はてなキーワード: 定理とは
量子場理論は過去数十年にわたり幾何学に多大な影響を与えてきた。
その例として、ミラー対称性、グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。
チェコッティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学そのものに関する基本的な疑問はまだ残されている。
このプロジェクトの大きな目的は、TQFTの幾何学の統一的で決定的な全体像を見出すことだった。
数学の4つの主要分野が取り上げられた:シンプレクティック幾何学と可積分系、特異点理論、圏論、モジュラー形式である。
プロジェクトの基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論、特異点理論、可積分系の関連付け(ヴェントランド)、シンプレクティック場理論、位相的場理論、可積分系(ファベール)、行列模型理論と可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論の幾何学と特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。
より詳細には以下である。
お前さ、そんなことで悩んでる暇があったら、歴史をちょっと調べてみろって。Sid Meier's Civilization VI はただのゲームじゃねえ、文明の進化そのものなんだよ。
まず、これを理解するためには「文明とは何か?」を考えなきゃいけない。文明っていうのは、ただ技術や文化が積み重なっていくものじゃない。それは国家の歴史そのものであり、経済、政治、戦争、文化が絡み合って形成される複雑なシステムだってことだ。これを理解するには、少なくともアレクサンダー大王やナポレオン・ボナパルトみたいな歴史の巨人たちがどんな選択をして、どういう結果を生んだのかを知る必要がある。
例えば、ナポレオンなんて「戦争を制する者は国家を制する」って信じて、無謀とも言える戦争を繰り返したけど、結果的にヨーロッパの地図を一変させた。文明 VI の中での選択も、まさにこのような形で現実の歴史を再現するわけだよ。
そして、「何をどうすれば楽しいか」がわからないって言ってるけど、これはちょっと甘いな。そもそも、ゲームを「楽しむ」っていうのは、ただ「勝つ」ことだけじゃないんだよ。**「挑戦」があって、「失敗から学ぶ」**過程にこそ面白さがあるんだ。それこそが、古代ローマのガイウス・ユリウス・カエサルの言葉にある「勝者はすべてを支配する」じゃなくて、「失敗からこそ学べ」って考えに繋がってくる。
「ハマる要素が見えない」?それはお前が「成長」って概念を理解していないからだよ。文明 VI は、最初はどうしても戸惑うかもしれない。でも、まるでアルキメデスが「ユークリッドの定理」に気づいた瞬間みたいに、ゲームの中での小さな発見が積み重なることで、あなたの視野が広がるんだ。その瞬間が「ハマる」ってことなんだ。
つまらないって言ってる時点でお前はまだ、文明の「生み出し方」「育て方」ってものを分かっていない。それはまるでアトランティスの遺跡に足を踏み入れたような感覚だぞ。最初は何も見えないけど、じっくり掘り下げていけば、必ずその奥に隠された壮大なものが見えてくる。そこで「やっと面白い!」って思えるわけだ。
お前に足りないのは、忍耐力と好奇心だな。時間をかけて、あれこれ試行錯誤しながらプレイしてみろ。最初から答えを求めすぎるな。歴史的にも、アリストテレスやデカルトのような偉人たちだって、最初から全てを理解していたわけじゃない。時間をかけて、失敗しながら、少しずつ「真理」にたどり着いたんだ。
1. 完備性: ∀x,y ∈ X, x ≿ y ∨ y ≿ x
2. 推移性: ∀x,y,z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z
3. 連続性: ∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は閉集合
定理: 上記の公理を満たす選好関係 ≿ に対して、連続効用関数 u: X → ℝ が存在し、∀x,y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)
ワルラス需要対応 x: ℝ_++^n × ℝ_+ ⇒ ℝ_+^n を以下で定義:
x(p,w) = {x ∈ X | p·x ≤ w ∧ ∀y ∈ X, p·y ≤ w ⇒ x ≿ y}
選好関係が連続かつ局所非飽和であれば、ワルラス需要対応は上半連続
1. 閉凸性: Y は閉凸集合
3. 非reversibility: Y ∩ (-Y) ⊆ {0} (無償の生産は不可能)
4. 無限の利潤機会の不在: Y ∩ ℝ_+^n = {0}
多重生産技術を表現する変換関数 T: ℝ_+^m × ℝ_+^n → ℝ を導入:
T(y,x) ≤ 0 ⇔ 投入 x で産出 y が技術的に可能
仮定:
証明の概略:
1. 超過需要関数 z: Δ → ℝ^n を定義 (Δは価格単体)
2. z の連続性を示す
