「演算子」を含む日記 RSS

はてなキーワード: 演算子とは

2024-11-20

TQFTの概要

量子場理論過去数十年にわたり幾何学に多大な影響を与えてきた。

その例として、ミラー対称性グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。

チェコティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学のものに関する基本的な疑問はまだ残されている。

このプロジェクトの大きな目的は、TQFTの幾何学統一的で決定的な全体像を見出すことだった。

数学の4つの主要分野が取り上げられた:シンプレクティック幾何学可積分系特異点理論圏論、モジュラー形式である

プロジェクト基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論特異点理論可積分系の関連付け(ヴェントランド)、シンプレクティック場理論位相的場理論可積分系(ファベール)、行列模型理論可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論幾何学特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。

より詳細には以下である

2024-11-15

量子力学エントロピー、ほんまにおもろいわー

この問題量子力学情報論的解釈エントロピーの動きもんを扱うんや。

ここでは、量子ベイズっちゅうもんを使うて、「主体(見る奴)」「対象(見られる奴)」「環境」の3つがおる場合に、対象環境主体からんだ時のエントロピーの変化について話すで。

背景

1. デコヒーレンス:

対象環境からむと、対象の量子状態環境モツレて、キレイ状態からグチャグチャな状態になんねん。これで、対象エントロピーが増えるんや。

2. 観測:

主体対象を見ると、主体から見た対象状態がハッキリするんや。これは対象のことをよう知ったってことやからエントロピーが減るってわけや。

3. 量子ベイズ:

観測対象状態に対する主体の考えが変わんねん。この考えの変わり方はベイズ則っちゅうもんに従うて、確率的な情報の変化を表すんや。

ほんじゃ、この2つの過程エントロピーにどう影響するか、数式で説明したるで。

1. 系の状態

量子状態密度行列 ρ で表すんや。

ρ_obj' = Tr_env [ U (ρ_obj ⊗ ρ_env) U† ]

ここで U は環境対象からみ合いを表す演算子やで。

2. エントロピー

量子エントロピーフォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) で表すんや。

デコヒーレンス環境とのからみ合い)

デコヒーレンス対象キレイ状態からグチャグチャな状態になって、エントロピーが増えんねん:

S(ρ_obj') > S(ρ_obj)

環境とのからみ合いが進むと、対象状態環境情報を失うて、一番グチャグチャな状態に近づくんや。

観測主体対象からみ合い)

主体対象を見ると、波動関数が縮むから対象状態がハッキリして、エントロピーが減んねん:

S(ρ_obj^posterior) < S(ρ_obj^prior)

主体観測対象のことを知る過程は、量子ベイズ則に従うんや。

量子ベイズによる証明

量子ベイズの考え方に従うと、観測後の考え(後分布)は観測前の考え(事前分布)を観測結果で更新すんねん。観測前後エントロピーの差はこう説明できんねん。

1. 事前分布エントロピー:

H_prior = -∑_i P(i) log P(i)

ここで P(i) は事前分布確率やで。

2. 観測結果による更新(後分布):

P(i|O) = P(O|i)P(i) / ∑_j P(O|j)P(j)

3. 後分布エントロピー:

H_posterior = -∑_i P(i|O) log P(i|O)

観測対象状態がハッキリするから普通

H_posterior < H_prior

が成り立つんや。

この不等式はエントロピーが減ることを示して、観測情報を得て対象状態をハッキリさせる効果があるってことやで。

結論

量子ベイズの考え方で以下のことがわかったんや:

1. 対象環境からむとデコヒーレンスが起こって、対象エントロピーが増えんねん。

2. 主体対象を見ると対象状態情報が得られて、エントロピーが減んねん。

まりデコヒーレンス観測はそれぞれエントロピーを増やしたり減らしたりするんや。これが量子ベイズ形式数字ちゃん説明できるってわけやで!

2024-11-14

AdS/CFT対応ブラックホール情報パラドックス

AdS/CFT対応

AdS/CFT対応は、d+1次元の反ド・ジッター空間AdS_{d+1}における重力理論と、その境界上のd次元共形場理論CFT_dとの間の双対性を主張する。この対応は以下の等式で表現される:

Z_gravity[φ_0] = ⟨exp(∫_∂AdS d^dx φ_0(x)O(x))⟩_CFT

ここで、Z_gravityはAdS重力理論の生成汎関数、右辺はCFTの相関関数の生成汎関数である。φ_0はAdS空間境界での場の値、OはCFT演算子である

ブラックホールのホログラフィック表現

AdS空間内のシュワルツシルト・ブラックホールは、CFTの有限温度状態対応する。ブラックホール温度TとCFT温度は一致し、以下のように与えられる:

T = (d r_+)/(4π L²)

ここで、r_+はブラックホールの地平線半径、LはAdS空間の曲率半径である

エンタングルメントエントロピーと面積法則

CFTのある領域AのエンタングルメントエントロピーS_Aは、AdS空間内の極小面γ_Aの面積と関連付けられる:

S_A = Area(γ_A)/(4G_N)

ここで、G_Nはニュートン定数である。この関係は、Ryu-Takayanagi公式として知られている。

情報パラドックス解決

AdS/CFT対応は、ブラックホール情報パラドックスに対して以下の洞察提供する:

1. ユニタリ性: CFT時間発展はユニタリであり、これはAdS空間でのブラックホール形成蒸発過程全体がユニタリであることを意味する。

2. 情報の保存: ブラックホールに落ち込んだ情報は、CFT状態に完全に符号化される。形式的には:

S(ρ_CFT,initial) = S(ρ_CFT,final)

