「定理」を含む日記 RSS

はてなキーワード: 定理とは

2020-07-11

社会人って物理どこで習うん?

磁石同士を反発させて、磁石を空中で静止させるのが難しいのがアーンショーの定理ってのがあるのを知った。

社会時になって、新しく物理を知るのが難しく感じているのだけど、他の人はどうしてるのか。

2020-07-05

一般人数学理解するのは無理

専門家無意味普及活動はやめるべきだ。

なお、ここでいう「一般人」は数学の非専門家全般を指しているが、筆者の経験から東大物理学科や医学科の学生院生などを想定している。そういう人たちでも理解できないのだから、況や平均的な人は理解できない。

専門家による根本的な勘違い

数学専門家は、一部の数学の結果について「厳密に証明するのは大変だが、一般人でも直感的には理解できる」と思っている。これが根本的な勘違いである。多くの一般人は「直感的な理解」さえもできない。たとえば、

実数列は極限を持つとは限らないが、±∞も含めれば上極限と下極限は必ず存在する。この2つが一致するとき、かつその時に限り、極限は存在し、3つの値は等しくなる。

という定理がある。学部1、2年生の微分積分で習う基本的定理だ。この定理を厳密に証明するのは多少の手間がかかるが、意味する内容は明らかに思える。多くの専門家は、たとえば、

  • a_n = (-1)^n (-1 + 1/n) (奇数番目だけ取り出した部分列は+1収束し、偶数番目だけ取り出した部分列は-1に収束する)
  • b_n = (1/n) a_n (奇数番目、偶数番目のいずれの部分列も0に収束する)

みたいな例を挙げれば、誰でもイメージはできると信じている。しかし、実際はほとんどの一般人はこの定理意味理解できない。「上極限」や「下極限」などの用語定義が分からないと言っているのではなく、この定理意味している現象理解できないのである

私の経験上、最も驚いたことだが、東大理論物理院生が「楕円曲線について教えて欲しい」と言ってきたので、「平行四辺形の向かい合う辺を同一視すると、トーラス(1人乗り浮き輪)になる」というところから解説したのだが、まずここが理解できないのである。図を描いたり、紙を折り曲げたりして説明しても理解しない。正直、こんなことは小学生でも理解できると思っていたので、ただ啞然とするしかなかった。結局、私は教えるのを諦めた。

専門家は、一般人数学能力過大評価している。彼らのほとんどの数学能力は、小中学生と大差はない。

2020-06-30

anond:20200630215905

せっかく大学講義をしているのに、Dedekindの切断に足し算だの順序だのを定義して、連続性の公理を満たすことの証明に、1ヶ月近くも費やしてるのは理解しかねるね。

さっさとBolzano-Weierstrassの定理を示して、実数の完備性と、中間値の定理を示すのがどう考えても生産的だろう。

積分なんかも、Riemann和の上限と下限が一致するかどうかの議論なんて、教室で板書したって誰も聞いてないって。

さっさと微積分の基本定理示して、演習で具体例たくさん計算させた方が良いだろう。

anond:20200630050724

1つめ
ただの対数法則高校生でもわかる
2つめ
連立一次方程式の解法。理系大学生なら誰でも知ってるし、N=2や3なら中学生でもわかる
3つめ
いわゆるKroneckerの青春の夢。類体論特別なケース。整数論専門家なら知ってる
4つめ
Lefschetzの固定点定理(のl進コホモロジー版)。数論幾何専門家なら知ってる
5つめ
なんの意味もないデタラメな文

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

2020-06-17

数学面白い」などと言う妄言

こんなことを言っている連中のうち、大学以降で学ぶ数学理解してる奴は1%にも満たないだろう。残り99%強は以下の2種類に分類されると思う。


前者は、たとえばフェルマーガロアラマヌジャン等の「逸話」が好きなだけとか、「数学の○○という分野が✕✕に応用される」みたいな話が好きなだけな奴である

こういう連中は数学に限らず、どこにでもいる。プログラミング等の具体的なスキルは無いが、技術トレンドを知ることでITぶってるような奴。率直に言って、私はこういう奴が嫌いだ。

あとは、数学的な内容が全く無いわけではないが、「0.999... = 1になるのは不思議」とか「Fibonacci数列の比が黄金比収束するのは神秘的」みたいな、どうでもいいようなことにいつまでも夢中になってる奴。