3. Walras' law: p·z(p) = 0 を証明
4. Kakutani の不動点定理を適用: ∃p* ∈ Δ s.t. z(p*) ≤ 0
von Neumann-Morgenstern 効用関数の公理:
1. 完備性
2. 推移性
3. 連続性
4. 独立性: ∀L,M,N ∈ L, ∀α ∈ (0,1], L ≿ M ⇔ αL + (1-α)N ≿ αM + (1-α)N
定理: 上記の公理を満たす選好関係に対して、期待効用表現 V(L) = ∑_s π_s u(x_s) が存在
Choquet 期待効用:
V(f) = ∫ u(f(s)) dν(s)
定義 (相関均衡):
確率分布 μ ∈ Δ(A) が相関均衡であるとは、∀i, ∀a_i, a'_i ∈ A_i,
∑_{a_{-i}} μ(a_i, a_{-i})[u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i})] ≥ 0
経済が悪化している原因を単純に財務省の責任に帰する考え方は、極めて荒唐無稽な陰謀論であり、実際の経済状況を正確に反映していない。
このような単純化された見方は、複雑な経済システムの実態を無視しており、学術的にも実証的にも全く支持されない。
財政政策の理論的枠組みと実証分析を考察すると、財政政策の有効性は限定的であることが明らかである。
新古典派総合の視点からは、IS-LMモデルにおいて財政政策の有効性はLM曲線の傾きに依存し、リカードの等価定理は財政政策の有効性に疑問を投げかけている。
新ケインズ派モデルでも、動学的確率的一般均衡(DSGE)モデルにより短期的な財政政策の有効性が説明されるものの、その効果は限定的である。
日本における実証研究では、構造VAR分析や DSGEモデルによる分析により、2000年代以降の政府支出乗数から政策の効果が極めて限られていることが示されている。
財政政策の制約と有効性を考えると、財政の持続可能性に関する懸念から財務省の政策選択肢は著しく制限されている。
動学的効率性条件や債務残高対GDP比の安定化条件を考慮すると、日本の財政状況は極めて厳しい状況にある。
さらに、構造的問題と財政政策の限界を考えると、生産性の停滞や人口動態の変化など、財政政策では直接対応できない構造的要因が経済停滞の主因となっていることは明白である。
全要素生産性(TFP)成長率や労働生産性の低迷、人口オーナスの進行、社会保障費の増大などは、財務省の政策だけでは解決できない根本的な問題である。
したがって、経済停滞を単純に財務省の責任とする見方は、学術的にも実証的にも全く根拠がない荒唐無稽な陰謀論であると断言できる。
このような単純化された見方は、複雑な経済システムの実態を無視しており、建設的な議論や効果的な政策立案を妨げる有害な考え方である。
経済停滞の解決には、財政政策の枠を超えた包括的なアプローチが必要である。
生産性向上のための規制改革、人的資本投資の促進、イノベーション政策の強化、そして持続可能な社会保障制度の構築など、多面的な取り組みが求められる。
自由意志を表現する n 次元ベクトル空間 V を考える。この空間において、意思決定 d は以下のように表現される:
d = Σ(i=1 to n) αi ei
ここで、
定理:任意の n 次元ベクトル空間 V に対して、無限に多くの正規直交基底が存在する。
証明:グラム・シュミットの直交化法を用いて、任意の n 個の線形独立なベクトルから正規直交基底を構成できる。
この定理は、意思決定空間において無限の表現可能性が存在することを示唆する。
自由意志の非決定論的側面を表現するため、量子力学的概念を導入する。
|ψ⟩ = Σ(i=1 to n) ci |ei⟩
ここで、
測定過程(意思決定の実現)は、波動関数の崩壊として解釈される。
意思決定過程を力学系として捉え、2n 次元位相空間 Γ を導入する:
Γ = {(q1, ..., qn, p1, ..., pn) | qi, pi ∈ ℝ}
決定論的カオスの概念を導入し、初期条件に対する敏感な依存性を自由意志の表現として解釈する。
λ = lim(t→∞) (1/t) ln(|δZ(t)| / |δZ0|)
ここで、δZ(t) は位相空間における軌道の微小な摂動を表す。
L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn) - Σ(j=1 to m) λj gj(x1, ..., xn)
ここで、
前提1より、俺様を評価しない存在はクソであると定義されています。
前提2から、社会には大量のNPCが存在することがわかります。
前提3により、NPCは俺様をチヤホヤし、評価するべきだとされています。
前提3と前提1を組み合わせると、NPCが俺様をチヤホヤし評価しない場合、それらのNPCはクソであるという結論に至ります。
前提4は、この宇宙が俺様のためのものであることを示しており、上記の結論を強化します。
したがって、社会に存在する大量のNPCは俺様をチヤホヤし評価する必要があり、そうしない場合はクソであるという定理が導き出されます。
