はてなキーワード: ヒッグスとは
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係を、抽象数学を用いて厳密に数理モデル化する。
まず、以下のデータを考える。
- このスタックはアルティンスタックであり、代数幾何学的な手法で扱われる。
- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック。
- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。
幾何学的ラングランズ予想は、以下のような圏の同値を主張する。
𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
ここで、
この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。
核関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手
Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)
ここで、
𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)
問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学的ラングランズ予想の核心的な課題となっている。
ヒッチン写像を導入する。
ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)
ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。
完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系を定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造と関係する。
Kontsevich のホモロジカルミラー対称性予想に基づく。
𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))
ここで、
- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。
- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。
この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。
𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))
ここで、
- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック。
- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック。
作用素:
M 理論におけるブレーンの配置:
- ℝ¹,³ は 4 次元の時空。
- Σ は曲線 𝑋。
Lurie の高次圏論:
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係は、以下の数学的構造を通じてモデル化される。
これらの数学的構造を組み合わせることで、幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係性をモデル化できる。
人文系の文献の取り扱いとか業績についてちょっとだけ - dlitの殴り書き
確かに異分野の事情をお互いにわかっていたほうがみんな幸せになりますよね。パーマネントや学振の採用とか。
素粒子分野は大きく分けて
に分かれています。これらの間には超えられない壁がありまして全てをまとめるのはちょっと難しいのですがなんとか書いてみます。
間違いを見つけたら教えてください。
素粒子の論文は全て英語で書かれます。国内雑誌としてはPTEP(旧PTP)がありますがこちらも英文です。当然どれも査読があります。
業績リストの論文(査読なし)には国際会議や研究会の proceeding を載せたりします。
素粒子分野には論文投稿前に arXiv に載せる慣習があります。
これは投稿前に業界の人たちに意見をもらい論文を修正するためです。accept 後に査読済みの論文に差し替えます。
arXiv に載っているのは基本的に 投稿前/査読中/査読済み の論文及び国際会議の proceeding です。
特に素晴らしい研究は Physical Review Letters (Phys. Rev. Lett) に投稿されます。IF8.839 です。
Nature や Science に投稿することはまずありません。
おそらくは [ 業界の人数 ] x [ 1年間に発表する論文数 ] に依存するはずです。まあ人数の少ない分野は引用数も少なくなるでしょうね。
同じ素粒子業界でもその専門ごとにかなり違うはずですが、とりあえず Inspires によると以下のように分類されています。
# of citations | |
---|---|
Renowned papers | 500+ |
Famous papers | 250-499 |
Very well-known papers | 100-249 |
Well-known papers | 50-99 |
Known papers | 10-49 |
Less known papers | 1-9 |
Unknown papers | 0 |
自分で確認したい人は Inspires で fin a s Masukawa などと打ってみてください。
素粒子実験、特に高エネルギー方面ではなかなか論文が出せないことがあります。
理由は簡単で実験計画から結果が出るまで多数の歳月がかかるからです。
例えばLHCは計画からヒッグス発見まで20年弱かかりました。論文の著者数は5000人を超えました。
このような事情なので「博士課程単位取得満期退学後に研究を続けて論文を出すと同時に博士を得る」というような方がたまにいらっしゃいます。
博士号をもっていない素粒子実験の人に出会っても決してバカにしてはいけません。
まず 場の量子論/超対称性理論/群論・リー代数 あたりは三分野共通で勉強すると思います。
加えてそれぞれの分野の専門的教科書、例えば弦理論なら String Theory (Polchinski) 格子なら Lattice Gauge Theories (Rothe) など。
分野によっては位相幾何学、微分幾何学を勉強しなければなりません。共形場理論もですね。
この辺りでようやく基礎ができてきましてこのあと30年分くらいの論文を読みます。
研究に入るまでの勉強に時間がかかるので修論はレビューになることが多いです。
当然学振は出せない・・はずだったのですが最近どうも事情が変わってきたようです。
学生の方が学振(DC1)に固執して勉強も途中に研究を始めてしまう、勉強途中のM1に研究できることなんてたかが知れているので
必然的にあまり重要ではない研究に貴重な時間を費やしてしまう、というような話をぼちぼち聞くようになりました。
学振についての考え方は人によるとは思うのですが、ちょっと危うい傾向だなと私は思うことがあります。
そこでちょっとお願いなのですが
「学振は研究者の登竜門!取れなかったらやめよう!」などとblogに書いて煽るのをやめていただけないでしょうか?