プログラミングで言えば、Hello worldとかFizzBuzzなどに、「感動」を覚えているよく分からない奴である。まあ、知能が低いのだろう。

後者については、まあ好きな人はそれでいいと思うが、単純に、私は全く面白いと思わない。

中学高校入試などに出てくる図形問題は、出題者はまず間違いなく余弦定理などを使って答えを求めている。そのような問題のうち、上手いやり方を思い付くと小学校範囲で解ける問題が出題されるわけだが、いい大人がそんなもんやって何が楽しいのか甚だ疑問だ。

プログラミング世界でも、競技プログラミングというものがあるが、同じ理由で楽しさはよく分からない。

"ヘイヘイホー定理"

約 105 件 (0.34 秒)

2020-06-15

anond:20200613153356

囲碁話題になるといつも、囲碁ルールは難しすぎる派と囲碁ルール簡単派が出てきてわけがわからんようになるけど、捉えている層が違うので話が噛み合わない。

囲碁ルール簡単だという文脈で掲げられるのは単純で少ないルールだけど、囲碁ルールを丸暗記しても囲碁ゲームは遊べない。ゲーム面白がり方はルールには含まれていなくて、ルールから導き出さないといけない。将棋ルールを覚えたらゲームを遊べるのだけど囲碁はそうでない。

囲碁ルール形式システムで言う生成規則に過ぎない。生成規則は単に囲碁ルールに従った盤面を生成するだけにしか過ぎない。ルールに従って局面を進めても反則負けにならないだけで、ゲームとしては面白くもなんともない。

面白がるにはルールから導き出されるパターン発見しないといけない。囲碁ルールに石を取るルールと着手禁止点のルールがあって、そこから絶対に石を取られない形(二眼)があるというパターンを導き出して、そこからさら自分の二眼に繋がっていて相手の二眼が作れない領域をどれだけ広げられるかのパターンのせめぎあいだということに気づくと、ようやく囲碁面白くなって終局が分かるようになる。

数学でいうと公理から定理を導き出して、そこから更に別の定理を生み出すというのを続けて、わりと難しい定理が導き出せたところが、囲碁ゲームとして楽しめるレベルになる。

囲碁の単純なルール四則演算みたいなもので、プロ囲碁棋士はフェルマーの最終定理を解いている。そこが全然わからんけどなんかスゲーとなるところ。

2020-06-11

数学者に憧れる学生向け

数学理解度を、便宜的に以下の3種類に分けます

  1. 教科書を読んでも理解できない
  2. 教科書を読んで理解できる
  3. 教科書を読まなくても(新しい概念を一部)理解できる

このうち、数学者を目指すのに必要理解度は、(3)です。

数学者になるような人は、1学んで10修める人です。彼らは、実例計算したり、同値な言い換えを考えたりしている内に、誰に教わらずとも独自現代数学概念を再発見したり(場合によってはオリジナルな結果を発見したり)します。たとえば、テイラー展開を考えている内に自然解析接続概念に到達するとか、連立方程式を考えている内に行列式概念独自発見するとかです。

これはそれほど難しいことではありません。数学好きな人普通にしているようなことを習慣的にしていれば、いくつかあるものです。つまり、具体例を考えたり、別証明を考えたり、定理一般化してみたり、仮定を除いて反例を作ったり、と言ったことです。そもそも数学者は既存論文に無いオリジナルな成果を出すのが仕事なのですから、これは何も特別なことではありません。

逆に、いつまでも「教えてもらう」という態度では、数学者になるのは明らかに厳しいでしょう。むしろ、上に書いたようなことをするのは当たり前であって、「指導教官の出す課題に取り組んでいれば、困難なく数学者になれる」などと思う方が異常ではないでしょうか。

ところで、こういうことができる人というのは、一日に何時間くらい数学勉強しているのでしょうか。この答えははっきりしています

寝る時間以外ほぼ全部」です。

数学者になるような人のほとんどは、数学が楽しくて仕方なく、気がついたら数学に没頭しているような人です。机に向かって本や論文を読むだけが数学勉強ではありません。彼らは食事中だろうと入浴中だろうと一途に数学のことを考え続けています

正直、「数学勉強しよう」なんて意識している人は、あまり数学者に向いていないと思います。世の中にはもっと楽な道があるのですから、そちらに進んだ方が得です。国立大学教授なんて、就職倍率は何百倍もあり(それも東大等の中でも極めて優秀な人材の中で)40代後半になってやっとなれるのが普通なのに、年収900万かそこらです。大企業外資系企業等に就職する方がよほど理にかなっています

