「群論」を含む日記 RSS

はてなキーワード: 群論とは

2024-11-12

いろいろ本をスキャンしたはず

なかには見当たらないものが・・

たとえば・・

豊田先生心理統計学関係のやつ

群論もなさそ

2024-09-24

anond:20240924105154

その通りである数学はしばしば「数字計算」と同一視されることがあるが、実際にははるかに広範で深遠な抽象的な学問である数学の主要な役割は、論理的構造パターン関係性を扱うことであり、数字や数値に限定されるものではない。

数論のような分野では確かに数そのもの主題となるが、例えば集合論位相幾何学群論代数などの分野では、数字というよりも抽象的な対象やその間の関係性を追究する。これらの分野では、数値を超えた抽象的な概念が扱われ、そこでは形式的な推論や証明が重視される。

また、数学の核心には公理的なシステムがあり、それに基づく論理的演繹を通じて真理を明らかにしていく。この過程において数字は時に一つの「具現化された例」に過ぎず、多くの数学的な議論証明においては、数値そのものが登場しない場合も多い。

したがって、数学は「数字計算」を超えた、論理的かつ抽象的な概念を探求する学問である

2024-09-16

anond:20240913131027

「まぁ、ピタゴラスの定理なんて、あれはもう初歩の話よね。確かに、a² + b² = c² は中学生レベルでも理解できるけれど、そこに潜む深い代数的構造や、ユークリッド幾何学との関連性を本当に理解しているのかしら?あの定理の背後には、単なる平面上の直角三角形の話じゃなくて、リーマン幾何学複素数平面を通じたさらに高度な次元世界が見えてくるのよ。それに、ピタゴラスの定理特別場合とする円錐曲線や、楕円関数論まで考え始めると、幾何学の美しさっていうものもっと深く見えてくるわけ。」

 

「それと、黄金比ね。もちろん、あのφ(ファイ)がどれだけ重要か、理解してる?単に無理数というだけじゃなく、数論的にも代数的にも特異な数なのよ。フィボナッチ数列との関係も美しいけど、そもそもあの比が自然界で頻繁に現れるのは、単なる偶然じゃないわ。代数無理数としての特性と、対数螺旋やアファイン変換を通じた変換不変性が絡んでいるのよね。そういった数学的背景を理解せずに、ただ黄金比が「美しい」ってだけで済ませるのはちょっと浅はかだと思うわ。」

 

「あと、パルテノン神殿の話だけど、そもそも古代建築家たちが黄金比だけでなく、より複雑なフラクタル幾何学対称群に基づいた設計をしていたってことは、あまり知られてないのよね。建築対称性は、単なる視覚的な美しさじゃなくて、群論代数トポロジーに深く結びついているわ。あなたが好きな絵画も、ただの黄金比じゃなく、もっと深い数学的な構造に従っているのよ。わかるかしら?」

2024-08-30

anond:20240830154905

超弦理論素粒子論)は勉強してないのでわからん

学部+αくらいの基本的理論物理はわかるよ。純粋数学ほとんどわからんけど微分幾何多様体論、測度論的確率論関数解析、(Lie群論の初歩くらい多少わかる。

2024-08-28

抽象代数学の魅力とは

抽象代数学は、代数的構造を探求する数学の一分野である

その核心は、具体的な数や図形から離れ、演算性質のものに着目することにある。

群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元存在し、各元に逆元が存在するという公理を満たす代数的構造である