いや書いてもいいのですが主語を書いてください。「情報系では」「生物では」とかね。
「博士号は足の裏のご飯粒」と言われて久しいですが、弦理論では博士号を取るのはまだまだ難しいと思います。
まあとったところで「足の裏のご飯粒」なんですけれどもね・・・
放置していてすみません。まさか今頃上がるとは思っていませんでした。
new3 言いたいことはわかるけど、普通は「ヒッグス発見」を博論のテーマにせずもうちょっと控え目な研究に留めるものでは?日本でもJ-PARCからSuper-Kにニュートリノ撃てるんだし10年に1本はさすがに少ないと思う。
どうもありがとうございます。文章を少し修正いたしました。他にも間違ったところがありましたら教えてください。
niaoz 懐かしい。補足するとストリングやるなら一般相対論がベースの重力理論も必要/場の理論は確かに簡単じゃないけど楽しい。量子力学と特殊相対論(電磁気学含む)を修めたらやってみるとよいです。
monopole 素粒子理論分野では修士で論文書きにくいけどDC1の枠はあるので、採用者は実績によらずほぼランダムだったり有名研究室に偏ったりする。まあ論文なしでも通る可能性あるから学振は気合い入れて書け
kowa 素粒子系は知性の墓場だと感じてる。優秀な人材があまりに何もできなくて、消えている。魅力はわかるが、1/5000のcontributionだかでいいのだろうか
これは 物理学 Advent Calendar 2014 の記事です。
僕は blog を持っていないので はてな匿名ダイアリー をお借りします。
しばらく話すうちにおじさんが知りたいのは『ヒッグス粒子そのもの』ではなく
『なぜ研究者はヒッグス粒子発見に大騒ぎしたのか?』なのではないかと気が付きました。
研究者がヒッグス発見に大騒ぎした理由はあまり説明されてなかった気がします。(僕が見逃しただけかもしれません)
なのでちょっと書いてみようというのがこの記事です。今更な話ですみません。
床屋での世間話的ないいかげんな話です。あまり中身はありません。
普段はてなを見ている人なら全部知っている内容かもしれません。あまり期待しないで読んでください。
(あと間違いがあったらすみません)
これから物理の基礎理論が大発展する(かもしれない)からです。
場の理論を聞いたことはあるでしょうか? 量子力学を 相対論+多粒子系 に拡張したものです。
古典力学は量子力学の、量子力学は場の理論の、近似的な理論といえます。
Ruby が C言語で記述されているように、量子力学は(原理的には)場の理論で記述できるべきものです。
C言語が正しくて Ruby が「間違っている」という訳ではないように
場の理論が正しくて量子力学が「間違っている」訳ではありません。ただ、適用できる範囲が違うのです。
さて、量子力学や場の理論がプログラム言語だとしたら、コードは何でしょうか?
実は「ラグランジアン」と呼ばれているものがそれに相当します。
ややこしいのですが「ラグランジアン」も理論と呼ばれています。
素粒子理論の研究者が「理論を作る/改良する」と言ったら、それは大体ラグランジアンの改良を指しています。 (注[1])
素粒子理論の研究者は、世界のあらゆるものを記述できるラグランジアンをつくろうとしています。
[これ]が場の理論で書かれたラグランジアン、標準理論と呼ばれているものです。(ごめんね。良い画像が見つからなかった。)
僕たちの世界で現在わかっている ”ほとんど” 全てを説明することができます。
世界の全てを記述するコードがこんなにシンプルなんて結構びっくりでしょう? そんなことない?