数学者になること自体は、そんなに「天才」でなければいけないということはありません。

があればなれるんじゃないでしょうか。誰でもなれるとは言いませんが、天才である必要はありません。数学世界での天才というのは、もっと常軌を逸した人たちです。

国立大学理学部数学科は、1学年だいたい40数人です。

日本大学生の多くは、大学に入ったら何も勉強しません。40人のうち約半分が、1〜2年生の勉強にすらついて行けず、以降はギリギリの成績で単位をなんとか取るだけで、何も身に付けずに卒業していきます

数学で最新の論文が読めるのは早くて学部4年の後半、ふつう修士1年の後半から2年です。したがって、それまではセミナー教科書の講読をします。このただの「読書」が、最低限の水準でできるのは、40人中10数人です。最低限の水準とはつまり

等です。あとの30数名は、セミナーの体を成していません。数学者を目指す場合、まずこの「同学年の上位10数人」に入り込めるかどうかが1つの肝になります。まあ、これは普通勉強していれば余裕できます

昔は、この上位10数人だけが大学院に行き、そのうちの半分くらい(全体の上位1割くらい)が学者になったようですが、今は(少なくとも私の周りでは)もっと厳しいです。ポスト自体が少ないのと、大学院生のレベルが下がったので周りに吊られて気が緩むのが原因のようです。

2020-06-10

anond:20200610173619

覚える必要のあることなんて何一つない。ただ、覚えると便利だから覚えているだけ

そんなことは言っていない。

もちろん導出に数十分かかる公式なんかは現実的には覚えないとしょうがないんだけどね。

少なくとも高校数学でそんな公式あるの?

あと、「導出に時間がかかるから覚える」なんてことも言っていない。

文中で挙げた例では、加法定理証明などはそこそこ長いが、こいつは回転が1次変換であることと、(1, 0), (0, 1)が平面の基底であるという当たり前の事実が分かっていれば、cos(π/2+θ)とsin(π/2+θ)の値だけから決まるということが分かる。

でもそれは本質的ではなく、「理論上は解ける」ことの方が重要増田はそういう話をしているんだろう。

そんな話はしていない。

もちろん例外はいくらでもある。例えば積分の(基本的な)公式は覚えるしかない。

積分基本的公式って何?

置換積分や部分積分公式は、合成関数や積の微分対応するんだから、覚える必要ないよね。

log(x)の積分なんかはテクニカルかも知れんが、部分積分適用できる好例だし、そもそもこんな単純な初等関数微分積分なんか、習得して当たり前。そんなもんを「覚えなければいけない」なんて感じるのは、意識問題

まあ結果を覚えるというより導出を覚えるべきなんだけど、

そんなことも言っていない。

テクニカルアイデアが大量に詰まっているので「容易に自分で思いつける」類のものではない。

そもそも、「覚えなければいけない」の対義語は「自分でおもいつく」じゃない。

日本語理解おかしいんだよ。

結局覚えるべきものはいくらでもある。でも増田はそういう専門的な話はしていないと思う。

一貫して覚える必要のあるものほとんどないと言っている。

また、定理などを覚えるべきかどうかについて、高校数学大学数学で違いがあるとも言っていない。

anond:20200610155327

数学公式はすべて論理的に導出できるのだから、覚える必要はない。特に高校数学程度の定理公式などに大して証明が難しいものは無いのだから、瞬時に正しく導けなければいけない。

教科書見た瞬間脳にインストールされる系の世界観だな

基本的数学で覚えなければいけないことは無い

たとえば、数学がまともにできる人で、(a + b)(c + d)の展開公式を覚えている人はいないだろう。分配法則を知っていれば計算できるからだ。そして、多項式に対して分配法則が成り立つことは(もちろん厳密に証明することはできるが)自然感覚であり、これも覚える必要はない。

こんな自明な例に限らず、数学で何かを覚えることが、遠回りであり、本末転倒であることを説明する。

また、読解力の低い奴のために補足しておくが、「覚えなくていい」というのは「勉強しなくていい」ということではない。まあ、こういう勘違いをする奴らはこの一文自体読めないか無駄なんだが、少なくとも俺が「ここに書いてあるだろボケ」と言うための根拠にはなる。