この抽象的な定義により、整数加法群(Z,+)や置換群S_nなど、一見異なる対象統一的に扱うことが可能となる。

群論の発展は、ガロア理論を生み出し、5次以上の代数方程式代数的解法が存在しないことの証明につながった。

環論では、可換環を中心に、イデアルや素イデアル概念が導入され、代数幾何学との深い関連が明らかになった。

体論は、代数的閉体や有限体の理論を通じて、ガロア理論暗号理論の基礎を提供している。

これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。

例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造標準模型対称性記述している。

また、抽象代数学概念圏論によってさら一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。

圏論視点は、代数位相幾何学代数的K理論などの現代数学の発展に不可欠な役割果たしている。

抽象代数学の魅力は、その普遍性と深遠さにある。

単純な公理から出発し、複雑な数学構造を解明していく過程は、純粋数学醍醐味であり、同時に自然界の根本法則理解する上で重要洞察を与えてくれるのである

2024-08-12

SO(3)ってほんま美しいわな

今日はええ天気やなぁ。東北は雨ザーザーらしいけど、こっちはええ感じやで。ほんなら、SO(3)っちゅうのが何なんか、ちょっと考えてみよか。

量子力学数学

量子力学っちゅうのは、ミクロ世界説明するための理論で、抽象数学のいろんな分野とガッチリ結びついてんねん。

特に線形代数群論リー代数微分幾何学なんかが重要役割果たしてるんやで。

群論対称性

量子力学における対称性は、群論を通じて説明されるんや。

例えば、空間の回転対称性特殊直交群 SO(3) で表されるっちゅう話やね。

SO(3) は、三次元空間での回転を記述する群で、回転を合成してもまた回転になるっちゅうことで、群の構造を持ってるんや。

この群の性質理解することで、角運動量の保存則やスピン性質説明できるんやで。

リー群リー代数

SO(3) はリー群の一例で、リー代数はその接空間として定義されるんや。

リー代数は、群の局所的な性質記述し、量子力学における角運動量演算子の交換関係を表すんや。

リー代数構造定数は、演算子の交換関係を通じて、物理的な対称性を反映してるんやで。

表現論

量子力学では、物理系の状態ヒルベルト空間上のベクトルとして表されるんや。

群の表現論は、これらの状態がどんなふうに変換されるかを記述するための数学的な枠組みを提供するんや。

特に、SO(3) の既約表現は、整数または半整数スピン量子数によって特徴付けられ、スピン j の表現は (2j + 1) 次元の複素ベクトル空間上で作用するんやで。

微分幾何学と量子場理論

微分幾何学は、量子場理論におけるゲージ理論の基礎を提供するんや。

ゲージ理論では、場の局所的な対称性重要で、これが微分幾何学概念を通じて記述されるんや。

例えば、ファイバー束や接続形式は、ゲージ場の数学記述において中心的な役割果たしてるんやで。

量子力学抽象

量子力学数学抽象性は、古典的直感とはちゃう現象説明するために必要不可欠や。

観測問題波動関数確率解釈量子もつれなんか、これらの現象は、抽象数学を駆使することで初めて理解できるんや。

特にヒルベルト空間理論作用代数は、量子系の解析において重要役割果たしてるんやで。

まとめ

今日はこの辺にしとくけど、SO(3)っちゅうのが何なんか、ざっくりイメージできたんちゃうかな。

ちょっと難しい話やけど、これが量子力学深淵やで。

2024-01-26

anond:20240126180624

足し算と掛け算は定義的に依存しない独立した計算たりえることを伝えたくて

まずこの主張が間違っている

それを示せそうな端的な例として群論しか「思い浮かばなかった」

からなんとかうろ覚え不正確でもその趣旨が伝わればいいと思って書いただけだから、内容が不正確なのことを批判するのは全く本質的じゃなくてアスペ的ですらあるわけだが。

そもそも間違っている支離滅裂な主張について「うろ覚え」とエクスキューズをしながら何も理解していない別の概念を持ち出し的外れなことを言い出す、知的な誠実性の欠片も感じられない態度を馬鹿にしているんだよ。