ちなみに一番下の項がヒッグスです。
これまで研究者達は理論の予想と実験結果の違いをヒントに理論を修正してきました。
ところが困った事が起こりました。
実験結果と全部合うなら標準理論が完璧な理論なのか? ・・というとそうではありません。
多くの研究者が現在の標準理論はまだ不完全であると考えています。
まず重力がうまく扱えません。それどころか様々な理由から場の理論そのものが、より基礎的な理論の有効理論(近似的な理論)ではないかと今では考えられています。
理論は不完全なことが分かっているのに、修正するヒントがなくなってしまったという訳です。
そんなわけで標準理論はここ40年ほどあまり変わっていません。
こんな中、標準理論で唯一まだ発見されていないのがヒッグス粒子だったのです。
ヒッグス粒子が発見されてその質量が決まるだけでも大きなヒントになるというわけです。
それはようやく標準理論のバグ取りが可能になるから。実に40年ぶりに。
つまりヒッグス粒子は研究者にとって最後の希望とかそういう・・いや、最後でもないか。
まだLHCに発見してほしいものはいろいろあります。(超対称性粒子とか・・。)
[1] 場の理論や量子力学の修正ではなく、ラグランジアンの修正です。
皆さんも自分のつくったプログラムにバグがあったら C言語のバグではなく、まずは自分の書いたコードのバグを疑いますよね? つまりそういうことです。
物理学 Advent Calendar 2014 を立ち上げ管理してくださった id:tanaka733 さん、 id:aetos382 さんに感謝致します。
皆さんの記事を楽しませていただきました。飛び入り参加ですみません。
お目汚しすみませんでした。
メリークリスマス。良い夢を。
id:allthereiznika わかりやすかった。出来れば参考ページ・書籍も示してくれるともっと良かった。
一般向けの解説書は僕はよく知らないのですが
こんなのが出るみたいですね。目次を読む限り良さそうです。
Chapter2 が標準理論の破れの話ですが、どうも最近の話題が入っているようなのでちょっと差し引いて読んでください。
Chapter3 が標準理論の改良の話(超対称性理論etc) 。 それから上でちょっとでてきましたが、
「場の理論」自体がより基本的な理論の有効理論であると思われています。(より基本的な言語・・アセンブリ言語とでも例えるべきでしょうか?)
世界には、人間の心身に対して“啓発的な”効果を及ぼす謎の物質が存在していた。CERNでの実験で偶然この物質を発見した研究者たちは、この物質を「エキゾチック・マター(XM)」と呼んだ。XMの研究のため、NIA(アメリカ国家情報局)はCERN付近に研究者らを集め「ナイアンティック計画」を立ち上げた。その過程で、XMは秩序と知性を持つと考えられること、臨界量を超えるXMに被曝した者は「シェイパー」と呼ばれる存在の影響を受け彼らに侵略されるということが判明した。人類の文化や古代文明の発展も、その滅亡も、シェイパーの影響によるものではなかったかと考える者もいる。
XMは全世界に分布していたが、とりわけ、文化的・芸術的・宗教的に重要な場所に密集しており、このような場所は「XMポータル」と呼ばれた。
エキゾチック粒子に関して僕の知る限りを話そう。
ただし注意してほしい事が2点ある。
一つは僕はこの分野の専門ではないという事。
もう一つは以下の文章はGoogle のゲーム「Ingress」に関するネタであり、本気にしてテロとかデモとか起こさないで欲しいという事だ。
僕らの世界は全て原子からできている。原子は核子と電子でできており、核子は3つのクォークからできている。
さて、量子色力学により僕らの見ている低エネルギーの世界では、色の三原色における「白」に対応する組み合わせ (color singlet) しか現れない事はみなさん良くご存知だろう。赤・緑・青(クォーク3つ)や赤・反赤(クォーク+反クォーク)の組み合わせなどだ。