定義は覚える必要があるか

無い。

定義公理は他の事実から導かれないので覚える必要がある」という意見があるが、間違いだ。

それは単に論理的に導かれないというだけであって、考えている問題に対してそのように概念定義すべき理由存在するからだ。

たとえば、複素数実数係数の2次方程式の解として生じるからi^2=-1と導入するのは自然であるし、三角形は2角と1辺の長さが決まれば決定されるから三角比定義自然ものである

そもそも、どのような経緯でそのような概念が導入されるのか理解することは、別に数学に限らず重要である

定理公式は覚える必要があるか

無い。

数学公式はすべて論理的に導出できるのだから、覚える必要はない。特に高校数学程度の定理公式などに大して証明が難しいものは無いのだから、瞬時に正しく導けなければいけない。

また、大抵の公式は、その意味理解できていればいくつかの具体例で試せば分かる。たとえば、三角関数加法定理は、cos(π/2+θ)とsin(π/2+θ)さえ分かれば求められる。

用語を覚える必要があるか

無い。

用語などはどうでもいい。

たとえば、平方完成という名前を知らなくても、二次方程式の解の公式の導出や、二次関数極値問題が解ければ全く問題ない。

問題の解き方は覚える必要があるか

無い。

そもそも数学理解度を確かめるために具体的な問題があるのであって、問題の解き方を覚えるのは完全に本末転倒である

その問題で使われている概念定理、解答の論理展開などをしっかり理解することが本質的である

2020-06-05

Cauchy列って何?

収束先がどこかにある数列です。

定義

Xを距離空間、d: X×X→Rを距離関数とする。

Xの点列(x_n)は以下をみたすとき、Cauchy列であるという。

任意のε > 0に対して、ある自然数Nが存在して、n, m ≧ Nならば、d(x_n, x_m) < ε。

収束する点列はCauchy列である。実際、lim[n→∞] x_n = x ならば、任意のε/2>0に対して、ある自然数Nが存在して、n>Nならば|x - x_n|<εとなるので、任意のε>0に対して、n, m>Nならば|x_n - x_m|≦|x - x_n| + |x -.x_m|<ε。

逆に、Xの任意のCachy列がXの点に収束するとき、Xは完備であるという。

実数場合

実数全体の集合は、絶対値から定まる距離について、完備である

(x_n)を実数のCauchy列とする。

まず、(x_n)は有界である。実際、ε>0に対して、Nが存在して、n>Nならば|x_n - x_N|<εなので、任意のiに対して、|x_i|≦max{|x_1|, |x_2|, ..., |x_N|, |x_N|+ε}である

Bolzano-Weierstrassの定理より、有界実数列は収束する部分列を含むので、自然数列n_1<n_2<...<n_i<...と実数xが存在して、lim[i→∞] x_(n_i) = xとなる。

xが(x_n)の極限である。lim[i→∞] x_(n_i) = xより、任意のε/2>0に対して、ある自然数Iが存在して、i>Iならば|x-x_(n_i)|<ε/2。(x_n)がCauchy列であることより、任意のε/2に対して、ある自然数Nが存在して、n, m>Nならば|x_n - x_m|<ε/2。この2つより、任意のε>0に対して、n>max{I, N}ならば、|x - x_n|≦|x - x_(n_n)| + |x_(n_n) - x_n|<ε。□

完備ではない例

√2に収束する数列(1, 1.4, 1.41, ...)はCauchy列だが、Qの元に収束しない。

f_n(x)を以下で定める。

xが有理数で、xを既約分数a/bに表したとき、bがn!の約数ならば、f_n(x) = 1。それ以外は、f_n(x) = 0。

各f_nは有限個の点で1になる以外0なので、Riemann積分可能で、∫|f_n(x)|dx = 0。

しかし、その(各点収束)極限は、xが有理数とき1、無理数とき0となる関数であり、これはRiemann積分不可能。(有理数稠密から区間の細分をどれだけ細かくとっても、各区間に1を取る点と0を取る点がそれぞれ存在するため、Riemann和が収束しない)

Galois拡大って何?