anond:20240126180410

別に知ってることを言うことを主目的としたトラバじゃないんでね。

足し算と掛け算は定義的に依存しない独立した計算たりえることを伝えたくてそれを示せそうな端的な例として群論しか「思い浮かばなかった」

からなんとかうろ覚え不正確でもその趣旨が伝わればいいと思って書いただけだから、内容が不正確なのことを批判するのは全く本質的じゃなくてアスペ的ですらあるわけだが。

anond:20240126175656

別にそれでもそれなりの稼ぎで社会生活は営めるんだから馬鹿にするような言い方するようなもんじゃないだろ…

別に数学を知らないこと自体馬鹿にするようなことではないよ。

でも群論的には加法乗法は対等でいっっぽうの定義なしに他方を定義することが可能なんじゃなかったけとうろ覚え

全然わかってないものについて知ったかぶりでこういう適当なことを言う態度を馬鹿にしている。

anond:20240126165638

でも群論的には加法乗法は対等でいっっぽうの定義なしに他方を定義することが可能なんじゃなかったけとうろ覚え

適当すぎんだろ。群に足し算は定義されてねえよ。

環の話をしてるんだとしても意味不明だし。

1+1が数式上最も簡単な誰でもわかる数式扱いされてる謎

いや一番簡単なのは1×1か1×0の二強だと思うんだけどな。

前者はたった一種類の数字で答えまで表現されるし、後者の何に0をかけても0という理屈適用される式もまた1+1以上に正しい答えにたどり着きやすくかつ暗記した答えを忘れにくい式だと思うんだが。

凸凹がより画数が多い車や森よりも学習年齢高いから難しい感じ扱いされてるのと似たものを感じる。

安易にこっちの方がこっちより難しいみたいな通説を受け入れるのは思考停止だと思う

掛け算は足し算の上位概念からみたいな理屈だろうか

でも群論的には加法乗法は対等でいっっぽうの定義なしに他方を定義することが可能なんじゃなかったけとうろ覚え

2023-12-15

[] 2023-12-15

近くのホームセンター本棚を買いました。

しかし、こういった商品は運びやすいように組み立て式になっており、しかDIYしている気分になれるので一石二鳥なのです。

本棚を組み立て終わると、デスクの上に積んであった本の山をすっぽりと収めることができました。

しかし、私は本棚がもう一つ欲しくなってしまいました。

というのも、私は数学愛好家なので、リファレンスとして数学書を大人買いしたいのです。

仕事柄、特に線形代数や離散最適化のような数学は使いますが、私が興味のあるのはそういった実用志向アルゴリズムではありません。

しろ取り組みたいのは、フェルマーの最終定理ラングランズ予想のような、一見すると実用からは遠いけれど、数学本質を突くような深淵です。

数学には二種類の文化があり、アルゴリズム的な問題解決者と、深淵理論を目指す者がいます

プログラマーであればほぼ例外なく前者の立場になりますが、後者というのは「理論Aの理解のためにはBの理解必要で、その理解にはCの理解必要で、その理解のためには...」という階層が非常に深いものを表します。

はいまだに、コホモロジーとはなんであるかについてよくわからないのです。

コホモロジーGPTに対し「小学生にもわかるように説明せよ」とやったものが以下です。

コホモロジーは、数学の中のとても難しい概念ですが、小学生にわかやす説明するために、一緒に想像の旅に出かけてみましょう。

まず、コホモロジーは、ある種の「形」や「パターン」を見つけるための道具と考えてみてください。例えば、あなた宝探しをしていて、地図があるとします。この地図は、宝物がどこにあるかを示していますしかし、この地図はただの紙切れで、宝物自体地図にはありません。でも、地図を使って、宝物のありかを見つけることができますよね。

コホモロジーも同じようなものです。コホモロジーは、数学的な「地図」のようなもので、それを使って、数学世界に隠された「宝物」を見つけることができます。この「宝物」は、数学の中の特定パターンや形、構造などを指します。

しかし、コホモロジーはとても複雑で、大人でも理解するのが難しいです。だから小学生あなたがすぐに理解できなくても大丈夫です。大切なのはコホモロジーのような難しい概念に挑戦する勇気と、学び続ける意欲を持つことです。これからも、色々なことに興味を持ち、学び続けてくださいね!。

