はてなキーワード: 演算子とは
量子場理論は過去数十年にわたり幾何学に多大な影響を与えてきた。
その例として、ミラー対称性、グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。
チェコッティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学そのものに関する基本的な疑問はまだ残されている。
このプロジェクトの大きな目的は、TQFTの幾何学の統一的で決定的な全体像を見出すことだった。
数学の4つの主要分野が取り上げられた:シンプレクティック幾何学と可積分系、特異点理論、圏論、モジュラー形式である。
プロジェクトの基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論、特異点理論、可積分系の関連付け(ヴェントランド)、シンプレクティック場理論、位相的場理論、可積分系(ファベール)、行列模型理論と可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論の幾何学と特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。
より詳細には以下である。
この問題は量子力学の情報論的解釈とエントロピーの動きもんを扱うんや。
ここでは、量子ベイズっちゅうもんを使うて、「主体(見る奴)」「対象(見られる奴)」「環境」の3つがおる場合に、対象が環境や主体とからんだ時のエントロピーの変化について話すで。
対象が環境とからむと、対象の量子状態が環境とモツレて、キレイな状態からグチャグチャな状態になんねん。これで、対象のエントロピーが増えるんや。
主体が対象を見ると、主体から見た対象の状態がハッキリするんや。これは対象のことをよう知ったってことやから、エントロピーが減るってわけや。
観測で対象の状態に対する主体の考えが変わんねん。この考えの変わり方はベイズ則っちゅうもんに従うて、確率的な情報の変化を表すんや。
ほんじゃ、この2つの過程がエントロピーにどう影響するか、数式で説明したるで。
ρ_obj' = Tr_env [ U (ρ_obj ⊗ ρ_env) U† ]
量子エントロピーはフォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) で表すんや。
デコヒーレンスで対象はキレイな状態からグチャグチャな状態になって、エントロピーが増えんねん:
S(ρ_obj') > S(ρ_obj)
環境とのからみ合いが進むと、対象の状態は環境の情報を失うて、一番グチャグチャな状態に近づくんや。
主体が対象を見ると、波動関数が縮むから対象の状態がハッキリして、エントロピーが減んねん:
S(ρ_obj^posterior) < S(ρ_obj^prior)
主体が観測で対象のことを知る過程は、量子ベイズ則に従うんや。
量子ベイズの考え方に従うと、観測後の考え(後分布)は観測前の考え(事前分布)を観測結果で更新すんねん。観測前後のエントロピーの差はこう説明できんねん。
H_prior = -∑_i P(i) log P(i)
P(i|O) = P(O|i)P(i) / ∑_j P(O|j)P(j)
H_posterior = -∑_i P(i|O) log P(i|O)
H_posterior < H_prior
が成り立つんや。
この不等式はエントロピーが減ることを示して、観測が情報を得て対象の状態をハッキリさせる効果があるってことやで。
量子ベイズの考え方で以下のことがわかったんや:
1. 対象が環境とからむとデコヒーレンスが起こって、対象のエントロピーが増えんねん。
2. 主体が対象を見ると対象の状態の情報が得られて、エントロピーが減んねん。
つまり、デコヒーレンスと観測はそれぞれエントロピーを増やしたり減らしたりするんや。これが量子ベイズの形式で数字でちゃんと説明できるってわけやで!
AdS/CFT対応は、d+1次元の反ド・ジッター空間AdS_{d+1}における重力理論と、その境界上のd次元共形場理論CFT_dとの間の双対性を主張する。この対応は以下の等式で表現される:
Z_gravity[φ_0] = ⟨exp(∫_∂AdS d^dx φ_0(x)O(x))⟩_CFT
ここで、Z_gravityはAdS重力理論の生成汎関数、右辺はCFTの相関関数の生成汎関数である。φ_0はAdS空間の境界での場の値、OはCFTの演算子である。
AdS空間内のシュワルツシルト・ブラックホールは、CFTの有限温度状態に対応する。ブラックホールの温度TとCFTの温度は一致し、以下のように与えられる:
T = (d r_+)/(4π L²)
ここで、r_+はブラックホールの地平線半径、LはAdS空間の曲率半径である。
CFTのある領域Aのエンタングルメント・エントロピーS_Aは、AdS空間内の極小面γ_Aの面積と関連付けられる:
S_A = Area(γ_A)/(4G_N)
ここで、G_Nはニュートン定数である。この関係は、Ryu-Takayanagi公式として知られている。
AdS/CFT対応は、ブラックホール情報パラドックスに対して以下の洞察を提供する:
1. ユニタリ性: CFTの時間発展はユニタリであり、これはAdS空間でのブラックホール形成と蒸発過程全体がユニタリであることを意味する。
2. 情報の保存: ブラックホールに落ち込んだ情報は、CFTの状態に完全に符号化される。形式的には:
S(ρ_CFT,initial) = S(ρ_CFT,final)
3. スクランブリング: 情報のスクランブリングは、CFTの非局所的演算子の成長によって記述される:
⟨[W(t), V(0)]²⟩ ∼ e^(λ_L t)
ここで、λ_Lはリャプノフ指数で、λ_L ≤ 2πT(カオス束縛)を満たす。
AdS/CFTは量子誤り訂正コードとしても解釈できる。境界CFTの部分系Aに符号化された情報は、バルクのサブリージョンaに再構成できる:
Φ_a = ∫_A dx K(x; a) O(x)
Chern-Simons理論は、特に3次元のトポロジカル量子場理論(TQFT)における中心的な役割を果たす理論でござって、その定式化は主に接続(connection)と曲率(curvature)という微分幾何学の概念に基づいておるのでござる。この理論は、特にゲージ理論とトポロジーの交差点で深い意味を持ち、リー群上の接続のトポロジー的性質を探るものでござる。以下では、厳密な数学的枠組みのもとで、Chern-Simons理論を詳細に説明いたすでござる。
Chern-Simons理論は、主束上で定義される接続から構築されるのでござる。ここで、P(E) を G 群の主束とし、G をリー群、𝔤 をそのリー代数といたすでござる。主束は次のように定義されるのでござる:
P(E) → M,
ここで M は3次元の多様体で、E はファイバー空間を表すのでござる。接続 A ∈ Ω¹(M, 𝔤) はこの主束上の1-形式でござって、各点でリー代数 𝔤 の値を取るのでござる。
接続 A は、接続を持つファイバー上の接続のトランスポートを表現し、リー群の基準を用いて測地線のようにデータを運ぶのでござる。接続 A によって定義される曲率は、外微分 dA と二次の項 A ∧ A を含む、次の形で表現されるのでござる:
F_A = dA + A ∧ A.
ここで、F_A は接続 A の曲率2-形式でござって、ゲージ群 G の接続が示す物理的な局所的な場を表すのでござる。
Chern-Simons形式は、主に接続の曲率を用いて定義されるのでござる。3次元多様体 M 上でのChern-Simons形式 CS(A) は、接続 A の曲率 F_A に基づいて次のように表されるのでござる:
CS(A) = ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A),
ここで、Tr はリー代数 𝔤 のトレースを取る演算子でござって、各項は外積(wedge product)によって形成されるのでござる。具体的には、A ∧ dA は接続 A とその外微分 dA の外積を、A ∧ A ∧ A は接続の3重積を意味するのでござる。
Chern-Simons形式は、ゲージ変換に対して不変であることが重要な特徴でござる。ゲージ変換は、接続 A に対して次のように作用するのでござる:
A → g⁻¹Ag + g⁻¹dg,
ここで g ∈ G はゲージ群の元でござる。この変換によって、Chern-Simons形式がどのように振る舞うかを調べると、次のように変換することがわかるのでござる:
CS(A) → CS(A) + ∫_M Tr(g⁻¹dg ∧ g⁻¹dg ∧ g⁻¹dg).
これは、Chern-Simons形式がゲージ変換の下でトポロジカル不変量として振る舞うことを示しておるのでござる。すなわち、Chern-Simons形式の値は、ゲージ変換による局所的な変更には依存せず、主に多様体のトポロジーに依存することが分かるのでござる。
Chern-Simons理論の量子化は、パスインテグラルを用いた量子場理論の枠組みで行われるのでござる。具体的には、Chern-Simons作用を用いた量子化は次のように記述されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この積分は、接続 A に関するパスインテグラルでござって、Chern-Simons理論における量子場理論の構築に用いられるのでござる。ここで 𝒟A は接続 A の変分に関する積分を示すのでござる。
Chern-Simons形式は、特に3次元多様体に対するトポロジカル不変量としての性質が重要でござる。3次元多様体 M に対して、Chern-Simons不変量は以下のように定義され、計算されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この不変量は、3次元の量子ホール効果やトポロジカル絶縁体などの物理的現象を記述するのに重要でござる。具体的には、Chern-Simons形式によって、3次元多様体のトポロジーを示す不変量が得られ、量子化されたゲージ理論における位相的な特性を理解するために利用されるのでござる。
位相的弦理論は、通常の弦理論を単純化したバージョンで、弦理論の世界面を位相的にツイストすることで得られる。
この理論は、弦理論の複雑さを減らしつつ、その本質的な構造を保持することを目的としている。
位相的弦理論では、通常の弦理論の作用を位相的にツイストする。このツイストにより、作用素は異なるスピンを与えられ、結果として局所的な自由度を持たない理論が得られる。
位相的弦理論の作用は、通常の弦理論の Polyakov 作用を変形したものとして表現できる。Polyakov 作用は以下のように与えられる:
Sₚ[X, g] = -1/(4πα') ∫ d²σ √(-g) gᵅᵝ ∂ᵅXᵘ ∂ᵝXᵛ ηᵘᵛ
ここで、Xᵘ は標的空間座標、gᵅᵝ は世界面の計量、α' はスロープパラメータである。
位相的弦理論では、この作用に対して位相的ツイストを行う。ツイストされた作用は一般的に以下の形を取る:
Sₜₒₚ = ∫Σ {Q, V}
ここで、Q は位相的対称性を生成する演算子、V は適切に選ばれた演算子、Σ は世界面を表す。
位相的弦理論には主に2つのタイプがある:A-モデルとB-モデルである。
1. A-モデル:
A-モデルは、6次元多様体 X の向きづけられたラグラジアン3次元多様体 M 上の U(N) チャーン・サイモンズ理論として現れる。
2. B-モデル:
B-モデルは、D5-ブレーンのスタックを満たす世界体積上で定義され、6次元への変形された正則チャーン・サイモンズ理論として知られている。
定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、
1. H = ∪iεI Ai
2. Ai ∩ Aj = ∅ for i ≠ j
3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H
ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅
事象の地平面上の量子状態を密度作用素 ρ ε B(H) で表現する。
S(ρ) = -Tr(ρ log ρ)
AdS/CFT対応に基づき、バルク空間の重力理論と境界のCFTの間の同型を考える:
Zgravity[φ0] = ZCFT[J]
I[H] = ∫H √h d³x I(x)
ここで、hはHの誘導計量、I(x)は局所的な情報密度である。
I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]
が成り立つ。
プランクスケールでの量子効果を考慮するため、非可換幾何学を導入する。
H上の座標演算子 X̂i に対して:
[X̂i, X̂j] = iθij
limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε
ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である。
このモデルは、バナッハ=タルスキーのパラドックスとブラックホールの情報量問題を統合している。
量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量を記述することが可能となる。
このアプローチは、量子重力理論と情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックスの解決に向けた理論的基盤を提供する。
超弦理論は、2次元の共形場理論を基礎としている。この理論は、以下の数学的要素で構成される:
1. 共形対称性: 2次元の世界面上で定義される場の理論で、局所的なスケール不変性を持つ。これは無限次元のビラソロ代数によって記述される。
[Lₘ, Lₙ] = (m - n)Lₘ₊ₙ + c/12 m(m² - 1)δₘ₊ₙ,₀
2. モジュライ空間: 弦の運動を記述する際、リーマン面のモジュライ空間が重要な役割を果たす。これは複素多様体の変形理論と密接に関連している。
3. カラビ・ヤウ多様体: 超対称性を保つためには、6次元の余剰次元がカラビ・ヤウ多様体の形をしている必要がある。これは複素3次元のケーラー多様体で、リッチ曲率テンソルが消えるという特徴を持つ。
Rᵢⱼ̄ = 0
M理論は11次元の超重力理論を基礎としており、以下の数学的要素が重要である:
1. 超多様体: 11次元の時空は超多様体として記述され、通常の座標に加えてグラスマン数値の座標を持つ。
2. E₈ × E₈ ゲージ群: ヘテロ型E₈理論との関連で、E₈ × E₈という例外型リー群が重要な役割を果たす。
3. G₂ホロノミー: M理論のコンパクト化において、7次元の内部空間がG₂ホロノミーを持つ多様体である必要がある。これは、7次元多様体上の3-形式ωが以下の条件を満たす場合である:
dω = d*ω = 0
数学的宇宙仮説の観点から、M理論と超弦理論は以下のように解釈できる:
1. 圏論的視点: これらの理論は、物理的実在を圏論的な言語で記述しようとする試みと見なせる。例えば、弦の世界面のカテゴリーと、それに対応する共形場理論のカテゴリーの間の対応関係が重要である。
2. 代数幾何学的構造: カラビ・ヤウ多様体や例外型リー群などの登場は、宇宙の根本的構造が代数幾何学的な性質を持つ可能性を示唆している。
3. 双対性: 様々な双対性(例:T双対性、S双対性、ミラー対称性)の存在は、異なる数学的記述が同じ物理的実在を表現可能であることを示唆し、プラトン的数学構造の多様性を示唆している。
4. 高次圏論: ブレーンの階層構造は、高次圏論的な記述と自然に対応する。n-カテゴリーの概念が、p-ブレーンの理論と密接に関連している。
5. 無限次元リー代数: 弦理論における無限次元対称性(例:カッツ・ムーディ代数)の出現は、宇宙の基本法則が無限次元の数学的構造に基づいている可能性を示唆している。
これらの理論が示唆する数学的構造の豊かさと複雑さは、数学的宇宙仮説が主張するような、宇宙の根本的な数学的性質を支持する証拠と解釈できる。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
2. 波動関数がシュレーディンガー方程式に従って時間発展する。
Hilb は次の性質を持つ。
- (S ∘ T)† = T† ∘ S†
- (T†)† = T
- id_H† = id_H
- (T ⊗ S)† = T† ⊗ S†
- 評価射: eval_H: H* ⊗ H → ℂ
- 共評価射: coeval_H: ℂ → H ⊗ H*
- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H
- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*
⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ
⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ
U(t) = exp(-iHt/ħ): H → H
- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ
- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)
ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)
U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)
H_total = H_BH ⊗ H_rad
U_total(t): H_total → H_total
- U_total(t) はユニタリ射。
