量子場理論は過去数十年にわたり幾何学に多大な影響を与えてきた。
その例として、ミラー対称性、グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。
チェコッティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学そのものに関する基本的な疑問はまだ残されている。
このプロジェクトの大きな目的は、TQFTの幾何学の統一的で決定的な全体像を見出すことだった。
数学の4つの主要分野が取り上げられた:シンプレクティック幾何学と可積分系、特異点理論、圏論、モジュラー形式である。
プロジェクトの基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論、特異点理論、可積分系の関連付け(ヴェントランド)、シンプレクティック場理論、位相的場理論、可積分系(ファベール)、行列模型理論と可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論の幾何学と特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。
より詳細には以下である。