前者は陽子や中性子などバリオンと呼ばれるもので、後者はパイ中間子などのメソンと呼ばれる粒子である。
それでは(赤・反赤・青・反青)のクォーク2つ+反クォーク2つの組み合わせはないのだろうか? これだって color singlet のはずだ。
実は候補となる粒子はいくつか見つかっており、研究が進められている。
これらの粒子は「エキゾチック・ハドロン(エキゾチック粒子)」と呼ばれる。
KEK(高エネルギー加速器研究機構)がいくつもの候補となる粒子を発見している。そのうちの一つ Z(4430) が最近LHCにて7年ぶりに再発見されたのは記憶に新しいだろう。まさに「CERNのLHCでエキゾチック粒子発見」なのだがあまりブクマがつかなかったようだ。エンライテンドのエージェントの妨害工作にあったと見るべきであろう。なお、KEKはLHCと強い関連がある(・・というかヒッグス探索にATLASグループとして参加している)ことからも
KEK (茨城県つくば市大穂1-1) がエンライテンドにとって最重要拠点のひとつであることは明らかであろう。
至急ポータルを建てエキゾチック粒子を回収、防衛に当たる事をお願いしたい。
(赤・青・緑・赤・反赤)の組み合わせである。2003年に Spring-8 における実験で発見され大騒ぎになった。
再解析でどこかにいってしまったものの、当時研究を率いた RCNP (大阪大学 核物理研究センター)は現在でもエキゾチックハドロンの中心的な研究拠点のひとつになっている。世界中のエキゾチック・ハドロンの専門家が集まる重要地域であり、レジスタンスの襲撃が予想される。大阪方面のエンライテンドにはぜひとも防衛をお願いしたい。
陽子や中性子は u-クォークと d-クォークでできている。それらを s-クォークに置き換えたものがハイペロン、c-クォークに置き換えたものがスーペロンである。ややこしいがこれらもエキゾチック粒子と呼ばれている。
重要な事実を伝えよう。J-PARC (大強度陽子加速器施設)にてハイパー核・・そう、エキゾチック粒子を生成し、その相互作用を調べる研究がかねてより計画されている。
エージェント各位はポータルを建てこれを回収、防衛に当たってほしい。
エキゾチック粒子とエキゾチック・マターの関係は言ってしまうと水分子1個とコップ一杯の水である。
残念ながらエキゾチック粒子・・もとい、ハイペロンを「マター」と呼べる程大量に加速器で生成することは大変難しいのだが、
実はこの我々の世界においてエキゾチック・マターの存在する場所がある。中性子星の内部である。
ハイペロン粒子の性質を調べ、ハイペロン物質 (matter) の状態方程式を計算し、中性子星および超新星爆発のシミュレーションを行う・・素粒子/原子核/宇宙の分野を超えた一大プロジェクトがここ日本に置いて進行中なのだが、それは表向きの姿。
懸命なエージェント諸君ならお気付きであろう。そう、真の目的は エキゾチック・マター による人類の進化なのである!
本日着任したエンライテンドのLv.1 エージェントより報告。以上です。
アノーマリー(anomaly) って僕らの分野だと量子異常のことなんだけど・・Ingress 側の設定がよくわからないので何も書かなかった。(僕がダウンロードしたてなのでストーリーが読めないのかもしれない)
世の中に「理屈から確率を計算すること」が0から出来るものなんてほとんど存在しない。
この前ノーベル賞取ったヒッグスだって、実験でかかる確率はその前の実験による経験則から導き出さえる数字。
たとえ回数が少なかろうが確率を出すことは可能。意味分かってる?それ?
今回も、共同実験者の人が、あの時はできたんだけど、自分でやったら出来ないんだよな、とか言ってたけど、
もし、それが事実であれば、まず、その違いを理解しない限りは少なくともNatureレベルの結果には成り得ない。
何も理解せずに適当に混ぜたらなんか出来ましたー、って科学か?