E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)
- Tr_H_BH: H_BH 上の部分トレース
- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。
E(ρ) = Tr_K (V ρ V†)
- バルクの圏 Hilb_bulk: ブラックホール内部の物理を記述。
- 境界の圏 Hilb_boundary: 境界上の物理を記述。
- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像を保証。
- バルク: F_bulk: Time → Hilb_bulk
- 境界: F_boundary: Time → Hilb_boundary
- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。
η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁
- これにより、バルクと境界での時間発展が対応し、情報が失われないことを示す。
量子力学を圏論的に定式化し、ユニタリなダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理を圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手と自然変換を構成し、情報が圏全体で保存されることを示した。
まず、システム全体を含む複合系を考える。観測対象系、環境系、および観測者(意識)を含むヒルベルト空間 ℋ を次のように定義する。
ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O
系の状態は密度演算子 ρ により記述され、全体の状態空間 ℋ 上の密度行列として表される。
エントロピーはフォン・ノイマンエントロピーを用いて定義する。
S(ρ) = -Tr(ρ log ρ)
観測操作を完全に正定な(completely positive)トレース保存(trace-preserving)マップ ℳ として定義する。観測後の状態 ρ' = ℳ(ρ) において、エントロピーが減少することを条件1として反映する。
S(ρ') < S(ρ)
デコヒーレンス操作を完全に正定なトレース保存マップ 𝒟 として定義する。デコヒーレンス後の状態 ρ'' = 𝒟(ρ) において、エントロピーが増大することを条件2として反映する。
S(ρ'') > S(ρ)
ヒルベルト空間 ℋ を無限に分岐するブランチに分割する。各ブランチは観測結果に対応し、以下のように直交する部分空間に分解される。
ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)
ここで、I は無限集合を表す。全体の状態は各ブランチに対応する部分空間に分解され、次の形で表される。
ρ = ∑_(i ∈ I) p_i ρ_(S,i) ⊗ ρ_(E,i) ⊗ ρ_(O,i)
観測者の知識 K はヒルベルト空間 ℋ_O 上の状態として表され、重ね合わせの状態にある。
|Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩
ここで、|i⟩ は各ブランチに対応する基底状態、c_i は複素係数である。
観測操作 ℳ により、観測者の知識が特定のブランチ j へ移行することを条件3および条件4として反映する。これを数学的に表現するために、観測操作 ℳ は次のような射影を含む。
ℳ(ρ) = ∑_(j ∈ I) P_j ρ P_j
ここで、P_j はブランチ j に対応する射影演算子である。この操作により、観測者は特定のブランチ j を「選択」し、そのブランチに対応する知識状態 |j⟩ を持つことになる。
ブランチの集合 I が無限であることにより、分岐の方向が無数に存在することを条件5として反映する。
観測者の知識 |Ψ_O⟩ が全てのブランチに対して重ね合わせの状態にあることを条件6として反映する。つまり、観測者は観測前に全てのブランチの可能性を持っており、観測後に特定のブランチに「意識が移行」する。
観測操作 ℳ とデコヒーレンス操作 𝒟 を統合し、全体のダイナミクスを次のように定式化する。
ρ → 𝒟 → ρ'' → ℳ → ρ'
ここで、
以上を総合すると、観測問題の数学的定式化は以下のようになる。
1. 系の状態: 密度演算子 ρ がヒルベルト空間 ℋ = ℋ_S ⊗ ℋ_E ⊗ ℋ_O 上に存在する。
2. エントロピー: フォン・ノイマンエントロピー S(ρ) = -Tr(ρ log ρ) を用いる。
3. デコヒーレンス操作: 完全に正定なトレース保存マップ 𝒟 により、エントロピーが増大 S(𝒟(ρ)) > S(ρ)。
4. 観測操作: 完全に正定なトレース保存マップ ℳ により、エントロピーが減少 S(ℳ(ρ)) < S(ρ)。
5. ブランチ構造: 観測者のヒルベルト空間 ℋ_O を無限個の直交部分空間に分割 ℋ_O = ⊕_(i ∈ I) ℋ_(O,i)。
6. 観測者の知識: 観測者の知識状態 |Ψ_O⟩ = ∑_(i ∈ I) c_i |i⟩ が重ね合わせにある。
7. 意識の移行: 観測操作 ℳ により、観測者の意識が特定のブランチ j に移行し、そのブランチに対応する知識状態 |j⟩ を持つ。
1. (多様体構造) M は滑らかな11次元位相多様体である。
2. (ゲージ構造) E は M 上のベクトルバンドルで、構造群 G を持つ。
3. (超対称性) M 上に32個の超対称性生成子 Q_α (α = 1, ..., 32) が存在し、以下の反交換関係を満たす:
{Q_α, Q_β} = 2(CΓ^μ)_αβ P_μ + Z_αβ
ここで C は電荷共役行列、Γ^μ はガンマ行列、P_μ は運動量演算子、Z_αβ は中心電荷。
S = ∫_M (R * 1 + 1/2 * F ∧ *F + ψ̄Γ^μ∇_μψ + ...)