分離的かつ正規代数拡大のことです。

集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。

  1. 任意のa, b, c∈Kに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Kが存在して、任意のa∈Kに対して、a + 0 = 0 + a = a
  3. 任意のa∈Kに対して、ある元-a∈Kが存在して、a + (-a) = (-a) + a = 0
  4. 任意のa, b∈Kに対して、a + b = b + a
  5. 任意のa, b, c∈Kに対して、(ab)c = a(bc)
  6. 任意のa, b, c∈Kに対して、a(b + c) = ab + ac、(a + b)c = ac + bc
  7. ある元1∈Kが存在して、任意のa∈Kに対して、1a = a1 = a
  8. 任意のa∈K\{0}に対して、ある元a^(-1)∈Kが存在して、aa^(-1) = a^(-1)a = 1
  9. 任意のa, b∈Kに対して、ab = ba

体の例
  • 有理数全体の集合Q、実数全体の集合R、複素数全体の集合Cは、通常の和と積について体になる。一方、整数全体の集合Zは体にはならない。
  • 素数pについて、整数をpで割ったあまりの集合Z/pZ := {0, 1, ..., p-1}は、自然な和と積によって体になる。

代数拡大

K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。

C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である

L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。

そのような多項式存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。

代数拡大の例

C/Rは代数拡大である

なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式

X^2 -(z + z*)X + zz* = 0

の解だから

Kを体とする。K上の任意多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで

F(X) = a(X - a1)...(X - an)

と一次の積に分解する。このようなLのうち最小のもの存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である

最後の一文を証明する。

LをFの分解体とする。Lの部分環Vを

K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))

の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるからaiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元ベクトル空間である

Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である

Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである

さて、Lの元でK上のいかなる多項式の根にならないもの存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□

上の証明から特に、KにFの1つの根αを添加した体K(α)は、Kの代数拡大体である。このような拡大を単拡大という。


拡大次数と自己同型群

L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。

M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。

α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。

[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つもの存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。

Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。

任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。


Galois拡大

L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。

Galois拡大の例

L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。

[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。

α∉Kより、K⊕KαはK上2次元ベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。

σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□

C/RはGalois拡大。

Gal(C/R)={id, σ: z→z*}

平方因子のない有理数αに対して、Q(√α)/QはGalois拡大。

Gal(Q(√α)/Q) = {id, σ: 1→1, √α→-√α}。


正規拡大

L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。

L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである

K(α)/Kが正規拡大で、さらにαの最小多項式重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。

nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である


分離拡大

L/Kを有限拡大とする。任意のα∈Lの最小多項式重根を持たないとき、L/Kは分離拡大という。

体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。


Q, R, Cの標数は0である。Z/pZの標数はpである

標数0の体および有限体の代数拡大はすべて分離拡大である

F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。

実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。

Galois拡大であることの言い換え

有限拡大L/KがGalois拡大であるためには、L/Kが分離拡大かつ正規拡大となることが必要十分である


Galois拡大の性質

L/KをGalois拡大、Gal(L/K)をGalois群とする。

K⊂M⊂Lとなる体Mを、L/Kの中間体という。

部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。

逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。

次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。

L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。

  • 部分群H⊂Gal(L/K)に対して、K⊂L^H⊂L
  • 中間体Mに対して、Aut(L/M)⊂Gal(L/K)

さらに、以下の性質を満たす。

  • H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
  • K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
  • 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
  • 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
  • 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。

K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである

この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。

2020-06-03

有限体って何?

位数が有限な体のことです。

定義

集合Fに二項演算+: F×F→Fが定義され、以下の性質を満たすとき、Fは群であるという。

  1. 任意のa, b, c∈Fに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Fが存在して、任意のa∈Fに対して、a + 0 = 0 + a = a
  3. 任意のa∈Fに対して、ある元-a∈Fが存在して、a + (-a) = a + (-a) = 0

Fの元の個数をFの位数という。

上に加えて、さらに次の性質を満たすとき、Fをabel群という。

  • 任意のa, b∈Fに対して、a + b = b + a

Fが環であるとは、2つの二項演算+: F×F→F、*: F×F→Fが定義され、以下を満たすことである

  1. Fは、+を演算としてabel群になる
  2. 任意のa, b, c∈Fに対して、(ab)c = a(bc)
  3. 任意のa, b, c∈Fに対して、a(b + c) = ab + bx
  4. 任意のa, b, c∈Fに対して、(a + b)c = ac + bc
  5. ある元1∈Fが存在して、任意のa∈Fに対して、1a = a1 = a

