はてなキーワード: オイラーとは
位相的弦理論は、宇宙の不思議を解き明かそうとする特別な考え方です。普通の物理学では、物がどう動くかを細かく調べますが、この理論では物の形や繋がり方だけに注目します。
例えば、ドーナツとマグカップを考えてみましょう。形は全然違うように見えますが、どちらも真ん中に1つの穴があります。位相的弦理論では、この「穴が1つある」という点で同じだと考えるんです。
この理論では、宇宙を細い糸(弦)でできていると考えます。でも、普通の弦理論とは違って、糸がどう振動するかは気にしません。代わりに、糸がどんな形をしているか、どう繋がっているかだけを見ます。
これを使って、科学者たちは宇宙の秘密を解き明かそうとしています。難しそうに聞こえるかもしれませんが、実は私たちの身の回りの物の形を観察することから始まるんです。宇宙の謎を解くのに、ドーナツの形が役立つかもしれないなんて、面白いと思いませんか?
位相的弦理論は、通常の弦理論を単純化したモデルで、1988年にEdward Wittenによって提唱されました。この理論の主な特徴は、弦の振動モードの中で位相的な性質のみを保持し、局所的な自由度を持たないことです。
1. A-モデル:ケーラー幾何学と関連し、2次元の世界面を標的空間の正則曲線に写像することを扱います。
2. B-モデル:複素幾何学と関連し、標的空間の複素構造に依存します。
これらのモデルは、時空の幾何学的構造と密接に関連しており、特にカラビ・ヤウ多様体上で定義されることが多いです。
4. グロモフ・ウィッテン不変量など、新しい数学的不変量を生み出す
この理論は、物理学と数学の境界領域に位置し、両分野に大きな影響を与えています。例えば、代数幾何学や圏論との深い関連が明らかになっており、これらの数学分野の発展にも寄与しています。
大学生の段階では、位相的弦理論の基本的な概念と、それが通常の弦理論とどう異なるかを理解することが重要です。また、この理論が物理学と数学の橋渡しをどのように行っているかを把握することも大切です。
位相的弦理論は、N=(2,2) 超対称性を持つ2次元の非線形シグマモデルから導出されます。この理論は、通常の弦理論の世界面を位相的にツイストすることで得られます。
A-モデル:
B-モデル:
両モデルは、ミラー対称性によって関連付けられます。これは、あるカラビ・ヤウ多様体上のA-モデルが、別のカラビ・ヤウ多様体上のB-モデルと等価であるという驚くべき予想です。
大学院生レベルでは、これらの概念を数学的に厳密に理解し、具体的な計算ができるようになることが期待されます。また、位相的弦理論が現代の理論物理学や数学にどのような影響を与えているかを理解することも重要です。
位相的弦理論は、N=(2,2) 超対称性を持つシグマモデルから導出される位相的場の理論です。この理論は、超対称性のR-対称性を用いてエネルギー運動量テンソルをツイストすることで得られます。
1. A-ツイスト:
- スピン接続をR-電荷で修正: ψ+ → ψ+, ψ- → ψ-dz
2. B-ツイスト:
- スピン接続を異なるR-電荷で修正: ψ+ → ψ+dz, ψ- → ψ-
A-モデル:
ここで、M はモジュライ空間、evi は評価写像、αi はコホモロジー類、e(V) はオブストラクションバンドルのオイラー類
B-モデル:
ここで、X はカラビ・ヤウ多様体、Ω は正則体積形式、Ai は変形を表す場
A-モデルとB-モデルの間の等価性は、導来Fukaya圏と連接層の導来圏の間の圏同値として理解されます。これは、Kontsevich予想の一般化であり、ホモロジー的ミラー対称性の中心的な問題です。
最近の発展:
1. 位相的弦理論とGopakumar-Vafa不変量の関係
3. 非可換幾何学への応用
専門家レベルでは、これらの概念を深く理解し、最新の研究動向を把握することが求められます。また、位相的弦理論の数学的構造を完全に理解し、新しい研究方向を提案できることも重要です。
位相的弦理論の究極的理解には、以下の高度な概念と最新の研究動向の深い知識が必要です:
1. 導来圏理論:
- 安定∞圏を用いた一般化
- 非可換幾何学との関連
- SYZ予想との関連
- 導来代数幾何学の応用
- 圏化されたDT不変量
- ∞圏論を用いた定式化
これらの概念を完全に理解し、独自の研究を行うためには、数学と理論物理学の両分野において、最先端の知識と技術を持つ必要があります。また、これらの概念間の深い関連性を見出し、新しい理論的枠組みを構築する能力も求められます。
位相的弦理論の「廃人」レベルでは、これらの高度な概念を自在に操り、分野の境界を押し広げる革新的な研究を行うことが期待されます。また、この理論が量子重力や宇宙論といった基礎物理学の根本的な問題にどのような洞察を与えるかを探求することも重要です。