これじゃあ、なにも理解していないのと同じでしょう。結局、深淵理解するためには地道な努力必要です。

理論構築者の観点からみると、数学登山に似ていると思います

コホモロジーにたどり着くためには、集合論群論位相幾何学ホモロジー理論と順を追っていかなければならないのです。

これまでの私は、理論構築者ではなく、問題解決者だったので、「問題」という単位物事理解してきました。

アルゴリズムなので、問題を解くための前提知識はさほど必要なく、むしろ必要なのはIQです。

ところが、ラングランズプログラム超弦理論といった深淵は、IQに加えて、山登りの体力や努力時間必須になります

しかも、仮に山を登り終えたとしても、プログラマー仕事としてなんの役にも立たないのです。

深淵に取り組むというのは、そういう廃人的な努力必要とするので、職業的数学者でない限り努力の誘因が失われてしまます

深淵登山をして、誰にも認められることな自己満足して、何が楽しいのでしょうか。

結局、理解した物事を外側に発信(例えば論文執筆)して社会との接点を作らなければ、本当の廃人になってしまうでしょう。

まあ、廃人日記を書くぐらいだから、それでもいいんですけどね。

2023-02-07

1+1=2なのはなぜかという問いと、一個のあるものにもう一個あるものが手に入ってそれを合わせたら2個になるのはなぜかという問いは似て非なるだと思う。

前者はペアノの公理なり群論なりからかば定義にみたいにそうだからそうなんだと説明できる。

だが後者はそういう目で見たり手に取ってみれる直観現象としてなぜそうなるのかという話だ。しかもどんなに巨大な個数あっても同様なことが成り立つわけだ。

しかもこれ、微積分とかの何らかの計算がなぜ成り立つのかというのと問うのはまだ掘り下げてその仕組みを理解することが意義深いものでありうる感じるの違って、やはり問うまでもでもなく当たり前のことでしかないのではないかとも感じてしまう。

しかしそうやって連立方程式がなぜ代入法で解けるのかについて理解することについては素通りして当たり前に成り立つに決まってるとして活用してたのが、実は自明でもなんでもなく理解すべきロジックがきちんとあってそれに対して当たり前と言う言葉に目を曇らせていた事実もあったから、今回その可能性があるのではないかといわゆるジレンマに陥っている。

1+1=2のような足し算しょせんそういう直観現象に対して辻褄があるように取り決められた演算にすぎない。あくま直観現象が先にあってその現象が予想できるように自然数公理なりが定義されているわけだ。

あるいは5個あったところに1個追加された全体は3人で余りなく分けられるのはなぜかというのも似たような問いだ。6÷2=3だからだというのはその説明になっていない。

実際にそうなることの計算による推論の仕方を言ってるのではなく、なぜそうなるかと聞いてるわけだ。

人間の個数に関する認識数学構造うまい具合に従っているから、認識数学の集合が同型(雰囲気で言ってる)だから、みたいなことだろうか?数学基礎論を齧ってみたがいまいちこの問いと結びついているようであまり有用な感じもしない。なんかスマート説明いか

2023-01-23

化学のための群論入門があるのなら結晶学のための群論入門てな感じの本も出ないものかねえ。

しろ群論結晶学でこそ必要だろ。ミラー指数とかの段階でもうよくわからん

2022-12-26

anond:20221226105134

Wiredのやつ検索してみたけどこの辺のシリーズか。

https://www.youtube.com/watch?v=SIUl9Mx51W4

大半の話は取るに足らないような内容だなあ。このくらいだったら元増田もなんかしら語れるんじゃないのって思うが。

↑の数学者の人の話では幾何学群論の話が全然知らないので興味深かった。縦移動して交換!なるほど!って感じ。

あと英語リスニングの訓練にちょうどいいねこれ。

なおこの動画に出てる人達子供だましではなく本気で語る際のレベルに到達できる人間人類全体の上位0.001%くらいしかいないと思う。

2022-05-10

anond:20220510171010

これもう2010年から言われてますよね・・・ 数学受験必須じゃなくなって

2040年代になると「大学学部勉強がわからない」という社会問題が発生する。

大学の授業の補習」を河合塾駿台が行う時代になる。(主に線形代数とか群論とか)