ここで R はスカラー曲率、* はHodgeのスター演算子。
5. (双対性) 異なるコンパクト化 M → M' に対して、物理的に等価な理論が得られる。
エネルギーが中心電荷で下から押さえられるBPS状態が存在する。
証明:
1. 超対称性代数から、エネルギー演算子 H は以下の不等式を満たす:
H ≥ √(Z_αβ Z^αβ)
2. この不等式の等号が成り立つ状態を BPS 状態と呼ぶ。
3. 超対称性の表現論により、このような状態は必ず存在する。
M2ブレーンの張力 T_M2 は、11次元プランク長 l_p を用いて以下のように与えられる:
T_M2 = 1 / (4π²l_p³)
証明:
3. 次元解析により、張力 T_M2 の次元が [長さ]^(-3) であることがわかる。
ブラックホール情報パラドックスは、量子場の理論と一般相対性理論の整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。
量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:
|ψ(t)⟩ = U(t)|ψ(0)⟩
ここで、U(t) は以下の性質を満たす:
U†(t)U(t) = U(t)U†(t) = I
これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。
ブラックホールの形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:
rₛ = 2GM/c²
ここで、G は重力定数、M はブラックホールの質量、c は光速。
ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:
T_H = ℏc³/(8πGMk_B)
ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:
|ψᵢ⟩⟨ψᵢ| → ρ_f
ホログラフィー原理は、(d+1) 次元の重力理論が d 次元の場の理論と等価であることを示唆する。ブラックホールのエントロピー S は:
S = A/(4Gℏ)
ここで、A は事象の地平面の面積。これは、情報が事象の地平面上に符号化されていることを示唆する。
AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:
ds² = (L²/z²)(-dt² + d𝐱² + dz²)
CFT の相関関数は、AdS 空間内のフェインマン図に対応する。例えば、2点相関関数は:
ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。
量子エンタングルメントは、ブラックホール情報パラドックスの解決に重要な役割を果たす可能性がある。2粒子系のエンタングルした状態は:
|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)
ER=EPR 仮説は、量子エンタングルメント(EPR)とアインシュタイン・ローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。
超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワークを提供している。
ホログラフィー原理、AdS/CFT対応、量子エンタングルメントなどの概念は、このパラドックスの解決に向けた重要な手がかりとなっている。
今後の研究では、量子重力の完全な理論を構築することが必要。特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要な課題となるだろう。
量子力学において、系の状態はヒルベルト空間 𝓗 上の状態ベクトル |ψ⟩ で表される。従って、現実は次のように定式化できる:
|ψ⟩ ∈ 𝓗
𝑖ħ (∂/∂𝑡) |ψ(t)⟩ = 𝐻 |ψ(t)⟩
ここで、ħ はディラック定数、𝐻 は系のハミルトニアン演算子。
量子系の観測により波動関数の収縮が生じ、それによってエントロピーが減少する。この過程は次のように表される:
|ψ⟩ → |ψ'⟩ = (𝑃ₖ |ψ⟩) / √(⟨ψ| 𝑃ₖ |ψ⟩)
観測によって選択される状態は観測者の現在の知識(条件付き確率)に基づく。これを次のように表現:
𝑃(|ψ'⟩ | 観測者の知識) = | ⟨ψ'| 𝑃ₖ |ψ⟩ |²
多世界解釈では、観測により状態が分岐し、観測者の意識もそれに応じて分岐する。これは次のように記述することができる:
|ψ⟩ = Σₖ 𝑐ₖ |ϕₖ⟩ → {
観測者1: |ϕ₁⟩
観測者2: |ϕ₂⟩
⋮
}
上記をまとめると、現実、時間発展、観測、知識依存、意識の分岐の一連の過程は、量子力学の枠組みで以下の通り定式化できる:
1. |ψ(t)⟩ ∈ 𝓗
2. 𝑖ħ (∂/∂𝑡) |ψ(t)⟩ = 𝐻 |ψ(t)⟩
3. |ψ⟩ → |ψ'⟩ = (𝑃ₖ |ψ⟩) / √(⟨ψ| 𝑃ₖ |ψ⟩), ここで, 𝑆(ρ') < 𝑆(ρ)
4. 𝑃(|ψ'⟩ | 知識) = | ⟨ψ'| 𝑃ₖ |ψ⟩ |²