2. モジュラスの計算: N = p * q
3. オイラーのトーシェント関数: φ(N) = (p-1)(q-1) を計算する。
4. 公開鍵と秘密鍵の生成: 公開鍵は (N, e) であり、e は gcd(e, φ(N)) = 1 を満たす整数である。秘密鍵は d であり、d * e ≡ 1 (mod φ(N)) を満たす。
RSA暗号の安全性は、合成数 N の素因数分解が計算的に困難であることに依存している。具体的には、次の問題が考えられる:
N = p * q
ショアのアルゴリズムは、量子コンピュータ上で動作する効率的な素因数分解アルゴリズムである。以下にその主要なステップを示す。
任意の整数 a を選択し、N に対して次の条件を満たすことを確認する:
整数 a の順序 r を求める。順序とは、次の条件を満たす最小の整数である:
a^r ≡ 1 (mod N)
量子フーリエ変換は、状態ベクトルを重ね合わせて次のように表現される:
|x⟩ = Σ(k=0 to N-1) |k⟩
ここで、量子フーリエ変換を適用することで周期性に関する情報が得られる。具体的には、
QFT |x⟩ = (1/√N) Σ(j=0 to N-1) Σ(k=0 to N-1) e^(2πi jk / N) |j⟩
得られた状態から測定を行うことで周期情報が得られる。この周期情報を用いて次の式を考える:
x = a^(r/2) - 1
y = a^(r/2) + 1
これらが非自明な因子である場合、p と q を次のように計算できる:
p = gcd(x, N)
q = gcd(y, N)
ショアのアルゴリズムは確率的であり、成功率は高いものの100%ではない。そのため、誤り訂正技術や複数回実行することで成功確率を向上させる必要がある。
RSA暗号は、代数的構造、特に合同算術および整数環における準同型写像を用いた公開鍵暗号である。
RSAの安全性は、環の自己同型写像の一方向性と、有限生成群の元の分解が困難であることに基づいている。
この暗号方式は整数環 Z/NZ(N = p・q)上の準同型写像の一方向性を活用する。
まず、RSAにおける鍵生成は、代数的に以下のように構築される:
互いに素な大きな素数 p および q を選び、合成数 N = p・q を作成する。
これにより、商環 Z/NZ が定義される。ここで、N はRSAにおける「モジュラス」として機能する。
この商環は、全体として単位的な環であり、RSA暗号の計算基盤となる。
オイラーのトーシェント関数 φ(N) を次のように計算する:
φ(N) = (p - 1)(q - 1)
これは環 Z/NZ の単数群 (Z/NZ)* の位数を表し、RSAの準同型構造における指数の計算に用いられる。
単数群 (Z/NZ)* は、φ(N) を位数とする巡回群であり、一般に生成元 g ∈ (Z/NZ)* を持つ。
RSAでは、この群の生成元から得られる公開指数 e は、φ(N) と互いに素な整数として選ばれる。公開指数 e はRSAの「公開鍵指数」となる。
e・d ≡ 1 (mod φ(N))
これは、e に対する逆元 d の存在を保証し、秘密指数として機能する。ここで d はユークリッド互除法により効率的に求められる。
以上により、公開鍵 (N, e) と秘密鍵 (N, d) が生成される。これらの鍵は、合同算術と商環上の準同型写像によって定義される。
RSA暗号は、モジュラー演算によるべき乗写像を使用した暗号化および復号過程である。この操作は、(Z/NZ)* 上の自己同型写像に基づいている。
任意のメッセージ M ∈ Z/NZ に対し、公開鍵 (N, e) を用いて次の準同型写像を作用させる:
C = σ(M) = M^e (mod N)
ここで σ: M → M^e は (Z/NZ)* の自己同型写像として作用し、得られた C は暗号文となる。
この写像はモジュラ指数写像として同型写像であるが、一方向的であるため暗号化に適している。
暗号文 C を受け取った受信者は、秘密指数 d を用いて復号を行う。具体的には次のように計算する:
M = C^d (mod N) = (M^e)^d (mod N) = M^(e・d) (mod N)
ここで e・d ≡ 1 (mod φ(N)) であるため、e・d = kφ(N) + 1(整数 k)と表すことができ、したがって
M^(e・d) = M^(kφ(N) + 1) = (M^(φ(N)))^k・M ≡ 1^k・M ≡ M (mod N)
により、元のメッセージ M を復元することができる。ここでオイラーの定理に基づき、(M^(φ(N))) ≡ 1 (mod N) が成り立つため、この復号化が成立する。