Fが環であり、さらに以下を満たすとき、Fは可換環であるという。

Fが環であり、さらに以下を満たすとき、Fは斜体または可除環であるという。

  • 任意のa∈F\{0}に対して、あるa^(-1)が存在して、aa^(-1) = a^(-1)a = 1

Fが可換環であり、斜体であるとき、Fは体または可換体であるという。

基本的定理

位数有限な斜体は、可換体である。(Wedderburn)

有限体の位数は、pを素数として、p^nの形である

逆に、任意素数pと自然数n≧1に対して、位数p^nである体が同型を除いて一意的に存在する。q=p^nとして、この体をF_qと書く。


  • pを素数として、整数をpで割った余りに、自然加法乗法を入れたものは、有限体F_pになる。
  • F_pに、F_p上既約な多項式の根を添加した体は有限体になる。逆にq=p^nとなる有限体F_qはすべてこのようにして得られる。
  • F_pの代数閉包Fを固定すると、F_q (q=p^n)はFの元のうちx^q=xを満たす元全体である

有限体の代数拡大

有限体F_qの有限拡大はF_(q^m)の形。

これはすべてGalois拡大であり、そのGalois群はFrobenius準同型

φ_q: x→x^q

で生成される位数mの巡回群である

2020-05-27

大学に入って最初にやることが「実数構成」では、数学が嫌いになるのは必然

そういうことはいずれは、(数学科なら)いざとなったら分かるレベルにならないといかんが、大学一年生がやって実りあるものとは思えない。

理学系にいくにせよ工学系にいくにせよ、教養数学でやるべきなのは高校微分積分の復習をしつつ、

のような基本的な結果をしっかり理解して使えるようになることじゃないだろうか。

こういうものを示すのには実数連続性を厳密に定式化しなければいけないが、一年相手にわざわざ「デデキント切断に順序構造を導入して」などとやらずとも、

空ではない上に有界実数の集合には上限が存在する。

というワイエルシュトラス定理を認めれば十分である。これはデテキント切断による実数の特徴付けと同値であり、他の命題を示す際にも扱いやすく、直感的にも理解できる。

思うに、あらゆることを厳密にやるのが大学数学の「伝統」や「洗礼」などと言った価値観を持っている人が多い気がする。もちろん、それは一面では正しいし、高校数学までは曖昧だった部分がはっきりすることに喜びを感じる学生もいるだろう。しかし、たいていの学生は、数学が嫌いになるんじゃないだろうか。

2020-05-25

anond:20200523091515

根本から理解することは重要だと思われます

しかしながら、どのレベルまで理解を追求すれば腑に落ちるのかは人によるので、よほどダメ勉強法でもない限り、理解にいたる過程個人個人に合った方法でよいと思います

たとえば初学者にとって、三角関数加法定理、点と平面の距離公式、2変数関数の陰関数定理、2次曲線の離心率による分類などの証明は、いきなり読むのは体力が持たないかも知れません。

こういうものは、一旦認めてしまい、具体的な例にあてはめて状況を観察してみたり、それを用いる演習問題を解いてみるのも、大いに結構なことではないかと思います

2020-05-22

中学高校数学ユークリッド幾何学不要である

中学高校数学から、いわゆるユークリッド幾何学廃止してよい。理由単純明快で、何の役にも立たないからだ。

大学に入ったら、どの学部に行っても、「補助線を引いて、相似な三角形を作って〜」などと言ったパズルをやることは絶対にない。メネラウス定理高校卒業以降(高校数学指導以外で)使ったことのある現代はいないだろう。こういうことは、別に高等数学知識の無い高校生でも、常識で考えて分かると思う。たとえば工学で、弧長や面積を測定する機器必要になったとして、補助線パズル適用できるごく一部の多角形などしか測れないのでは話にならない。現代数学および科学技術を支えているのは、三角関数ベクトル微分積分などを基礎とする解析的な手法である

もちろん、たとえば三角比定義するには「三角形内角の和は180°である」とか「2角が等しい三角形は相似である」等のユークリッド幾何学定理必要になる。そういうものを全て廃止せよと言っているわけではない。しかし、余弦定理まで証明してしまえば、原理的にはユークリッド幾何学問題は解ける。また、実用上もそれで問題ない。したがって、余弦定理を初等的な方法で示したら、ユークリッド幾何学手法はお役御免でよい。

高校数学では、以下の分野が特に重要だと思われる。

これらはいずれも、高等数学を学ぶ際に欠かせない基礎となる分野である。仮にユークリッド幾何学が何らかの場面で使われるとしても、いくらなんでも微分積分などと同等以上に重要だと主張する人はいないだろう。