5. |ψ⟩ = Σₖ 𝑐ₖ |ϕₖ⟩ → {
観測者1: |ϕ₁⟩
観測者2: |ϕ₂⟩
⋮
}
ループ量子重力理論は、4次元ローレンツ多様体 M 上で定義される。この多様体上に、SU(2)主束 P(M,SU(2)) を考え、その上の接続 A を基本変数とする。
A ∈ Ω^1(M) ⊗ su(2)
ここで、Ω^1(M) は M 上の1-形式の空間、su(2) は SU(2)のリー代数である。
Ψ_γ[A] = f(hol_γ[A])
ここで、γ は M 上の閉曲線、hol_γ[A] は γ に沿った A のホロノミー、f は SU(2)上の滑らかな関数である。これらのシリンダー関数の完備化により、運動学的ヒルベルト空間 H_kin が構成される。
H_kin の正規直交基底は、スピンネットワーク状態 |Γ,j,i⟩ で与えられる。ここで、Γ は M 上のグラフ、j はエッジに付随するスピン、i は頂点に付随する内部量子数である。
面積演算子 Â と体積演算子 V̂ は、これらの状態上で離散スペクトルを持つ:
Â|Γ,j,i⟩ = l_P^2 Σ_e √j_e(j_e+1) |Γ,j,i⟩
V̂|Γ,j,i⟩ = l_P^3 Σ_v f(j_v,i_v) |Γ,j,i⟩
ここで、l_P はプランク長さ、f は頂点での量子数の関数である。
時空の発展は、スピンフォーム σ: Δ → SU(2) で記述される。ここで、Δ は2-複体である。物理的遷移振幅は、
Z(σ) = Σ_j Π_f A_f(j_f) Π_v A_v(j_v)
で与えられる。A_f と A_v はそれぞれ面と頂点の振幅である。
W_γ[A] = Tr P exp(∮_γ A)
を通じて特徴づけられる。ここで、P は経路順序付け演算子である。
理論は微分同相不変性を持ち、変換群 Diff(M) の作用の下で不変である。さらに、ゲージ変換 g: M → SU(2) の下での不変性も持つ:
A → gAg^-1 + gdg^-1
理論の数学的構造は、BF理論を通じてトポロジカル場の理論と関連付けられる。これにより、4次元多様体のドナルドソン不変量との関連が示唆される。
AdS/CFT対応は、以下の二つの理論間の同型を主張するのだ:
2. (d+1)次元反ド・ジッター空間 (AdS) 上の重力理論
d次元CFTは SO(d,2) 共形群の下で不変なのだ。この群はAdSd+1の等長変換群と同型なのだ。
AdS側の場φとCFT側の演算子Oの間に以下の対応があるのだ:
⟨e^(-∫d^dx J(x)O(x))⟩CFT = e^(-Sgrav[φ])
ここで、J(x)は源、Sgrav[φ]はAdS側の重力作用なのだ。
m²R² = Δ(Δ-d)
ここで、mはAdS側のスカラー場の質量、ΔはCFT側の対応する演算子のスケーリング次元なのだ。
AdS/CFT対応は、CFTの繰り込み群の流れをAdS空間内の幾何学的流れとして表現するのだ。これは以下の微分方程式で記述されるのだ:
ここで、giは結合定数、βiはベータ関数、zはAdS空間の動径座標なのだ。
⟨O1(x1)...On(xn)⟩CFT = lim(z→0) z^(-Δ1)...z^(-Δn) ⟨φ1(x1,z)...φn(xn,z)⟩AdS
ここで、OiはCFT側の演算子、φiはAdS側の対応する場なのだ。
CFT側のエントロピーSとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:
S = A/(4GN)
CFT側のウィルソンループWとAdS側の極小曲面の面積Aの間に以下の関係があるのだ:
⟨W⟩CFT = e^(-A/(2πα'))
Σₖ pₖ S(ρₖ) ≤ S(ρ)
S(ρ) ≤ S(ρ ◦ E)
ここで、S(ρ) は密度行列 ρ のエントロピー、pₖ はそれぞれの観測結果の確率、E はデコヒーレンスを表す行列である。
ρ → ρₖ = (Pₖ ρ Pₖ) / pₖ
pₖ = tr(Pₖ ρ)
ここで、Pₖ は完全直交射影演算子の集合であり、Σₖ Pₖ = I を満たす。また、エントロピーは一般に凹関数 h(x) を用いて次のように定義される:
S(ρ) = tr[h(ρ)]
⟨S⟩ = Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]
この期待値が初期状態のエントロピー S(ρ) よりも小さい、すなわち次の不等式が成り立つことを示す:
Σₖ pₖ S(ρₖ) ≤ S(ρ)
主要化とは、あるベクトル λ が別のベクトル μ を主要化する (λ ≺ μ) とき、次の不等式が成り立つことを意味する:
Σᵢ h(λᵢ) ≤ Σᵢ h(μᵢ)
ここで、λ(ρ) は密度行列 ρ の固有値のベクトルである。もし λ(ρₖ) ≺ λ(ρ) が成立するならば、観測後のエントロピー S(ρₖ) が元のエントロピー S(ρ) よりも小さいことが示される。
ρₖ = (Pₖ ρ Pₖ) / pₖ
pₖ = tr(Pₖ ρ)
Σₖ pₖ S(ρₖ) = Σₖ pₖ tr[h(ρₖ)]
3. 一方で、元のエントロピー S(ρ) は次のように表される:
S(ρ) = tr[h(ρ)]
4. ここで、主要化の結果を利用すると、次の不等式が成り立つ:
λ(ρₖ) ≺ λ(ρ)
5. この不等式に基づき、次のエントロピー不等式が得られる:
Σₖ pₖ S(ρₖ) ≤ S(ρ)
これにより、観測後のエントロピーが元のエントロピーよりも小さいことが証明された。
ρ → ρ ◦ E
ここで、E はデコヒーレンス行列で、その要素は Eᵢⱼ = ⟨εⱼ | εᵢ⟩ である。この操作はSchur積と呼ばれ、行列の対応する要素ごとに積を取る操作である。
デコヒーレンス後のエントロピーが増加することを次の不等式で示す:
S(ρ) ≤ S(ρ ◦ E)
この証明も、主要化の結果に基づいている。具体的には、次のように進める:
1. デコヒーレンス後の密度行列 ρ ◦ E の固有値ベクトル λ(ρ ◦ E) が、元の密度行列 ρ の固有値ベクトル λ(ρ) を主要化する:
λ(ρ ◦ E) ≺ λ(ρ)
2. 主要化に基づき、次のエントロピー不等式が成り立つ:
S(ρ) ≤ S(ρ ◦ E)
これにより、デコヒーレンスがエントロピーを増加させることが証明された。
Σₖ pₖ S(ρₖ) ≤ S(ρ) ≤ S(ρ ◦ E)
多世界解釈(MWI)における量子力学の波動関数とその幾何学的表現を考慮し、数理モデルを示す。
量子状態はヒルベルト空間 𝓗 のベクトルとして表される。波動関数 |ψ⟩ はこの空間の要素であり、時間発展はシュレーディンガー方程式
iℏ ∂/∂t |ψ(t)⟩ = H |ψ(t)⟩
によって記述される。ここで、H はハミルトニアン演算子である。観測が行われると、MWIでは波動関数が収縮せず、代わりにヒルベルト空間内での分岐が生じる。この分岐は、異なる固有状態への射影として表現される。
観測による分岐は、波動関数の射影演算子 Pᵢ を用いて次のように表される:
|ψ⟩ → Pᵢ |ψ⟩ = cᵢ |ϕᵢ⟩
ここで、|ϕᵢ⟩ は観測の結果に対応する固有状態であり、cᵢ はその確率振幅である。
次に、MWIにおける幾何学的構造を考える。各分岐は、ヒルベルト空間内の異なる方向への射影として捉えられ、これにより多次元のファイバー束のような構造が形成される。ファイバー束 E は基底空間 B 上に定義され、各ファイバー Fᵦ は異なる分岐に対応する:
E = ⋃ (b ∈ B) Fᵦ
観測によるエントロピーの低下は、観測者の視点から情報が特定されるために起こる。量子エントロピーは、フォン・ノイマンエントロピー
S(ρ) = -Tr(ρ log ρ)
によって定義される。ここで、ρ は密度行列である。観測により、観測者が特定の状態を経験することで、情報が増加し、エントロピーが減少するように見える。
このように、MWIにおける時空の分岐とエントロピーの変化は、量子力学の波動関数の幾何学的性質と深く結びついている。各分岐は、ヒルベルト空間内の異なる方向への射影として捉えられ、これにより多次元の幾何学的構造が形成される。観測によるエントロピーの低下は、観測者の主観的な情報増加として理解され、全体のエントロピーは保存されるか増加するという量子力学の基本原則に従う。
量子論の幾何学的側面は、数学的な抽象化を通じて物理現象を記述する試みである。
物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。
SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリ群である。
SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的な対称性を記述する。
SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である。
この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。
これは、特にヤン・ミルズ理論や一般相対性理論において重要な役割を果たす。
ファイバー束は、基底空間とファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。
ファイバー束の構造は、場の理論におけるゲージ対称性を記述するために用いられる。
ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。
例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用はSU(2)ゲージ群、強い相互作用はSU(3)ゲージ群で記述される。
具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーがSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。
幾何学的量子化は、シンプレクティック多様体を量子力学的なヒルベルト空間に関連付ける方法である。
これは、古典的な位相空間上の物理量を量子化するための枠組みを提供する。
例えば、調和振動子の位相空間を量子化する際には、シンプレクティック形式を用いてヒルベルト空間を構成し、古典的な物理量を量子演算子として具体的に表現する。
コホモロジーは、場の理論におけるトポロジー的性質を記述する。