RSA暗号は、Z/NZ の構成において N = p・q の因数分解が困難であることを仮定する。
合成数 N の素因数分解問題は、現在の計算アルゴリズムにおいて指数時間に近い計算量が必要であり、代数的には解読が非常に難しい問題であるとされる。
RSA暗号における暗号化は群の自己同型写像によって構成されるが、逆写像を求めることは一般に困難である。
これはRSAの一方向性を保証し、現実的に解読不可能な構造を形成している。
RSA暗号の解読は逆写像としてのべき乗の逆操作を計算することに相当し、これを効率的に解決する手段が存在しないことが安全性の根拠となる。
RSA暗号の構造は合同算術に基づく準同型性を有し、M → M^e (mod N) というモジュラ指数写像によりメッセージ空間上の一対一対応を実現する。
この準同型性により計算効率が保証されつつも一方向性を持ち、安全な暗号化が可能である。
以上より、RSA暗号は合同算術、準同型写像、群の生成元と逆元の難解さに基づく暗号であり計算量理論と抽象代数からその安全性が保証されている。
RSA暗号の解読可能性は準同型写像の逆像を効率的に求める方法が存在しないことに基づいており数学的にはこの逆像問題の困難性がRSA安全性を支えているといえる。
1. 古典力学 (Classical Mechanics):
古典力学では、粒子の運動は時間 t の関数 q(t) で表され、ニュートンの運動方程式を満たすのだ:
q̈ = -U'(q)
ここで、U(q) はポテンシャルエネルギーである。運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt の極値点として運動を記述するのだ。これは、最小作用の原理とも呼ばれるぞ。
2. 古典場の理論 (Classical Field Theory):
古典場理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式
□φ = 0
で記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。
古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動をモデルにして、粒子の位置 q(t) は確率密度
P(q) ∝ e^(-S(q)/κ)
に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt は作用、κ は拡散係数である。このような確率的動力学の期待値は、経路積分を用いて計算されるぞ。
量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:
⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq
5. 量子場理論 (Quantum Field Theory):
⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ
ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要な課題となっているのだ。
究極理論がわからない現状、もし仮に「我々の世界が不安定な真空にいる」ことを仮定すれば
相応のエネルギーを加えて真の真空に落とす(相転移させる)ことで物理法則が変更されるという
人為的ネオエクスデス「うちゅうの ほうそくが みだれる!」 ができますね。
イメージ的には過冷却です。すでに相転移が起きているのに気がつかないで元の真空にとどまっています。ちょっと突くと一瞬で凍ります。
現に、新しい加速器が作られる度になんかスゲェ無理矢理な模型を作って「加速器のせいで世界が滅びる!」系の論文がarXivに投稿されたりします。意外と増田と同じことを考える人がいるんですね。ただしこれらの論文は一瞬で否定されます。なぜならば、加速器で作るビームなんかよりも中性子星ガンマ線バーストのほうがよほど強いからです。宇宙強い。人類の技術は弱い。驕るなよ人類。
前から不思議だったけど、これらの法則って経験から導き出されたものであって、その法則がどうやって存在してるかは不明なんだよな
以下、意味は取らなくて良いので流れと単語だけ拾ってください:
たとえばエネルギーの保存は時間方向の並進対称性、運動量保存則は空間方向の並進対称性から、角運動保存則は回転対称性から導き出されるといえるでしょう。
(相対論的には時間と空間は同時に取り扱うのですがちょっと難しくなるので簡易な書き方をしています)
時空の対称性が決まる → ラグランジアンが決まる → オイラーラグランジュの方程式(運動方程式)
ここまでよんだ?