現在、これらの分野は十分に教えられていない。微分方程式と一次変換は現在2020年5月)のカリキュラムでは教えられておらず、ベクトル文系範囲から除かれ、代わりにほとんど内容の無い統計分野が教えられている。また、高校生にもなって、コンパスと定規による作図みたいなくだらないことをやっている。本当に、どうかしているとしか言い様がない。

ユークリッド幾何学を教えるべきとする根拠代表的ものは、証明の考えに触れられるというものだ。つまり代数や解析は計算主体であるが、ユークリッド幾何学証明主体なので、数学的な思考力を鍛えられるというものだ。

しかし、これは明らかに間違っている。別にユークリッド幾何学の分野に限らず、数学のあらゆる命題証明されなければならないからだ。実際、高校数学教科書を読めば、三角関数加法定理や、微分ライプニッツ則など、証明が載っている。そもそも数学問題は全て証明問題である関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であることを定義に基づいて示さねばならない。数学思考力を養うのに、ユークリッド幾何学が他の分野より効果的だという根拠は無い。

2020-05-21

暗記数学が正しい

受験生諸君は、悪質な情報に惑わされないように。

暗記数学の要旨

和田秀樹らによるいわゆる「暗記数学」の要点をまとめると、以下のようになるだろう。

数学重要なのは、技巧的な解法をひらめくことよりも、基礎を確実に理解することである

これは従来、数学入試問題を解くのに必要なのが曖昧模糊とした「ひらめき」や「才能」だと思われていたことへのアンチテーゼである。「暗記」という語はその対比であり、特別な才能がなくとも、基礎事項を確実に習得することで、入試を通過できる程度の数学力は身に付くことを主張している。

そもそも大学入試大学研究をする上で重要知識や考え方の理解度を問うているわけであって、徒な難問を出して受験生を試しているわけではない。したがって、そのような重要事項(つまり教科書の基礎事項や、数学活用する上で頻繁に出てくるような考え方)を身に付けるのが正攻法である

そのための教材としては、エレガントな別解や難問に拘ったものよりも、基礎事項や入試頻出の問題網羅したスタンダードものが良いとされる。

数学理解するには、具体的な証明計算例を通じて行うのが効果である

これはいわゆる解法暗記である。なぜ、具体的な実例を学ぶのかと言えば。数学に限らず、具体的な経験と関連付けられていない知識理解できないためである

実際、教科書を読んだばかりの人の多くは、自身知識入試問題との間にギャップを感じる。たとえば、ベクトル内積定義線形性等の性質を知っただけでは、それを幾何学問題に応用するのは難しいだろう。教科書を読んだばかりの段階というのは、将棋で喩えれば駒の動かし方を覚えただけのようなもので、実戦で勝つのは難しい。実戦で勝つには、定跡や手筋のような、ルールだけから直ちに明らかではない、駒の活用法を身に着ける必要がある。

将棋の定跡を初心者独自発見するのが難しいのと同様に、数学自明でない実例を見出すことも難しい。そのほとんどは歴代数学者が生涯をかけて究明してきたものなのだから、当然であるしかし、現代高校生には既に教科書入試問題がある。特に入試問題は、数学専門家が選りすぐった、良質な実例の宝庫である受験生はこれを通じて数学概念活用のされ方や、論理の展開等を深く理解するべきである

そしてこれは、大学以降で数学工学を学ぶ際も同様である特に大学以降の数学では、抽象的な概念が中心になるため、ほとんどの大学教員は、具体的な実例を通じて理解しているかを非常に重んじる。たとえば、セミナー大学入試等では、以下のような質問が頻繁になされる。

  • ある概念(群やベクトル空間など)の具体例を言えるか。
  • 逆に、そうでないものの具体例を言えるか。
  • ある定理を具体的な状況に適用すると何が言えるか。
  • ある定理仮定を除いて、反例を構成できるか。

論理ギャップや式変形の意味等の不明点は曖昧なままにせず、人に聞いたり調べたりして、完全に理解すべきである

教科書記述や、解いた問題は完全に理解すべきである。つまり

といったことを徹底的に自問するべきである自分理解絶対に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけない。「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くない。