勿論、それを発表すること自体は否定しないし、是とする。よく分かってないけどそのような方法で出来そうだから皆もそれに続いてやって検証して調べてくれ、
この業界は特許とかなんかきな臭いことがあって、簡単にそういうコミュニケーションはしなそうだが、少なくとも身内ではあることだし。
その様な不安定要素を全て理解して、初めて論文とする、というのが当たり前だろう。
たまたま一回やって出来ました、でも、共同実験者も再現出来てません、なんてもの、そんなものを科学的な結果として当たり前に出すなんてことがまかり通る世界なのだとすれば、
理想主義的な、ある意味で原理主義的な科学観に支配されたナイーブな文系諸子(意外なことに、他分野の理系の方々にもいるようであるが)には想像もつかないことかも知れないが、理系という世界には、未だに共有不可能な個人の資質に依存した「職人肌」の世界が存在する。
宇宙やら地球やら、読んで字のごとく天地開闢から存在する”自然界”を観察して研究するだけが自然科学ではない。”自然界”には今まで存在しなかったモノを「作ってナンボ」の世界があるのだ。
誰も成功させたことのない難しい外科手術に果敢に挑んで成功させるスーパードクター、デバイスやソフトウェアを生み出し世界を革新的に変えてしまうスーパーハッカー、複雑な現象を説明するシンプルな物理法則をある日突然思いついてしまう理論物理学者。本当の意味での科学の”前進”は、地道な積み重ねもさることながら、こういう人たちの仕事があってこそのものである。
昨年のノーベル賞を受賞したヒッグス粒子の逸話をもう忘れてしまっただろうか。ヒッグス博士だけではない。ノーベル賞を受賞するような実績と言うものはおしなべてこの種の、天才の”奇想天外な思いつき”、”職人的な仕事”の賜物である。
無論「作ってナンボ」はなんでもかんでも思いつきで作ればそれで良いというわけではない。作った”モノ”が訳に立たねばならぬ。具体的に言えば、その”モノ”を叩き台にして、実用、研究、下世話な話では商売が将来的に渡って発展するかどうかにその評価はかかっている。
叩き台になるのは”モノ”である。もちろん知識の共有には言語化は欠かせない。しかし、結局使える”モノ”がなければ、論文だけいくら取り繕っても役には立たないし、逆に”モノ”さえあるなら、論文などと言うものはオマケの説明書のごときものにすぎない……それが、「作ってナンボ」の世界である。
原理原則で言えば、論文の誠実な執筆、厳密な論理によった世界観の構築は科学を支えるひとつの柱である。しかしながら、「”モノ”があるんだから、理屈がどうであろうとあるものはあるんだよ」と言う楽観的な自然体もまた、”自然”科学という理念の欠かせない骨子なのである。
その点で言って、現在のところSTAP細胞に関連して「将来的な展望」を本当の意味で否定するような話は、今のところ何も出ていない。もちろん”モノ”自体がやはり使えない代物である可能性は0ではないが、「論文が」「コピペが」などと言うような議論はまさに薮の周りを叩いているだけに過ぎない。
現在本当の意味で冷静に事態を見守っている人々の大半は、このような科学と言うものの素朴な実態を知っている。かといって「論文なんか屁の突っ張り」などと言うのもいささか乱暴に過ぎるので、今はあまり声も上げずに温和な進展を期待している。これこそが、実はナイーブな文系(一部理系)諸子の読めていない科学界の空気の実態である。
「ハッカーと画家」のポール・グレアムはハッカーに論文を書かせることの愚を語った。ついこの間(今さら、何故か)ネットの文系知識人界隈で流行っていた様に見えるこの著者のメッセージは、残念ながら、読者には伝わっていなかったようだ。
こういう馬鹿が山本太郎みたいなののもと、もしくはその信者になるんだろう。
キモイな。
暗黒物質ってのは宇宙の現象考えると明らかに質量的に足りないから何かあるんだろうな、って話で、
防ぐ、防がない、じゃなくて、すでにそこら辺にいくらでもあるわけ。体をいくらでも通過してるわけ。
結局あっても分からない。
ヒッグスのように、実は根本的な影響を与えてる物もあるが、重力を担ってる重力子だって見つかってないし、
それらが見つかったところで日常がどうこう変わるわけじゃない。それらを操作できるようになれば別だが、それは今のところどう考えても無理。
元素がその昔使われてた意味の「元素」ならいいが、放射線も暗黒物質も水素とかの元素も全部混同してるだろ?
何でも貫きまくる新型の放射線
だから、何でも貫きまくるんなら何の影響もないんだから別に脅威でもなんでもないだろ。