なら次は、ランダウ・リフシッツ「力学」の最初の20ページくらい読んでください。
前提知識は微積分です。ここまで読めば上の文章はだいたい理解できるかと思います。
そして次にあなたはこう思うでしょう
「最小作用の原理っていったいなんなんだ? 世界はなぜこんな原理に従う?」
そう思ったなら次は量子力学です。JJサクライ「現代の量子力学」の経路積分のページまで読み進めましょう。
ここまでくれば霧が晴れるように見通せるようになるはずです。
物理理論とは何であるかが把握できるかと思います。ここから先はご自由に。
なお、JJサクライは物理科ではちょっと ’進んだ’ 内容とされています。普通は2冊目に読む本ですね。が、ハテナーにとってはむしろ読みやすい本かと思います。だってどうせ君ら情報系でしょ?なんかプログラムとか書ける人たちでしょ??なら、ブラケット表記の方が慣れていると思うんですよ。たぶん見ればわかるよ。
超ひも理論は、光子からクォークに至るまで、すべての粒子がゼロ次元の点ではなく1次元のひもであるという理論的枠組みのこと。
もし、あらゆる文脈で成り立つ超ひも理論のバージョンが発見されれば、宇宙の性質を記述するための単一の数学的モデルとして機能することになり、重力を説明できない物理学の標準モデルに取って代わる「万物の理論」となるとされる。
超ひも理論の全貌を理解するには、広範な勉強が必要だが、超ひも理論の主要な要素を知れば、その核となる概念の基本的な理解が得られるだろう。
1. 弦とブレーン
弦は一次元のフィラメントで、開いた弦と閉じた弦の2種類がある。
開放弦は両端がつながっておらず、閉鎖弦は閉じたループを形成する。
ブレーン(「膜」という言葉に由来する)はシート状の物体で、その両端に弦を取り付けることができる。
ブレーンは量子力学のルールに従って時空を移動することができる。
物理学者は、宇宙には3つの空間次元があると認めているが、超ひも理論家は、空間の追加次元を記述するモデルを主張している。
超ひも理論では、カラビ・ヤウ多様体と呼ばれる複雑な折りたたみ形状にしっかりと圧縮されているため、少なくとも6つの追加次元は検出されない。
3. 量子重力
弦理論は量子物理学と一般相対性理論を融合させようとしているため、量子重力理論である。
量子物理学は原子や素粒子のような宇宙で最も小さな物体を研究するが、一般相対性理論は通常、宇宙でよりスケールの大きな物体に焦点を当てる。
4. 超対称性
超弦理論としても知られる超対称性は、2種類の粒子、ボソンとフェルミオンの関係を記述する。
超対称弦理論では、ボソン(または力の粒子)は常にフェルミオン(または物質の粒子)と対になるものを持ち、逆もまた同様である。
超対称性の概念はまだ理論的なもので、科学者はまだこれらの粒子を見たことがない。
一部の物理学者は、ボソンとフェルミオンを生成するには、とてつもなく高いエネルギーレベルが必要だからだと推測している。
これらの粒子は、ビッグバンが起こる前の初期の宇宙に存在していたかもしれないが、その後、現在見られるような低エネルギーの粒子に分解されたのかもしれない。
大型ハドロン衝突型加速器(世界で最も高エネルギーの粒子衝突型加速器)は、ある時点でこの理論を支持するのに十分なエネルギーを発生させるかもしれないが、今のところ超対称性の証拠は見つかっていない。
5. 統一された力
弦理論家は、相互作用する弦を使って、自然界の4つの基本的な力(重力、電磁気力、強い核力、弱い核力)がどのように万物の統一理論を作り出しているかを説明できると考えている。
英語の略字を日本語に変換していちいち説明したらわかりにくすぎる。
「e」はネイピア数とは呼ばれるけど、じつは「Euler(オイラー)」のEだろ?