そして、理解できたと思ったら、教科書の一節や問題の解答を何も見ずに再現してみる。これはもちろん、一字一句を暗記するということではなく、上に書いたような知識有機的な繋がりを持って理解できているのかを確認することである。ある事実が、どのような性質を前提としていて、どのように示されるのかという数学ストーリー理解していれば、何も見ずともスラスラ書けるはずだ。

また、問題を解く際は、いきなり答えを見るのではなく、一通り自分で解答を試みてから解答を見ることが好ましい。実際に手を動かすことにより、分かっている部分とそうでない部分が明確になるからである

以上のことは、何も受験数学に限った話ではない。他の科目でも、社会に出て自分で調べたり考えたりしたこと他人に発表するときでも同様である

暗記数学に賛成している人・反対している人

一般的に、暗記数学に賛成している人。

要するに、数学の専門知識社会的常識のある人は暗記数学に賛成しているようだ。

逆に、反対している人。

反対しているのは、金儲けが目的で目立つことを言っているか、何かをこじらせて勉強法に無駄な拘りを持っている人たちのようだ。

----

追記

思うに、アンチ暗記数学派というのは、精神根底に以下のような考えを持っているのではないのだろうか?

一部の人は、大学入試では「ひらめき」「発想力」「頭の柔らかさ」「地頭の良さ」などを試すために敢えて典型的ではない問題を出しているとか、「天才」を発掘するために常人には解けないような難問を出題していると思っているのかも知れない。しかし、先にも述べたように、大学入試は、大学に入って研究するための基礎学力を測っており、入試問題は、そこで問われている知識や考え方が重要から出題されるわけである。したがって、そういう重要知識や考え方を十分に身に着けていれば受かる。ただそれだけの話である。そして、良識ある教育者は、数学重要なところが分かっているから、それに基づいて教材や予想問題を作っている。そうでない人はもしかしたら、大学普通受験生には解けないように徒に問題を複雑にしていると思い込み、ひねくれた問題を教えているのかも知れない。

また、「数学自体重要ではなく、数学を通じて思考力を鍛えることが重要」とか「受験勉強社会に出て嫌な仕事我慢するための訓練」等と思っている人もいるかも知れない。特に前者は、自称数学好きにもいるようだ。しかし、深く考えるまでもなく、大学受験数学が課せられるのは、大学研究するために(少なくとも、教員が望む水準で)絶対必要からである。そして何度も言うように、入試で問われるのは、研究のために必要知識や考え方であり、「頭の柔らかさ」などではない。また、数学をそれほど使わない学部にも、受験数学が課せられるのは、多くの大学には転部等の制度があり、文学部から経済学部とか、農学部から工学部に転部するような事例は珍しくないかである

上記2つに共通するのは、「理解」よりも「ひらめき」等のオカルティックなものを重視することである。これは、上に述べた胡散臭い教育業者や、受験生に絡んでる学歴コンプが暗記数学に反対する理由と符合する。金儲けがしたい受験業者にとって、「基礎を確実に理解することが重要」と言うよりも「入試本番に典型問題は出ないから、ひらめきが大事(。そして、ウチの教材を使えば、それが鍛えられる)」などと言った方が、客は集まりやすいだろう。また、SNS等で受験生教員などに絡んでる奴にしても、数学本質理解できず霊感的なもの価値見出しおかし勉強理論かぶれてしまったと考えれば納得がいく。

繰り返しになるが、受験生諸君はそういう悪質な情報に惑わされてはいけない。

2020-05-13

anond:20200513003353

女は下方婚しないの定理より、残念な結末が確定している。

2020-05-08

"セルクマーの最終定理"

"セルクマーの最終定理" に一致する結果は見つかりませんでした

2020-04-24

俺の将来の夢

昨日センター模試を受けてきた。

自己採点結果

遊牧23ハン

備蓄:320ハン

狩り:120ハン3ポンド

疾走:7800ハン

ハン:564タン

備蓄トウモロコシ酢漬けをお風呂場に保存するとこがむずかしかったが蒙古定理を当てはめたら割とすんなり解けた。

第一志望はチンギスパンなんだが最近の米パンの台頭の影響で今年はやや易化するみたい🥺

去年の第一ハンのハン定がTだったときは凹んだけど受験何とかなりそうだ

じゃ、てつはうのとこ解いてくるノシ

2020-04-14

”増えるマーの定理” ”減るミー推定

”増えるマーの定理” ”減るミー推定” に一致する情報は見つかりませんでした。

ログイン ユーザー登録
ようこそ ゲスト さん