ここで、S(ρ)はフォン・ノイマンエントロピーである

3. スクランブリング: 情報スクランブリングは、CFTの非局所演算子の成長によって記述される:

⟨[W(t), V(0)]²⟩ ∼ e^(λ_L t)

ここで、λ_Lはリャプノフ指数で、λ_L ≤ 2πT(カオス束縛)を満たす。

量子誤り訂正ブラックホール

AdS/CFTは量子誤り訂正コードとしても解釈できる。境界CFTの部分系Aに符号化された情報は、バルクのサブリージョンaに再構成できる:

Φ_a = ∫_A dx K(x; a) O(x)

ここで、Φ_aはバルク場、K(x; a)は再構成カーネル、O(x)は境界演算子である

2024-11-10

Chern-Simons理論でござる

Chern-Simons理論は、特に3次元のトポロジカル量子場理論(TQFT)における中心的な役割を果たす理論でござって、その定式化は主に接続(connection)と曲率(curvature)という微分幾何学概念に基づいておるのでござる。この理論は、特にゲージ理論トポロジー交差点で深い意味を持ち、リー群上の接続トポロジー性質を探るものでござる。以下では、厳密な数学的枠組みのもとで、Chern-Simons理論を詳細に説明いたすでござる。

1. 主束と接続

Chern-Simons理論は、主束上で定義される接続から構築されるのでござる。ここで、P(E) を G 群の主束とし、G をリー群、𝔤 をそのリー代数といたすでござる。主束は次のように定義されるのでござる:

P(E) → M,

ここで M は3次元多様体で、E はファイバー空間を表すのでござる。接続 A ∈ Ω¹(M, 𝔤) はこの主束上の1-形式でござって、各点でリー代数 𝔤 の値を取るのでござる。

接続 A は、接続を持つファイバー上の接続トランスポート表現し、リー群基準を用いて測地線のようにデータを運ぶのでござる。接続 A によって定義される曲率は、外微分 dA二次の項 A ∧ A を含む、次の形で表現されるのでござる:

F_A = dA + A ∧ A.

ここで、F_A は接続 A の曲率2-形式でござって、ゲージ群 G の接続が示す物理的な局所的な場を表すのでござる。

2. Chern-Simons形式定義

Chern-Simons形式は、主に接続の曲率を用いて定義されるのでござる。3次元多様体 M 上でのChern-Simons形式 CS(A) は、接続 A の曲率 F_A に基づいて次のように表されるのでござる:

CS(A) = ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A),

ここで、Tr はリー代数 𝔤 のトレースを取る演算子でござって、各項は外積wedge product)によって形成されるのでござる。具体的には、A ∧ dA接続 A とその外微分 dA外積を、A ∧ A ∧ A は接続の3重積を意味するのでござる。

この形式が持つ数学的な意味は、次の通りでござる:

3. ゲージ変換とChern-Simons形式の不変性

Chern-Simons形式は、ゲージ変換に対して不変であることが重要な特徴でござる。ゲージ変換は、接続 A に対して次のように作用するのでござる:

A → g⁻¹Ag + g⁻¹dg,

ここで g ∈ G はゲージ群の元でござる。この変換によって、Chern-Simons形式がどのように振る舞うかを調べると、次のように変換することがわかるのでござる:

CS(A) → CS(A) + ∫_M Tr(g⁻¹dg ∧ g⁻¹dg ∧ g⁻¹dg).

これは、Chern-Simons形式がゲージ変換の下でトポロジカル不変量として振る舞うことを示しておるのでござる。すなわち、Chern-Simons形式の値は、ゲージ変換による局所的な変更には依存せず、主に多様体トポロジー依存することが分かるのでござる。

4. Chern-Simons理論量子化

Chern-Simons理論量子化は、パスインテグラルを用いた量子場理論の枠組みで行われるのでござる。具体的には、Chern-Simons作用を用いた量子化は次のように記述されるのでござる:

Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).

この積分は、接続 A に関するパスインテグラルでござって、Chern-Simons理論における量子場理論の構築に用いられるのでござる。ここで 𝒟A は接続 A の変分に関する積分を示すのでござる。

5. トポロジカル不変量としてのChern-Simons作用

Chern-Simons形式は、特に3次元多様体に対するトポロジカル不変量としての性質重要でござる。3次元多様体 M に対して、Chern-Simons不変量は以下のように定義され、計算されるのでござる:

Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).

この不変量は、3次元の量子ホール効果トポロジカル絶縁体などの物理現象記述するのに重要でござる。具体的には、Chern-Simons形式によって、3次元多様体トポロジーを示す不変量が得られ、量子化されたゲージ理論における位相的な特性理解するために利用されるのでござる。

6. Chern-Simons理論トップダウン的応用

Chern-Simons理論の応用には以下のようなものがござる:

2024-11-09

位相的弦理論について

位相的弦理論は、通常の弦理論単純化したバージョンで、弦理論世界面を位相的にツイストすることで得られる。

この理論は、弦理論の複雑さを減らしつつ、その本質的構造を保持することを目的としている。

位相的弦理論の基本概念

位相的弦理論では、通常の弦理論作用位相的にツイストする。このツイストにより、作用素は異なるスピンを与えられ、結果として局所的な自由度を持たない理論が得られる。

数学表現

位相的弦理論作用は、通常の弦理論の Polyakov 作用を変形したものとして表現できる。Polyakov 作用は以下のように与えられる:

Sₚ[X, g] = -1/(4πα') ∫ d²σ √(-g) gᵅᵝ ∂ᵅXᵘ ∂ᵝXᵛ ηᵘᵛ

ここで、Xᵘ は標的空間座標、gᵅᵝ は世界面の計量、α' はスローパラメータである

位相的弦理論では、この作用に対して位相ツイストを行う。ツイストされた作用一般的に以下の形を取る:

