M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。
D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。
以下の圏同値を構築する:
Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))
M 上の Chern-Simons 理論の量子化を考える。その分配関数 Z(M,k) を以下のように定義する:
ここで、CS(A) は Chern-Simons 作用である。
F: D^b(Bun_G(M)) → Mod(MF_q)
を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である。
G の既約表現 ρ に対し、以下の等式を予想する:
L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)
ここで、V_ρ は ρ に付随する M 上のローカル系である。
以下の図式が可換であることを示す:
D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M))) | | | | F F | | V V Mod(MF_q) -----≃----> Mod(MF_q)
M の次元を一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記の構成を高次元化する。
以上の構成により、M理論の幾何学的構造とラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論、モチーフ理論を統一的に扱う枠組みを提供するものである。
今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性の検証が重要である。