たしかに「e」はあちこちで使われるから、この分野ではネイピア数と呼びたいのはわかるんだけど、そこらへんちゃんと説明してないだろ。
「logarithmus」って、ラテン語の「logos(比率)」と「arithmos(数)」の造語なんだろ?どこが「対数」なんだ?
式中にlogと書いてあれば「ログ」「ロガリズム」とか読むしか無いんだからいちいち「対数」と呼ぶ必要ないだろ
「logarithmus naturalis」の略が「ln」なんだろ?日本語に翻訳したらたしかに自然対数だけど
そもそもここで言う「日本語で言う自然の定義はなんだよ」ってなるだろ。
e^(ln(x)) = x
ln(e^x) = x
知的作業の本質を論じることは困難。数学の最も重要な特徴は、自然科学、もっと一般的に言えば、純粋に記述的なレベルよりも高いレベルで経験を解釈するあらゆる科学との、極めて特異な関係にあるとノイマンは考えていた。
ほとんどの人が、数学は経験科学ではない、あるいは少なくとも経験科学の技法とはいくつかの決定的な点で異なる方法で実践されていると言う。しかしその発展は自然科学と密接に結びついている。
まず幾何学。力学や熱力学のような、間違いなく経験的な他の学問は、通常、多かれ少なかれ仮定的な扱いで提示され、ユークリッドの手順とほとんど区別がつかない。ニュートンのプリンキピアは、その最も重要な部分の本質と同様に、文学的な形式においてもユークリッドと非常によく似ている。仮定的な提示の背後には、仮定を裏付ける物理的な洞察と、定理を裏付ける実験的な検証が存在する。
ユークリッド以来、幾何学の脱皮は徐々に進んだが、現代においても完全なものにはなっていない。ユークリッドのすべての定理のうち、5番目の定理が疑問視された最大の理由は、そこに介在する無限平面全体という概念の非経験的性格にあった。数学的論理的な分析にもかかわらず、経験的でなければならないかもしれないという考えが、ガウスの心の中に確かに存在していたのである。
ボリャイ、ロバチェフスキー、リーマン、クラインが、より抽象的に当初の論争の形式的解決と考えるものを得た後も、物理学が最終決定権を握っていた。一般相対性理論が発見されると、幾何学との関係について、全く新しい設定と純粋に数学的な強調事項の全く新しい配分で、見解を修正することを余儀なくされた。最後に、ヒルベルトは、公理幾何学と一般相対性理論の両方に重要な貢献をしている。
第二に、微積分学から生まれたすべての解析学がある。微積分の起源は、明らかに経験的なものである。ケプラーの最初の積分の試みは、曲面を持つ物体の体積測定として定式化された。これは非軸性で経験的な幾何学であった。ニュートンは、微積分を基本的に力学のために発明した。微積分の最初の定式化は、数学的に厳密でさえなかった。ニュートンから150年以上もの間、不正確で半物理的な定式化しかできなかった。この時代の主要な数学的精神は、オイラーのように明らかに厳密でないものもあったが、ガウスやヤコービのように大筋では厳密なものもあった。そして、コーシーによって厳密さの支配が基本的に再確立された後でも、リーマンによって半物理的な方法への非常に独特な回帰が起こった。リーマンの科学的な性格そのものが、数学の二重性を最もよく表している例である。ワイエルシュトラス以来、解析学は完全に抽象化、厳密化され、非経験的になったように思われる。しかし、この2世代に起こった数学と論理学の「基礎」をめぐる論争が、この点に関する多くの幻想を払拭した。