Sₜₒₚ = ∫Σ {Q, V}

ここで、Q は位相対称性を生成する演算子、V は適切に選ばれた演算子、Σ は世界面を表す。

A-モデルとB-モデル

位相的弦理論には主に2つのタイプがある:A-モデルとB-モデルである

1. A-モデル

A-モデルは、6次元多様体 X の向きづけられたラグラジアン3次元多様体 M 上の U(N) チャーン・サイモン理論として現れる。

2. B-モデル

B-モデルは、D5-ブレーンのスタックを満たす世界体積上で定義され、6次元への変形された正則チャーン・サイモン理論として知られている。

2024-09-27

バナッハ=タルスキーパラドックスブラックホール情報量

1. 数学的前提

以下の数学構造定義する:

2. バナッハ=タルスキー分割の形式

H上にバナッハ=タルスキー分割を以下のように定義する:

定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、

1. H = ∪iεI Ai

2. Ai ∩ Aj = ∅ for i ≠ j

3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H

ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅

3. 量子情報理論の導入

事象の地平面上の量子状態密度作用素 ρ ε B(H) で表現する。

von Neumannエントロピーを以下のように定義する:

S(ρ) = -Tr(ρ log ρ)

4. ホログラフィック原理数学表現

AdS/CFT対応に基づき、バルク空間重力理論境界CFTの間の同型を考える:

Zgravity[φ0] = ZCFT[J]

ここで、φ0はバルクの場、Jは境界ソースである

5. 情報量モデル

事象の地平面上の情報量を以下の汎関数表現する:

I[H] = ∫H √h d³x I(x)

ここで、hはHの誘導計量、I(x)は局所的な情報密度である

6. バナッハ=タルスキー分割と情報量関係

命題:バナッハ=タルスキー分割の下で、

I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]

が成り立つ。

7. 量子効果考慮

プランクスケールでの量子効果考慮するため、非可換幾何学を導入する。

H上の座標演算子 X̂i に対して:

[X̂i, X̂j] = iθij

ここで、θijは非可換パラメータである

8. 情報保存の定理

定理:量子効果考慮した場合、以下が成り立つ:

limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε

ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である

結論

このモデルは、バナッハ=タルスキーパラドックスブラックホール情報量問題統合している。

量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量記述することが可能となる。

このアプローチは、量子重力理論情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックス解決に向けた理論的基盤を提供する。

M理論超弦理論数学宇宙仮説

超弦理論数学構造

超弦理論は、2次元の共形場理論を基礎としている。この理論は、以下の数学的要素で構成される:

1. 共形対称性: 2次元世界面上で定義される場の理論で、局所的なスケール不変性を持つ。これは無限次元のビラソロ代数によって記述される。

[Lₘ, Lₙ] = (m - n)Lₘ₊ₙ + c/12 m(m² - 1)δₘ₊ₙ,₀

ここで、Lₘはビラソロ演算子、cは中心電荷である

2. モジュライ空間: 弦の運動記述する際、リーマン面のモジュライ空間重要役割を果たす。これは複素多様体の変形理論と密接に関連している。

3. カラビ・ヤウ多様体: 超対称性を保つためには、6次元余剰次元がカラビ・ヤウ多様体の形をしている必要がある。これは複素3次元のケーラー多様体で、リッチ曲率テンソルが消えるという特徴を持つ。

Rᵢⱼ̄ = 0

M理論数学構造

M理論11次元の超重力理論を基礎としており、以下の数学的要素が重要である

1. 超多様体: 11次元の時空は超多様体として記述され、通常の座標に加えてグラスマン数値の座標を持つ。

2. E₈ × E₈ ゲージ群: ヘテロ型E₈理論との関連で、E₈ × E₈という例外リー群重要役割を果たす。

3. G₂ホロノミー: M理論コンパクト化において、7次元の内部空間がG₂ホロノミーを持つ多様体である必要がある。これは、7次元多様体上の3-形式ωが以下の条件を満たす場合である

dω = d*ω = 0

ここで、*はHodgeスタ演算子である

数学宇宙仮説との関連

数学宇宙仮説の観点からM理論超弦理論は以下のように解釈できる:

1. 圏論視点: これらの理論は、物理的実在圏論的な言語記述しようとする試みと見なせる。例えば、弦の世界面のカテゴリーと、それに対応する共形場理論カテゴリーの間の対応関係重要である

2. 代数幾何学的構造: カラビ・ヤウ多様体例外リー群などの登場は、宇宙根本構造代数幾何学的な性質を持つ可能性を示唆している。

3. 双対性: 様々な双対性(例:T双対性、S双対性ミラー対称性)の存在は、異なる数学記述が同じ物理的実在表現可能であることを示唆し、プラトン数学構造多様性示唆している。

4. 高次圏論: ブレーンの階層構造は、高次圏論的な記述自然対応する。n-カテゴリー概念が、p-ブレーンの理論と密接に関連している。

5. 無限次元リー代数: 弦理論における無限次元対称性(例:カッツ・ムーディ代数)の出現は、宇宙基本法則無限次元数学構造に基づいている可能性を示唆している。

これらの理論示唆する数学構造の豊かさと複雑さは、数学宇宙仮説が主張するような、宇宙根本的な数学性質を支持する証拠解釈できる。

しかし、これらの理論実験検証の困難さは、数学構造物理的実在関係についての哲学的問題を提起し続けている。

2024-09-23

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-20

量子力学圏論的定式化とブラックホール情報パラドックス解決

前提:

1. 現実ヒルベルト空間上のベクトルである

2. 波動関数シュレーディンガー方程式に従って時間発展する。

1. ヒルベルト空間圏論的定式化

1.1 ヒルベルト空間の圏 Hilb

Hilb は次の性質を持つ。

1.2 ダガー圏としての Hilb

- (S ∘ T)† = T† ∘ S†

- (T†)† = T

- id_H† = id_H

1.3 対称モノイドダガー圏としての Hilb

- (T ⊗ S)† = T† ⊗ S†

1.4 コンパクト閉圏としての Hilb

- 評価射: eval_H: H* ⊗ H → ℂ

- 共評価射: coeval_H: ℂ → H ⊗ H*

- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H

- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*

2. 状態と射の対応

2.1 状態の射としての表現

⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ

2.2 観測量の射としての表現

⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ

3. シュレーディンガー方程式圏論表現

3.1 ユニタリ時間発展作用素

U(t) = exp(-iHt/ħ): H → H

3.2 時間の圏 Time関手 F

- 対象: 実数 t ∈ ℝ

- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ

- 対象対応: F(t) = H

- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)

3.3 状態時間発展の射としての表現

ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)

  • 射の合成による時間累積性:

U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)

4. ブラックホール情報パラドックス圏論解決

4.1 パラドックスの定式化
4.2 圏論的枠組みにおける情報保存

H_total = H_BH ⊗ H_rad

- H_BH: ブラックホール内部のヒルベルト空間

- H_rad: ホーキング放射ヒルベルト空間

U_total(t): H_total → H_total

- U_total(t) はユニタリ射。

4.3 完全正な量子チャネルスタインスプリング表現

E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)

- ρ_BH: ブラックホールの初期状態

- Tr_H_BH: H_BH 上の部分トレース

- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。

E(ρ) = Tr_K (V ρ V†)

4.4 情報ユニタリな伝搬
4.5 ホログラフィー原理圏論的定式化

- バルクの圏 Hilb_bulk: ブラックホール内部の物理記述

- 境界の圏 Hilb_boundary: 境界上の物理記述

- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像保証

4.6 自然変換による情報の保存

- バルク: F_bulk: Time → Hilb_bulk

- 境界: F_boundary: Time → Hilb_boundary

  • 自然変換 η: F_bulk ⇒ G ∘ F_boundary:

- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。

η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁

- これにより、バルク境界での時間発展が対応し、情報が失われないことを示す。

5. 結論

量子力学圏論的に定式化し、ユニタリダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手自然変換を構成し、情報が圏全体で保存されることを示した。

2024-09-18

量子力学観測問題抽象化

量子力学観測問題抽象化された形で定式化する。

基本的な枠組み

まず、システム全体を含む複合系を考える。観測対象系、環境系、および観測者(意識)を含むヒルベルト空間 ℋ を次のように定義する。

ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O

系の状態密度演算子 ρ により記述され、全体の状態空間 ℋ 上の密度行列として表される。

エントロピー定義

エントロピーフォン・ノイマンエントロピーを用いて定義する。

S(ρ) = -Tr(ρ log ρ)

観測操作エントロピーの変化

観測によるエントロピーの低下

観測操作を完全に正定な(completely positive)トレース保存(trace-preserving)マップ ℳ として定義する。観測後の状態 ρ' = ℳ(ρ) において、エントロピーが減少することを条件1として反映する。

S(ρ') < S(ρ)

デコヒーレンスによるエントロピーの増大

デコヒーレンス操作を完全に正定トレース保存マップ 𝒟 として定義する。デコヒーレンス後の状態 ρ'' = 𝒟(ρ) において、エントロピーが増大することを条件2として反映する。

S(ρ'') > S(ρ)

ブランチの定式化

ヒルベルト空間 ℋ を無限分岐するブランチに分割する。各ブランチ観測結果に対応し、以下のように直交する部分空間に分解される。

ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)

ここで、I は無限集合を表す。全体の状態は各ブランチ対応する部分空間に分解され、次の形で表される。

ρ = ∑_(i ∈ I) p_i ρ_(S,i) ⊗ ρ_(E,i) ⊗ ρ_(O,i)

観測者の知識ブランチ選択

観測者の知識状態

観測者の知識 K はヒルベルト空間 ℋ_O 上の状態として表され、重ね合わせの状態にある。

|Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩

ここで、|i⟩ は各ブランチ対応する基底状態、c_i は複素係数である

意識ブランチへの移行

観測操作 ℳ により、観測者の知識特定ブランチ j へ移行することを条件3および条件4として反映する。これを数学的に表現するために、観測操作 ℳ は次のような射影を含む。

ℳ(ρ) = ∑_(j ∈ I) P_j ρ P_j

ここで、P_j はブランチ j に対応する射影演算子である。この操作により、観測者は特定ブランチ j を「選択」し、そのブランチ対応する知識状態 |j⟩ を持つことになる。

知識の決定と分岐の方向

分岐の方向の無数性

ブランチの集合 I が無限であることにより、分岐の方向が無数に存在することを条件5として反映する。

観測者の知識の重ね合わせ

観測者の知識 |Ψ_O⟩ が全てのブランチに対して重ね合わせの状態にあることを条件6として反映する。つまり観測者は観測前に全てのブランチ可能性を持っており、観測後に特定ブランチに「意識が移行」する。

エントロピー変化の統合

観測操作 ℳ とデコヒーレンス操作 𝒟 を統合し、全体のダイナミクスを次のように定式化する。

ρ → 𝒟 → ρ'' → ℳ → ρ'