2022-03-20

anond:20220320071941

受験整数問題とかそれこそ数学オリンピック問題とか面白いと思うけどな

数学面白いと思う気持ち教師関係ないと思うぞ

偉そうなこと言ってるけど圏論とか群論とかの純粋数学については面白さはわからん

2022-01-05

今日用語: Lattice

束(そく): (束論

半順序集合で、任意の2元部分集合が上限supremum (結びjoin)と下限infimum (交わりmeet)をもつもの

束の任意の部分集合が上限(と下限)をもつ場合は完備束complete latticeとなる。完備束には最小元と最大元がある。

実数全体の集合は完備でない束。

格子: (群論

n次元ベクトル空間の基底basisの、任意整数係数線形結合の集合。

ベクトル空間定義すれば、まさに実空間内に整然と並んだ格子点の集合。

ベクトル空間以外の任意の体field(有限体を含む)上のベクトル空間でも定義できる。

2022-01-04

趣味レベル群論勉強していますが、とても感動しています

抽象化威力をまざまざと見せつけられています

2021-10-22

anond:20211022104137

社内システムの内製化とか社内システム保守とかやらせてみればいいのでは

役に立つ明確な目的があると動機付けやすいと思う

SlackやらGitやらはその中でこういうシーンで便利なんだなって実感するようになってから使えばいい

意味もわからないのにSlackGitだと言われても挫折ちゃう

あとで使うと言われて群論だ集合位相論だ測度論だ線形代数やらをやらされて数学挫折するのと一緒

2021-02-14

anond:20210214181423

ところがセンター後期になると、どこから出すか事前に予告してしまう。

かならず統計は第5問に出すとか、すべて予告されてしまったため、攻略簡単になった。

2025年には複素数平面とベクトル二次曲線はすべて理系数学になるのだが、

あれ25年前は文系数学なんだよ。

40年前は、理系は「微分方程式写像行列と一次変換」がセットで入ってたんだからね。

50年前は、群論とポワソン分布オペレーションリサーチと初等幾何学フォイエルバッハ定理)も入っていた。

あれ全部ないんだよ。

ないほうが難しいということはあり得ない。

この部分無視した読解だよねそれ

2021-01-30

自然数」という言葉を2つに分解するべきではないか

高校数学まで、「自然数」は正の整数を指すものとされているが、

大学に入ると、フォンノイマンによる自然数構成からの流れで、「自然数」は0を含む正の整数として扱われることが多い。

から論文で「自然数」という言葉を使うとき(そして、花文字の「N」を使うとき)は、

序文かどこかで、この論文ではどちらの定義で行くのか予め述べておかなくてはいけない。

これって面倒なことだと思う。本文を抜粋していきなり読むと、「自然数」の定義を間違えてけつまずく可能性がある。

そもそも論理性が大事数学という学問において、なんでこんな曖昧単語が残っているのか不思議だ。

なので、境界となる数を含むかどうかで「0を超える」「0以上」と言い分けるように、「自然数」という言葉自体も2つの言葉に分けるべきだと思う。

しかし、「0を超える整数」は「正の数」と呼べばわかるのに対し、「0以上の整数」は「自然数」以外の、それこそ自然呼び方が思い付かない。

あと、数学用語で気になるのは「モニック」という言葉

最高次係数が1である多項式のことを「モニック多項式」と呼ぶのだが、

この「モニック」に対応する日本語訳をいまだに見たことがない。いまだに、外来語漢字組合せで呼ばれている。

ちなみに、「最高次係数が1である場合特別に扱うのはn次方程式からの流れ。