ここで、第三の例。数学と自然科学との関係ではなく、哲学や認識論との関係である。数学の「絶対的」厳密性という概念そのものが不変のものではないことを示している。厳密性という概念の可変性は、数学的抽象性以外の何かが数学の構成に入り込んでいなければならないことを示す。「基礎」をめぐる論争を分析する中で、二つのことは明らかである。第一に、非数学的なものが、経験科学あるいは哲学、あるいはその両方と何らかの関係をもって、本質的に入り込んでいること、そしてその非経験的な性格は、認識論が経験から独立して存在しうると仮定した場合にのみ維持されうるものであること。(この仮定は必要なだけで、十分ではない)。第二に、数学の経験的起源は幾何学と微積分のような事例によって強く支持されるということ。
数学的厳密さの概念の変遷を分析するにあたっては、「基礎」論争に主眼を置くが、それ以外の側面は、数学的な "スタイル "の変化についてであり、かなりの変動があったことはよく知られている。多くの場合、その差はあまりにも大きく、異なる方法で「事例を提示」する著者が、スタイル、好み、教育の違いだけで分けられたのか、何が数学的厳密さを構成するかについて、本当に同じ考えを持っていたのか、疑問に思えてくる。
極端な場合には、その違いは本質的なものであり、新しい深い理論の助けによってのみ改善されるのであり、その理論の開発には百年以上かかることもある。厳密さを欠く方法で研究を行った数学者の中には(あるいはそれを批判した同時代の数学者の中には)、その厳密さの欠落を十分認識していた者もいたのである。あるいは、数学的な手続きはどうあるべきかというその人自身の願望が、彼らの行動よりも後世の見解に合致していたのだ。たとえばオイラーなどは、完全に誠実に行動し、自分自身の基準にかなり満足していたようである。
文系が大事にしているのは「文章それ自体」であって、文章それ自体を忠実に原語から訳すことが重要である、というのが文系の考え方。
いや正にそれが文脈を読むということであり、誰が書いたか、を重視する考え方そのものでしょ
例えば、
e^iπ + 1 = 0
という数式の素晴らしさはオイラーに依存するものじゃないでしょ オイラーの原著論文を読まなきゃ理解できないものでもないでしょ 一つの体系の中で論理だって矛盾せずに成り立つことが大事でしょ
無矛盾であることが重要で論理を示せれば記述言語に寄らないでしょ 「文章それ自体」は論理記述の様式であって論理そのものではなく付加情報でしょ
数学史において、オイラーが何を成したかを語るのであれば文章それ自体を忠実に原語から訳すことが重要であるのはその通りだけど
屋根裏を整理してたら古いパソコン(といっても2006年頃)が出てきたのでブラウザの検索履歴をサルベージしてみた。
当時自分が何にハマっていたのか思い出されていろいろ懐かしい…
パラ様 生え際
ホケマクイ
ブッチーン 灯花
ぶっこぉすぞー
るくしおん しびれるぜ、鋼の
ティプトリー・ショック
「デストロイがいいね」と君が言ったから六月二十四日はUFOの日
わたるが死んじゃう
琵琶湖タワー
猫いらず 口の周り 光る
尸条書
立方晶窒化炭素
ドーマン法
ひだまりスケッホ
空飛ぶ冷し中華
セーラー戦士が全員ブルマーだったら、アニメ史を変えていたと思うね
34歳児
実はまだ2階に
アリオク
緑はいらない子
そうです。あのコが僕の畏敬する天使様なのです
おかしとか食べる
T-34が倒せない
さあ牛だ
セノバイト
omegaの視界
ぽこにゃん
だぞなもし
倒福マーク
ボッキアウト
フムン
ユープケッチャ
目なき顔のジールバ