ここで、

最終的な数学的定式化

以上を総合すると、観測問題数学的定式化は以下のようになる。

1. 系の状態: 密度演算子 ρ がヒルベルト空間 ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O 上に存在する。

2. エントロピー: フォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) を用いる。

3. デコヒーレンス操作: 完全に正定トレース保存マップ 𝒟 により、エントロピーが増大 S(𝒟(ρ)) > S(ρ)。

4. 観測操作: 完全に正定トレース保存マップ ℳ により、エントロピーが減少 S(ℳ(ρ)) < S(ρ)。

5. ブランチ構造: 観測者のヒルベルト空間 ℋ_O を無限個の直交部分空間に分割 ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)。

6. 観測者の知識: 観測者の知識状態 |Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩ が重ね合わせにある。

7. 意識の移行: 観測操作 ℳ により、観測者の意識特定ブランチ j に移行し、そのブランチ対応する知識状態 |j⟩ を持つ。

2024-09-09

M理論公理

基本概念
公理

1. (多様体構造) M は滑らかな11次元位相多様体である

2. (ゲージ構造) E は M 上のベクトルバンドルで、構造群 G を持つ。

3. (超対称性) M 上に32個の超対称性生成子 Q_α (α = 1, ..., 32) が存在し、以下の反交換関係を満たす:

{Q_α, Q_β} = 2(CΓ^μ)_αβ P_μ + Z_αβ

ここで C は電荷共役行列、Γ^μ はガンマ行列、P_μ は運動量演算子、Z_αβ は中心電荷

4. (作用原理) M理論作用 S は以下の形式を持つ:

S = ∫_M (R * 1 + 1/2 * F ∧ *F + ψ̄Γ^μ∇_μψ + ...)

ここで R はスカラー曲率、* はHodgeのスター演算子

5. (双対性) 異なるコンパクト化 M → M' に対して、物理的に等価理論が得られる。

定理

定理1 (BPS状態存在)

エネルギーが中心電荷で下から押さえられるBPS状態存在する。

 

証明:

1. 超対称性代数からエネルギー演算子 H は以下の不等式を満たす:

H ≥ √(Z_αβ Z^αβ)

2. この不等式の等号が成り立つ状態BPS 状態と呼ぶ。

3. 超対称性表現論により、このような状態は必ず存在する。

4. よって、BPS状態存在が示された。 □

 

定理2 (M2ブレーンの張力)

M2ブレーンの張力 T_M2 は、11次元プランク長 l_p を用いて以下のように与えられる:

T_M2 = 1 / (4π²l_p³)

 

証明:

1. 作用原理からM2ブレーンの世界体積作用を導出する。

2. この作用11次元重力理論作用比較する。

3. 次元解析により、張力 T_M2次元が [長さ]^(-3) であることがわかる。

4. 唯一の長さスケールである l_p を用いて表現すると、係数を含めて上記の結果が得られる。

5. この結果は、デュアリティ変換の下で不変である。 □

2024-09-02

ブラックホール情報パラドックスについて

ブラックホール情報パラドックスは、量子場の理論一般相対性理論整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。

1. 量子力学ユニタリ性

量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:

|ψ(t)⟩ = U(t)|ψ(0)⟩

ここで、U(t) は以下の性質を満たす:

U†(t)U(t) = U(t)U†(t) = I

これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。

2. ブラックホール形成蒸発

ブラックホール形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:

rₛ = 2GM/c²

ここで、G は重力定数、M はブラックホール質量、c は光速

ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:

T_H = ℏc³/(8πGMk_B)

ここで、ℏ はプランク定数、k_B はボルツマン定数

3. 情報喪失問題

ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:

|ψᵢ⟩⟨ψᵢ| → ρ_f

これは量子力学ユニタリ性矛盾する。

超弦理論から解決アプローチ

ホログラフィー原理

ホログラフィー原理は、(d+1) 次元重力理論が d 次元場の理論等価であることを示唆する。ブラックホールエントロピー S は:

S = A/(4Gℏ)

ここで、A は事象の地平面の面積。これは、情報事象の地平面上に符号化されていることを示唆する。

AdS/CFT対応

AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:

ds² = (L²/z²)(-dt² + d𝐱² + dz²)

ここで、L は AdS 空間の曲率半径、z は動径座標。

CFT の相関関数は、AdS 空間内のフェイマン図に対応する。例えば、2点相関関数は:

⟨𝒪(x)𝒪(y)⟩_CFT ∼ exp(-mL)

ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。

量子エンタングルメントER=EPR 仮説

量子エンタングルメントは、ブラックホール情報パラドックス解決重要役割を果たす可能性がある。2粒子系のエンタングルした状態は:

|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)

ER=EPR 仮説は、量子エンタングルメントEPR)とアインシュタインローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。

結論

超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワーク提供している。

ホログラフィー原理、AdS/CFT対応量子エンタングルメントなどの概念は、このパラドックス解決に向けた重要な手がかりとなっている。

今後の研究では、量子重力の完全な理論を構築することが必要特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要課題となるだろう。

量子論と意識について

1. 「現実ヒルベルト空間上のベクトルである

量子力学において、系の状態ヒルベルト空間 𝓗 上の状態ベクトル |ψ⟩ で表される。従って、現実は次のように定式化できる:

|ψ⟩ ∈ 𝓗

2. 「シュレーディンガー方程式に従って時間発展する」

系の時間発展は時間依存シュレーディンガー方程式に従う:

𝑖ħ (∂/∂𝑡) |ψ(t)⟩ = 𝐻 |ψ(t)⟩

ここで、ħ はディラック定数、𝐻 は系のハミルトニアン演算子

3. 「観測エントロピーを減らす」

量子系の観測により波動関数の収縮が生じ、それによってエントロピーが減少する。この過程は次のように表される:

|ψ⟩ → |ψ'⟩ = (𝑃ₖ |ψ⟩) / √(⟨ψ| 𝑃ₖ |ψ⟩)

ここで、𝑃ₖ は観測によって選択された射影演算子

4. 「主体が向かう世界は、主体現在知識依存する」

観測によって選択される状態観測者の現在知識条件付き確率)に基づく。これを次のように表現

𝑃(|ψ'⟩ | 観測者の知識) = | ⟨ψ'| 𝑃ₖ |ψ⟩ |²

5. 「観測時に意識知識依存して分岐する」

多世界解釈では、観測により状態分岐し、観測者の意識もそれに応じて分岐する。これは次のように記述することができる:

|ψ⟩ = Σₖ 𝑐ₖ |ϕₖ⟩ → {

観測者1: |ϕ₁⟩

観測者2: |ϕ₂⟩

}

まとめ

上記をまとめると、現実時間発展、観測知識依存意識分岐の一連の過程は、量子力学の枠組みで以下の通り定式化できる:

1. |ψ(t)⟩ ∈ 𝓗

2. 𝑖ħ (∂/∂𝑡) |ψ(t)⟩ = 𝐻 |ψ(t)⟩

3. |ψ⟩ → |ψ'⟩ = (𝑃ₖ |ψ⟩) / √(⟨ψ| 𝑃ₖ |ψ⟩), ここで, 𝑆(ρ') < 𝑆(ρ)

4. 𝑃(|ψ'⟩ | 知識) = | ⟨ψ'| 𝑃ₖ |ψ⟩ |²

5. |ψ⟩ = Σₖ 𝑐ₖ |ϕₖ⟩ → {

観測者1: |ϕ₁⟩

観測者2: |ϕ₂⟩

}

ループ量子重力理論幾何学的基礎

1. 微分多様体接続

ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。

A ∈ Ω^1(M) ⊗ su(2)

ここで、Ω^1(M) は M 上の1-形式空間su(2) は SU(2)のリー代数である

2. ホロノミーと量子化

接続 A のホロノミーを用いて、シリンダー関数定義する:

Ψ_γ[A] = f(hol_γ[A])

ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。

3. スピンネットワークと量子幾何学

H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である

面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:

Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩

V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩

ここで、l_P はプランク長さ、f は頂点での量子数関数である

4. 時空の発展と因果構造

時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である物理的遷移振幅は、

Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)

で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である

5. 不変量と位相性質

理論位相性質は、ウィルソンループ不変量

W_γ[A] = Tr P exp(∮_γ A)

を通じて特徴づけられる。ここで、P は経路順序付け演算子である

6. 対称性と変換群

理論微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変であるさらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:

A → gAg^-1 + gdg^-1

7. コホモロジー理論との関連

理論数学構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体ドナルドソン不変量との関連が示唆される。

2024-08-31

AdS/CFT対応について

AdS/CFT対応数学抽象化を以下に示すのだ。

基本的定義

AdS/CFT対応は、以下の二つの理論間の同型を主張するのだ:

1. d次元共形場理論 (CFT)

2. (d+1)次元反ド・ジッター空間 (AdS) 上の重力理論

数学構造

AdS空間

(d+1)次元AdS空間は以下の計量で特徴付けられるのだ:

ds² = R²/z²(-dt² + d𝐱² + dz²)

ここで、R はAdS空間の曲率半径、z は動径座標なのだ

CFTの共形群

d次元CFTは SO(d,2) 共形群の下で不変なのだ。この群はAdSd+1の等長変換群と同型なのだ

対応関係数学表現

場と演算子対応

AdS側の場φとCFT側の演算子Oの間に以下の対応があるのだ:

⟨e^(-∫d^dx J(x)O(x))⟩CFT = e^(-Sgrav[φ])

ここで、J(x)は源、Sgrav[φ]はAdS側の重力作用なのだ

スケーリング次元質量関係

m²R² = Δ(Δ-d)

ここで、mはAdS側のスカラー場の質量、ΔはCFT側の対応する演算子のスケーリング次元なのだ

ログラフィック繰り込み

AdS/CFT対応は、CFT繰り込み群の流れをAdS空間内の幾何学的流れとして表現するのだ。これは以下の微分方程式記述されるのだ:

dgi/d log z = βi(g)

ここで、giは結合定数、βiはベータ関数、zはAdS空間の動径座標なのだ

相関関数対応

n点相関関数は以下のように対応するのだ:

⟨O1(x1)...On(xn)⟩CFT = lim(z→0) z^(-Δ1)...z^(-Δn) ⟨φ1(x1,z)...φn(xn,z)⟩AdS

ここで、OiCFT側の演算子、φiはAdS側の対応する場なのだ

エントロピー対応

CFT側のエントロピーSとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:

S = A/(4GN)

ここで、GNは(d+1)次元ニュートン定数なのだ

ウィルソンループ対応

CFT側のウィルソンループWとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:

⟨W⟩CFT = e^(-A/(2πα'))

ここで、α'は弦の張力の逆数なのだ

2024-08-19

量子ベイズに基づく熱力学第二法則証明

この証明では、次の2つの不等式を示す:

1. 観測エントロピーを減少させる:

Σₖ pₖ S(ρₖ) ≤ S(ρ)

2. デコヒーレンスエントロピーを増加させる:

S(ρ) ≤ S(ρ ◦ E)

ここで、S(ρ) は密度行列 ρ のエントロピー、pₖ はそれぞれの観測結果の確率、E はデコヒーレンスを表す行列である

1. 観測によるエントロピーの減少の証明

まず、観測は次のように表現される:

ρ → ρₖ = (Pₖ ρ Pₖ) / pₖ

pₖ = tr(Pₖ ρ)

ここで、Pₖ は完全直交射影演算子の集合であり、Σₖ Pₖ = I を満たす。また、エントロピー一般に凹関数 h(x) を用いて次のように定義される:

S(ρ) = tr[h(ρ)]

観測後のエントロピー期待値は次のように表される:

⟨S⟩ = Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]

この期待値が初期状態エントロピー S(ρ) よりも小さい、すなわち次の不等式が成り立つことを示す:

Σₖ pₖ S(ρₖ) ≤ S(ρ)

主要化とは、あるベクトル λ が別のベクトル μ を主要化する (λ ≺ μ) とき、次の不等式が成り立つことを意味する:

Σᵢ h(λᵢ) ≤ Σᵢ h(μᵢ)

ここで、λ(ρ) は密度行列 ρ の固有値ベクトルである。もし λ(ρₖ) ≺ λ(ρ) が成立するならば、観測後のエントロピー S(ρₖ) が元のエントロピー S(ρ) よりも小さいことが示される。

1. 観測後の状態 ρₖ は、次の形式を取る:

ρₖ = (Pₖ ρ Pₖ) / pₖ

pₖ = tr(Pₖ ρ)

2. 観測後のエントロピー期待値は次のように書ける:

Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]

3. 一方で、元のエントロピー S(ρ) は次のように表される:

S(ρ) = tr[h(ρ)]

4. ここで、主要化の結果を利用すると、次の不等式が成り立つ:

λ(ρₖ) ≺ λ(ρ)

5. この不等式に基づき、次のエントロピー不等式が得られる:

Σₖ pₖ S(ρₖ) ≤ S(ρ)

これにより、観測後のエントロピーが元のエントロピーよりも小さいことが証明された。

2. デコヒーレンスによるエントロピーの増加の証明

次に、デコヒーレンスは次のように表現される:

ρ → ρ ◦ E

ここで、E はデコヒーレンス行列で、その要素は Eᵢⱼ = ⟨εⱼ | εᵢ⟩ である。この操作はSchur積と呼ばれ、行列対応する要素ごとに積を取る操作である

デコヒーレンス後のエントロピーが増加することを次の不等式で示す:

S(ρ) ≤ S(ρ ◦ E)

この証明も、主要化の結果に基づいている。具体的には、次のように進める:

1. デコヒーレンス後の密度行列 ρ ◦ E の固有値ベクトル λ(ρ ◦ E) が、元の密度行列 ρ の固有値ベクトル λ(ρ) を主要化する:

λ(ρ ◦ E) ≺ λ(ρ)

2. 主要化に基づき、次のエントロピー不等式が成り立つ:

S(ρ) ≤ S(ρ ◦ E)

これにより、デコヒーレンスエントロピーを増加させることが証明された。

結論

以上の2つの不等式により、定理が次のように証明された:

Σₖ pₖ S(ρₖ) ≤ S(ρ) ≤ S(ρ ◦ E)

この証明により、観測エントロピーを減少させ、デコヒーレンスエントロピーを増加させることが確定された。

2024-08-16

多世界解釈の数理

多世界解釈(MWI)における量子力学波動関数とその幾何学表現考慮し、数理モデルを示す。

量子状態ヒルベルト空間 𝓗 のベクトルとして表される。波動関数 |ψ⟩ はこの空間の要素であり、時間発展はシュレーディンガー方程式

iℏ ∂/∂t |ψ(t)⟩ = H |ψ(t)⟩

によって記述される。ここで、H はハミルトニアン演算子である観測が行われると、MWIでは波動関数が収縮せず、代わりにヒルベルト空間内での分岐が生じる。この分岐は、異なる固有状態への射影として表現される。

観測による分岐は、波動関数の射影演算子 Pᵢ を用いて次のように表される:

|ψ⟩ → Pᵢ |ψ⟩ = cᵢ |ϕᵢ⟩

ここで、|ϕᵢ⟩ は観測の結果に対応する固有状態であり、cᵢ はその確率振幅である

次に、MWIにおける幾何学構造を考える。各分岐は、ヒルベルト空間内の異なる方向への射影として捉えられ、これにより多次元ファイバー束のような構造形成される。ファイバー束 E は基底空間 B 上に定義され、各ファイバー Fᵦ は異なる分岐対応する:

E = ⋃ (b ∈ B) Fᵦ

観測によるエントロピーの低下は、観測者の視点から情報特定されるために起こる。量子エントロピーは、フォン・ノイマンエントロピー

S(ρ) = -Tr(ρ log ρ)

によって定義される。ここで、ρ は密度行列である観測により、観測者が特定状態経験することで、情報が増加し、エントロピーが減少するように見える。

このように、MWIにおける時空の分岐エントロピーの変化は、量子力学波動関数幾何学性質と深く結びついている。各分岐は、ヒルベルト空間内の異なる方向への射影として捉えられ、これにより多次元幾何学構造形成される。観測によるエントロピーの低下は、観測者の主観的情報増加として理解され、全体のエントロピーは保存されるか増加するという量子力学の基本原則に従う。

