上のローカルである

7. 幾何ラングランズ対応M理論の融合

以下の図式が可換であることを示す:

D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M)))
   |                     |
   |                     |
   F                     F
   |                     |
   V                     V
Mod(MF_q) -----≃----> Mod(MF_q)

8. 高次元化とモチーフ理論

M の次元一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記構成を高次元化する。

結論

以上の構成により、M理論幾何学的構造ラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論モチーフ理論統一的に扱う枠組みを提供するものである

今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性検証重要である

2024-09-12

M理論幾何学

定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。

定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。

定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。

場の理論構造

定義 4: M理論の場の配位空間を以下で定義する:

C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}

ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。

 

定理 1 (作用汎関数): M理論作用 S: C → ℝ は以下で与えられる:

S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dCdC - ψ̄D̸ψ) vol_g

ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である

 

定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:

1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]

2. C-場の方程式: d*dC + 1/2 dCdC = 0

3. Dirac 方程式: D̸ψ = 0

ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである

幾何学構造

定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。

定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:

1. dφ = 0

2. d*φ = 0

3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。

 

定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。

定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である

位相構造

定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。

 

定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である

I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0

ここで p₁(M), p₂(M) は M の Pontryagin 類である

 

定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:

ind(D̸) = ∫_M Â(M) ch(S)

ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である

双対性

定義 9: 位相CW 複体の圏を Topアーベル群の圏を Ab とする。

 

定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:

K(X × S¹) ≅ K(X × S¹)

ここで X は CW 複体、右辺の S¹ は双対円を表す。

 

定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:

H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)

ここで H^k は k 次コホモロジー群、H_k は k 次ホモロジー群を表す。

2024-09-02

ブラックホール情報パラドックスについて

ブラックホール情報パラドックスは、量子場の理論一般相対性理論整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。

1. 量子力学ユニタリ性

量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:

|ψ(t)⟩ = U(t)|ψ(0)⟩

ここで、U(t) は以下の性質を満たす:

U†(t)U(t) = U(t)U†(t) = I

これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。

2. ブラックホール形成蒸発

ブラックホール形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:

rₛ = 2GM/c²

ここで、G は重力定数、M はブラックホール質量、c は光速

ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:

T_H = ℏc³/(8πGMk_B)

ここで、ℏ はプランク定数、k_B はボルツマン定数

3. 情報喪失問題

ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:

|ψᵢ⟩⟨ψᵢ| → ρ_f

これは量子力学ユニタリ性矛盾する。

超弦理論から解決アプローチ

ホログラフィー原理

ホログラフィー原理は、(d+1) 次元重力理論が d 次元場の理論等価であることを示唆する。ブラックホールエントロピー S は:

S = A/(4Gℏ)

ここで、A は事象の地平面の面積。これは、情報事象の地平面上に符号化されていることを示唆する。

AdS/CFT対応

AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:

ds² = (L²/z²)(-dt² + d𝐱² + dz²)

ここで、L は AdS 空間の曲率半径、z は動径座標。

CFT の相関関数は、AdS 空間内のフェイマン図に対応する。例えば、2点相関関数は:

⟨𝒪(x)𝒪(y)⟩_CFT ∼ exp(-mL)

ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。

量子エンタングルメントER=EPR 仮説

量子エンタングルメントは、ブラックホール情報パラドックス解決重要役割を果たす可能性がある。2粒子系のエンタングルした状態は:

|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)

ER=EPR 仮説は、量子エンタングルメントEPR)とアインシュタインローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。

結論

超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワーク提供している。

ホログラフィー原理、AdS/CFT対応量子エンタングルメントなどの概念は、このパラドックス解決に向けた重要な手がかりとなっている。

今後の研究では、量子重力の完全な理論を構築することが必要特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要課題となるだろう。

ループ量子重力理論幾何学的基礎

1. 微分多様体接続

ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。

A ∈ Ω^1(M) ⊗ su(2)

ここで、Ω^1(M) は M 上の1-形式空間su(2) は SU(2)のリー代数である

2. ホロノミーと量子化

接続 A のホロノミーを用いて、シリンダー関数定義する:

Ψ_γ[A] = f(hol_γ[A])

ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。

3. スピンネットワークと量子幾何学

H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である

面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:

Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩

V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩

ここで、l_P はプランク長さ、f は頂点での量子数関数である

4. 時空の発展と因果構造

時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である物理的遷移振幅は、

Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)

で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である

5. 不変量と位相性質

理論位相性質は、ウィルソンループ不変量

W_γ[A] = Tr P exp(∮_γ A)

を通じて特徴づけられる。ここで、P は経路順序付け演算子である

6. 対称性と変換群

理論微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変であるさらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:

A → gAg^-1 + gdg^-1

7. コホモロジー理論との関連

理論数学構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体ドナルドソン不変量との関連が示唆される。

2024-08-23

忙しい人のための物理学

1. 古典力学 (Classical Mechanics):

古典力学では、粒子の運動時間 t の関数 q(t) で表され、ニュートン運動方程式を満たすのだ:

q̈ = -U'(q)

ここで、U(q) はポテンシャルエネルギーである運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt極値点として運動記述するのだ。これは、最小作用の原理とも呼ばれるぞ。

2. 古典場の理論 (Classical Field Theory):

古典理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式

□φ = 0

記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。

3. ブラウン運動 (Brownian Motion):

古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動モデルにして、粒子の位置 q(t) は確率密度

P(q) ∝ e^(-S(q)/κ)

に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt作用、κ は拡散係数である。このような確率動力学の期待値は、経路積分を用いて計算されるぞ。

4. 量子力学 (Quantum Mechanics):

量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:

⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq

5. 量子場理論 (Quantum Field Theory):

量子場理論でも、場の相関関数は次のように表されるのだ:

⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ

ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要課題となっているのだ。

2024-08-16

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-05-31

幾何学ラングランズについて

ラングランズ・プログラムは信じられないほど広大で広範囲に及ぶ。

その最も深い側面は、ラングランズが40年近く前に始めた数論的設定に関係している。

しかし、ラングランズ・プログラムにはあらゆる種類の発現がある。

個人的理解しようとしているのは、ラングランズ・プログラムの 「幾何学的な 」形態であり、そこではアイデアの一部が数論から幾何学記述に変換されている。

長い間、幾何学ラングランズ・プログラムに取り組む数学者たちは、数理物理学アイデアを大いに利用してきた。

特に、コンフォーマル場の理論と呼ばれる分野は、物性物理学でも弦理論でも重要である

しかし、物理学アイデアはいつも、物理学から見ると奇妙に見える方法アレンジされていた。

もし物理学に基づく考え方が幾何学ラングランズ・プログラムに関連するのであれば、幾何学ラングランズ・プログラム物理学者にとってより理解やす言葉で再定式化することは可能なはずだと思った。

ラングランズ・プログラムは広大なテーマであり、その全体像を把握できる者はほとんどいない。そして、それが最終的にどこにつながるのか、それを言うのは早すぎる。

2023-10-03

anond:20231002210029

俺も何本かホッテントリ入りさせてるけど、長くても精々10行ぐらいで長文は書いたことないな

自転車置き場の理論念頭突っ込みどころを2,3残した一方的意見を書き捨てるとたまにバズる

2021-09-02

三人以上寄れば文殊以下の知恵の可能性が生じる

自転車置き場の理論

口出しできる素人を集めてはいけない

2020-07-12

東大工学大学院出たけど、数学物理もできない

東大修士工学大学院を出たんだけど。

心残りがある。

  

数学物理全然勉強できなかったことだ。

全然というのは、工学必要もの以外は全然くらいの意味

  

ホッジ作用素とか、アインシュタイン方程式、群環体、微分幾何、集合と位相くらいは理解した(つまりe-MANや物理のかぎしっぽくらいのサイトを眺めるレベル

でも、

場の理論って何?繰り込み群って何?超対称性って何?

代数幾何って何?ルベーグ積分って何?幾何学の不変量って何?

って感じの、学部中級レベルしか物理数学理解できていない。

東大まで行って、これかよっていう。

ってか、工学系でも、これらの知識使ってるところは使ってる研究室あって、普通に研究してるわけで。

  

自分がいた研究室は、そんなに高度な数学物理も使わなかった。せいぜい、微分幾何学とかチョロっとだけルベーグもあったかなーくらい。ほとんど何もまともな頭を使う議論はなかった。ルベーグってのも、別にルベーグじゃなくて、ノルムがどうこうでちょろっと。

  

物性系なら、超電導とか相転移とか。あるいは、核物理とかなら、普通に素粒子とかで数学バリバリできたんかなあ。

もう就職しちゃったけど、博士やれるなら、純粋数学か、素粒子物理やりたいなあ。。。

  

人生、こんなにレベル低いところで終わるのいやだ。

2018-10-13

anond:20181010122823

分野名として使うときのLatticeは、ほぼ計算機シミュレーションのことを指すことは触れておいたほうがいいかも。

計算機とは関係なく場の理論の格子離散化を研究している人はいますが、その人たちは自分研究分野を訊かれたとき「Latticeです」とは言わないよね。たぶん。

ログイン ユーザー登録
ようこそ ゲスト さん