「代数的閉体」を含む日記 RSS

はてなキーワード: 代数的閉体とは

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-08-28

抽象代数学の魅力とは

抽象代数学は、代数的構造を探求する数学の一分野である

その核心は、具体的な数や図形から離れ、演算性質のものに着目することにある。

群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元存在し、各元に逆元が存在するという公理を満たす代数的構造である

この抽象的な定義により、整数加法群(Z,+)や置換群S_nなど、一見異なる対象統一的に扱うことが可能となる。

群論の発展は、ガロア理論を生み出し、5次以上の代数方程式代数的解法が存在しないことの証明につながった。

環論では、可換環を中心に、イデアルや素イデアル概念が導入され、代数幾何学との深い関連が明らかになった。

体論は、代数的閉体や有限体の理論を通じて、ガロア理論暗号理論の基礎を提供している。

これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。

例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造標準模型対称性記述している。

また、抽象代数学概念圏論によってさら一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。

圏論視点は、代数位相幾何学代数的K理論などの現代数学の発展に不可欠な役割果たしている。

抽象代数学の魅力は、その普遍性と深遠さにある。

単純な公理から出発し、複雑な数学構造を解明していく過程は、純粋数学醍醐味であり、同時に自然界の根本法則理解する上で重要洞察を与えてくれるのである

 
ログイン ユーザー登録
ようこそ ゲスト さん