特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。
例えば、チャーン・サイモンズ理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。
今日はええ天気やなぁ。東北は雨ザーザーらしいけど、こっちはええ感じやで。ほんなら、SO(3)っちゅうのが何なんか、ちょっと考えてみよか。
量子力学っちゅうのは、ミクロの世界を説明するための理論で、抽象数学のいろんな分野とガッチリ結びついてんねん。
特に、線形代数や群論、リー代数、微分幾何学なんかが重要な役割を果たしてるんやで。
例えば、空間の回転対称性は特殊直交群 SO(3) で表されるっちゅう話やね。
SO(3) は、三次元空間での回転を記述する群で、回転を合成してもまた回転になるっちゅうことで、群の構造を持ってるんや。
この群の性質を理解することで、角運動量の保存則やスピンの性質を説明できるんやで。
SO(3) はリー群の一例で、リー代数はその接空間として定義されるんや。
リー代数は、群の局所的な性質を記述し、量子力学における角運動量演算子の交換関係を表すんや。
リー代数の構造定数は、演算子の交換関係を通じて、物理的な対称性を反映してるんやで。
量子力学では、物理系の状態はヒルベルト空間上のベクトルとして表されるんや。
群の表現論は、これらの状態がどんなふうに変換されるかを記述するための数学的な枠組みを提供するんや。
特に、SO(3) の既約表現は、整数または半整数のスピン量子数によって特徴付けられ、スピン j の表現は (2j + 1) 次元の複素ベクトル空間上で作用するんやで。
微分幾何学は、量子場理論におけるゲージ理論の基礎を提供するんや。
ゲージ理論では、場の局所的な対称性が重要で、これが微分幾何学の概念を通じて記述されるんや。
例えば、ファイバー束や接続形式は、ゲージ場の数学的記述において中心的な役割を果たしてるんやで。
量子力学の数学的抽象性は、古典的な直感とはちゃう現象を説明するために必要不可欠や。
観測問題や波動関数の確率解釈、量子もつれなんか、これらの現象は、抽象数学を駆使することで初めて理解できるんや。
特に、ヒルベルト空間の理論や作用素代数は、量子系の解析において重要な役割を果たしてるんやで。
掛算の順序と学習指導要領の話おもしろかったです。
「りんごが5つ載った皿が4枚ある場合にりんごがいくつになるか」という問題を立式するときは、
という話だと思いました。
4✕5は4[個/枚] * 5[枚]に変換されるので、正解にならない。
✕は乗算の演算子と思ってしがいがちだけど、被乗数と乗数の順序を考慮するときは、その順序を含めた乗算のシンタックスシュガーになっている。
なんか、このシンタックスシュガーいけてないなと思うのは、計算するときは交換法則適用していいよと言われているところと、乗法を習うこの単元以外では立式の際もシンタックスシュガーではなく乗算の演算子として取り扱われているところ。
でも、いけてないシンタックスシュガーは世に溢れているので、まあいいや。
被乗数と乗数の関係を考えていて思い出したのが、消費税が導入されたとき、大学生協の書籍代はどうなるのかという話。
乗算は交換法則が成り立つから1000*0.9*1.03でも1000*1.03*0.9でも良いです。
✕も計算のときは交換法則を適用して良いから1000✕0.9✕1.03でも1000✕1.03✕0.9でも良いです。
でも✕で立式するときはどうなるのか。
1000[円/冊]✕1[冊]✕0.9✕1.03と1000[円/冊]✕1[冊]✕1.03✕0.9のどちらが正しいのか。
0.9と1.03は単位がないから乗数、被乗数の順序を考慮しなくて良いのかな。
僕が小学生の頃は乗数、被乗数は「かける数」「かけられる数」と言われてました。
「この式の4は『かける数』でしょうか『かけられる数』でしょうか」みたいなテストの問題があったけど、「この話は、ここでしか出てこないので、気にしなくて良いです」と先生が言って、採点対象外になってました。
javascriptの結合性について
a=b=1;のような場合、この文に使われている演算子はどちらも同じ=という種類であり、優先順位に差が無いので、左側から解析し、もう一つ同じ演算子があるので演算子の実行を保留し、右側の=を見つけて、右から代入するというのはわかります。
では()すなわちグループ化のような場合はどうなのでしょうか?さいわいこれには結合性はないようですが、あったとしたらどう考えればいいのでしょうか?
=のように右と左をオペランドに挟まれた形ではないので、左側とか右側とかいってもよくわかりませんし、(...)+2の)+のように演算子同士が隣接する場合も考えるとますますどういうアルゴリズムなのかよくわかりません。
それともだからこそ、()には結合性を設けないとしたのでしょうか?
dot dot dotさん
2024/2/25 15:38
a = b = 1
は
a = (b = 1)
調べましょうでもいいんですが、知ってるならそのあなたが同じ疑問にあたったときに調べて解決につながった情報だけを一通り書いてくれるのが一番ありがたいのですが。