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-08-12

SO(3)ってほんま美しいわな

今日はええ天気やなぁ。東北は雨ザーザーらしいけど、こっちはええ感じやで。ほんなら、SO(3)っちゅうのが何なんか、ちょっと考えてみよか。

量子力学数学

量子力学っちゅうのは、ミクロ世界説明するための理論で、抽象数学のいろんな分野とガッチリ結びついてんねん。

特に線形代数群論リー代数微分幾何学なんかが重要役割果たしてるんやで。

群論対称性

量子力学における対称性は、群論を通じて説明されるんや。

例えば、空間の回転対称性特殊直交群 SO(3) で表されるっちゅう話やね。

SO(3) は、三次元空間での回転を記述する群で、回転を合成してもまた回転になるっちゅうことで、群の構造を持ってるんや。

この群の性質理解することで、角運動量の保存則やスピン性質説明できるんやで。

リー群リー代数

SO(3) はリー群の一例で、リー代数はその接空間として定義されるんや。

リー代数は、群の局所的な性質記述し、量子力学における角運動量演算子の交換関係を表すんや。

リー代数構造定数は、演算子の交換関係を通じて、物理的な対称性を反映してるんやで。

表現論

量子力学では、物理系の状態ヒルベルト空間上のベクトルとして表されるんや。

群の表現論は、これらの状態がどんなふうに変換されるかを記述するための数学的な枠組みを提供するんや。

特に、SO(3) の既約表現は、整数または半整数スピン量子数によって特徴付けられ、スピン j の表現は (2j + 1) 次元の複素ベクトル空間上で作用するんやで。

微分幾何学と量子場理論

微分幾何学は、量子場理論におけるゲージ理論の基礎を提供するんや。

ゲージ理論では、場の局所的な対称性重要で、これが微分幾何学概念を通じて記述されるんや。

例えば、ファイバー束や接続形式は、ゲージ場の数学記述において中心的な役割果たしてるんやで。

量子力学抽象

量子力学数学抽象性は、古典的直感とはちゃう現象説明するために必要不可欠や。

観測問題波動関数確率解釈量子もつれなんか、これらの現象は、抽象数学を駆使することで初めて理解できるんや。

特にヒルベルト空間理論作用代数は、量子系の解析において重要役割果たしてるんやで。

まとめ

今日はこの辺にしとくけど、SO(3)っちゅうのが何なんか、ざっくりイメージできたんちゃうかな。

ちょっと難しい話やけど、これが量子力学深淵やで。

2024-07-13

anond:20240713095741

まあ一度決まったことはなかなか覆らないよな

プログラム言語歴史をもう一度やり直せるなら文字列結合演算子とかも統一したいし

2024-04-07

シンタックスシュガー✕(かける)

掛算の順序と学習指導要領の話おもしろかったです。

りんごが5つ載った皿が4枚ある場合りんごがいくつになるか」という問題を立式するときは、

という話だと思いました。

4✕5は4[個/枚] * 5[枚]に変換されるので、正解にならない。

✕は乗算の演算子と思ってしがいがちだけど、被乗数と乗数の順序を考慮するときは、その順序を含めた乗算のシンタックスシュガーになっている。

なので立式するときの✕では交換法則が成り立たない。

なんか、このシンタックスシュガーいけてないなと思うのは、計算するとき交換法則適用していいよと言われているところと、乗法を習うこの単元以外では立式の際もシンタックスシュガーではなく乗算の演算子として取り扱われているところ。

でも、いけてないシンタックスシュガーは世に溢れているので、まあいいや。

被乗数と乗数の関係を考えていて思い出したのが、消費税が導入されたとき大学生協書籍代はどうなるのかという話。

これで1,000円の本はいくらになりますかという話

乗算は交換法則が成り立つから1000*0.9*1.03でも1000*1.03*0.9でも良いです。

✕も計算とき交換法則適用して良いから1000✕0.9✕1.03でも1000✕1.03✕0.9でも良いです。

でも✕で立式するときはどうなるのか。

1000[円/冊]✕1[冊]✕0.9✕1.03と1000[円/冊]✕1[冊]✕1.03✕0.9のどちらが正しいのか。

0.9と1.03は単位がないから乗数、被乗数の順序を考慮しなくて良いのかな。

僕が小学生の頃は乗数、被乗数は「かける数」「かけられる数」と言われてました。

「この式の4は『かける数』でしょうか『かけられる数』でしょうか」みたいなテスト問題があったけど、「この話は、ここでしか出てこないので、気にしなくて良いです」と先生が言って、採点対象外になってました。

大学生協で割引と消費税の順序に悩まなくて良い人生で良かったです。

2024-02-25

自分で調べろは回答になってないぞ知恵カス

javascriptの結合性について

a=b=1;のような場合、この文に使われている演算子はどちらも同じ=という種類であり、優先順位に差が無いので、左側から解析し、もう一つ同じ演算子があるので演算子の実行を保留し、右側の=を見つけて、右から代入するというのはわかります

では()すなわちグループ化のような場合はどうなのでしょうか?さいわいこれには結合性はないようですが、あったとしたらどう考えればいいのでしょうか?

=のように右と左をオペランドに挟まれた形ではないので、左側とか右側とかいってもよくわかりませんし、(...)+2の)+のように演算子同士が隣接する場合も考えるとますますどういうアルゴリズムなのかよくわかりません。

それともだからこそ、()には結合性を設けないとしたのでしょうか?

dot dot dotさん

2024/2/25 15:38

a = b = 1

a = (b = 1)

解釈されます

分かってないのは字句解析しか理解してないからです。構文解析について調べましょう。

調べましょうでもいいんですが、知ってるならそのあなたが同じ疑問にあたったときに調べて解決につながった情報だけを一通り書いてくれるのが一番ありがたいのですが。

構文解析」なんて漠然とした範囲を調べていたら、たとえ疑問のカギになる情報が目に入っても素通りしちゃいそうですし…

ログイン ユーザー登録
ようこそ ゲスト さん