やったー+1 シヴィライゼーション
ルロス ロルス
玉音盤奪取
ハレとケ
もえたん 06話
路肩のピクニック
白楽電の詩
ガッシボカ
聖なんとか女学園
クートニアン
お脱ぎなさい
グンニョキ
強さ激しく変動
南斗聖拳108派一覧
みなぎる力がみなぎるぜ
力こそパワー
重い生理が来たみたい
4ひえた
ムーミンパパ海へいく
チャンパーノウン定数
見知らぬ国のデイトリッパー
紫暗号
いざり
比留間 京之介
この娘、最後死んじゃうんだよね
旧神なんていないよ
棒シムーン
S級だけどめどいんでB
オレモダビール
"オナホさん"
アントノフ 積載量
黄金の真昼
Let's Beginning to Look Alot Like Fishmen
けいせい出版
共生るんです
ガネッコ
莫迦め 死んだわ
スコープドッグ 装甲厚
かみそり半蔵地獄攻め
クンデラ 不滅
如意棒 重さ
ちびくろサンボ 枚数
俺のケツをなめろ
大胖女人
大司令症候群
gunyoki
グンニョキ
おしつおされつ
どうしてエレクチオンしないのよぉぉぉぉ
こぐにっしょん
虹作戦
燕山夜話
ドラ28
中国人の部屋
エロ イッカイヅツ
菊屋橋101号
システムショック
ゲバルト・ローザ
完全黙秘
唸るコカトリス亭
みずずちん
なんてこった 死の宣告
アンダーダーク
ロンゴ・ロンゴ
ゲオルギウス
毒薬仁
まじかるぴゅあソング
だいす☆くえすと
つめたく冷えた月
フンカーリート
Shang-Du
水エタノール噴射
願望機
舟に棲む
rom ヘッダ 削る
長靴いっぱい食べたいよ
陣形技 閃き
ハリマオ
ぺちんぺちん
カタリナ おそるべし
野月まひる
マライア 多摩
素敵医師
相沢 祐一 最強
みなみおねいさん
あまぞn
夢のクレヨン王国 SONGBOX
振武刀
クリントワン
ロイさーん
レムコレクション
カードゲーム テケリ・リ
グレゴール・ザザ虫
きみはホエホエむすめ
東方夢終劇
ファミソン8BIT
生きなさいキキ
dwarvish mattock
蟹工船 光線
パラシュート部隊 突然に
ゴクイリイミオオイ
アウト・オブ・眼中
モルディギアン
納骨堂の神
ヴェクナ
パラシュート部隊 突然に
情無用ファイア
末期 少女病
唸るコカトリス亭
アカディネの泉
ショスタコーヴィ
ジャック ケッチャム
シャノン 情報理論
ガロアの郡論
ルルスの術
ラヴォアジエ
宇津田さんの死
レムコレクション
佐保姫 信太の森
ころがる石のような俺の生き様
はしれぐずども
紫暗号
白い神兵
火のバプテスマ
清家理論
サールクラフト
lycanthropy
某研究者
アナ姫さま おげんきですか
オナホ 2番目
宇宙麻雀
電戦トリオ
乳ロマンサー
私は痛みだ
くやしい、でも ビルケナウ
グレゴール・ザザ虫
新藤幸司 CV
Chante キミの歌がとどいたら 先生
開路に時限のある リレー
Drizzt
ちんぽ生やして出直して来い
男根 恐ろしいまでに
コロラド撃ち
HEARTWORK
誠ぉっ そこにいるんでしょ
ずっとオレのターン
ぼくはぼくであること
おれがあいつで
アラバハキ
幻影都市
わたしこそ しんの ゆうしゃだ
クトゥル スペースジョッキー
フラッシャー付自転車
神よりも弱いただのオセロ
おがわみめい
水無神知宏
CARNIVAL 小説
じゃこつばばあ
生と死の境界 安置
うぉ、まぶしっ
ゼロで割る
ココロン
有尾人 フィリピン
子供達を責めないで
圧力計 連成計 BV
エドガー ダケェ
おびんずる
にこにこ商事
ひろ
♪おいらはね、オイラーって言うんだ、本当はね♪