最高次係数で左辺・右辺を割ってしまえば、方程式では最高次係数が1の場合だけ考えれば十分であるため。

そんな中学生でも理解できる単純な概念なのに、しっくり来る日本語訳が無いのが不思議だ。

でも、係数が1なのは単純化のためだから、「単純」って呼ぼうとすると、その言葉群論で使われてるし、

「単項式」だとそもそも意味が変わってくるし、やはりこちらも良い訳が思い付かない。

2020-09-02

anond:20200827182934

ユークリッド幾何学学校で教える必要がある

公理から初めて論述によって命題を示すという手法現代数学の基本

代数微分積分などは計算だけできれば解けてしまうが

ユークリッド幾何学では厳密な論証を学ぶことができる

公理から論述命題を示す手法現代数学の基本であって

もしユークリッド幾何学を学ばなければ抽象代数学などが理解できなくなることは明らか

現代数学である群論ガロア理論公理から初めて命題を導く

微分積分などだけを教えていると群論ガロア理論などが理解できなくなってしま

ガロア理論では作図が主に扱われるからユークリッド幾何学応用になっている

から元増田の役に立たない論は明らかに間違い

ユークリッド幾何学はまず中初等教育において論述を教える題材として適している

代数などはただの計算であって厳密ではないがユークリッド幾何学公理から始めて曖昧さな命題を示す

これは現代数学の基本であって群論ガロア理論を学ぶ際に必要能力

代数では多項式とは?集合とは?などが厳密に説明されていないがユークリッド幾何学には曖昧さは無い

ユークリッド幾何学が扱う題材は図形であって初等教育にも馴染みやす

現代数学を厳密に展開するには公理集合論まで遡らねばならないが

ユークリッド幾何学公理中学生でも理解できて完全

このような条件を満たす単元は他には無い

群論ガロア理論などの抽象代数学はユークリッド幾何学の考えを継承している

これらが確立されたのは18世紀であり微分積分などはそれよりも大分昔の理論から厳密性がない

ユークリッド幾何学現代数学モデルであるから論述を教えることができる

群論ガロア理論対称性を扱う数学対称性とは回転や相似変換などの一般化だから

やはりユークリッド幾何学を学ぶことは群論ガロア理論を学ぶことに役立つ

特に群論では、群の正規群(特異点を持たない群)による商で対称性を分類する

この割り算にはユークリッドの互除法アルゴリズムを用いることができるからユークリッド幾何学の応用になっている

群論の一部であるリー群ではユークリッド空間の回転である直交群を扱うからこれもユークリッド幾何学が直接役に立つ

ユークリッド幾何学では公理から始めて命題証明するがこれは現代数学の基本

群論ガロア理論もこのスタイル継承していてユークリッド幾何学を学ばないと抽象代数学が理解できない

ガロア理論ユークリッド幾何学と同様に、対称性公理から作図可能性を論ずる

これはいくつかの公理から始めて可能な手順の組み合わせを厳密に論述することで様々な図形を作図していく

ヒルベルト提唱した円積問題などもこの応用であって、現代数学において極めて重要

ユークリッド幾何学公理から始めて論述のみによって命題証明する

これは現代数学の基本であってガロア理論ヒルベルト理論などがその手法を受け継いでいる

これは現代数学において極めて重要

代数微分積分はただの計算であって論述を教えていないか

ユークリッド幾何学をやらないと抽象代数学などを理解できなくなってしま

ガロア理論は作図を扱うからユークリッド幾何学知識必須

代数などでは計算しかやらず概念定義曖昧だがユークリッド幾何学論述には曖昧さが一切無く

ユークリッド幾何学は図形を扱うから中高生にも理解やす

初等教育論述を教える題材として適しており他にこのような条件を満たす題材は無い

ログイン ユーザー登録
ようこそ ゲスト さん