楕円曲線暗号(Elliptic Curve Cryptography, ECC)は、数論と代数幾何学に基づく公開鍵暗号方式である。
特に有限体上の楕円曲線の構造を利用して安全性を確保する手法として知られ、RSA暗号に比べて少ないビット数で同等の安全性を実現できる。
楕円曲線とは、一般的に次の形で表される三次方程式により定義される:
y² = x³ + ax + b
ここで、係数 a, b は、定義する体 F 上の元である。特に、上記の式が体 F 上で非退化(特異点が存在しない)であるためには、判別式がゼロでないこと、すなわち
4a³ + 27b² ≠ 0
楕円曲線上の点の集合 E(F) は、無限遠点 O を加えた集合として群構造を持ち、加法演算が定義できる。加法演算は、点の「和」を取る操作であり、次の規則に従う:
このように、楕円曲線上の点の集合はアーベル群となる。この群の構造を活用し、暗号方式が構築される。
実際の暗号応用では、有限体 Fₚ(p は素数)や拡大体 F₂ᵐ 上の楕円曲線を使用する。有限体上の楕円曲線 E(Fₚ) は有限個の点から構成され、その数は次のようにハッセの定理によって評価される:
|E(Fₚ)| = p + 1 - t,
ただし、トレース t は |t| ≤ 2√p を満たす。
ECCの代表的な応用として、楕円曲線上のディフィー・ヘルマン鍵共有(ECDH)がある。これを次のように構成する:
1. 楕円曲線 E と基点 G ∈ E(Fₚ) を公開する。
2. ユーザーAは秘密鍵 a を選び、公開鍵として P_A = aG を計算して送信する。
3. ユーザーBは秘密鍵 b を選び、公開鍵として P_B = bG を計算して送信する。
4. 双方は共通鍵として K = aP_B = bP_A = abG を計算する。
この手法の安全性は、離散対数問題、特に「楕円曲線離散対数問題(ECDLP)」に依存している。楕円曲線上の点 P と Q = nP が与えられたとき、係数 n を求めるのは計算的に難しいため、敵対者が秘密鍵を推測するのが困難である。
例えば、リーマン予想の特別な場合であるヴェイユ予想は、有限体上の楕円曲線の点の数に対する評価を与え、暗号設計の基礎となっている。
さらに、現代の暗号学では楕円曲線とモジュラー形式の関係やガロア表現といった高度な数論的構造が研究されており、これらが量子耐性を持つ新たな暗号方式の研究に貢献している。
楕円曲線暗号はこのようにして、抽象代数学、数論、代数幾何学の融合によって成り立ち、安全性と効率を両立させた暗号技術として広く利用されている。
篠房六郎氏の新連載「姫様はおあずけです」前回の掲載である"前編"を載せた4/10からとうとう半年が経過してしまった。
https://urasunday.com/title/2182
Xを見るに名前・固定・bioで新連載を周知しており、前編という中途半端なところで切られていることから打ち切りの可能性は低いだろう。
つらい。
Xは稼動しているので安否は一安心であるがなにかしらの事情があるのかもしれない。
もし仮に氏が漫画を描けない状態、利き腕が死んでしまったなどの事態になっているのならば、たとえばAIなどを活用してぜひとも連載を続けて欲しい。
幸いにも篠房氏には数年をかけて完成させた氏の「メソッド」が凝縮された著書、「ポーズの定理」がある。
漫画が描けなくなる前に彼の技術の粋がこうやって遺されたことは幸運であるし、先見の明があるというほか無い。
ぜひともこれでAIを学習させ、ゆるぎないメソッドで構築された篠房イズムを残し続けてほしい。
もちろん、著書に薫陶を受けたはずの沢山の徒弟のうちの誰かに代筆を頼んでも良い。現代の漫画はもはやスピンオフはもちろん、絵柄の模倣や死後の代筆すら行なっている業界である。篠房氏は生きているのだから、AIでも徒弟でもタッグを組み原作漫画家として活動してほしい。
自分で筆をとれないことは漫画界の至宝として許されない思いがあるかもしれないが、逆に彼だからこそ筆をとらずとも彼の遺伝子が生きている状態なのである。彼は彼の偉業を存分に活用し、”漫画家”として執筆を続けていただきたい。
サイヤ人化できる可能性が極めて微量に存在します。その微量さは面倒くささを中和するためのエッセンスなのです。
なお超人化したい場合全人類に対して先に良い人とならなければなりません。これは善人競争です
超人となったあとに善人をやめることもできますが、その場合は、株式市場のように売り手買い手の売買になります。
超人となったあとに善人を続けることのインセンティブがないと感じる場合、あなたは超人になれません。
これは身勝手の極意と名付けられており、私が名付け親の親です。またこれは真理の一部であり、超人の上に無限の上位存在が存在する可能性があったりなかったりとさ、めでたしめでたしおつおつo2o2.
目標:与えられた高度な数学的概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単な定理を証明します。
定理:1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する
背景:
高次トポス理論:ホモトピー論を高次元で一般化し、空間や位相的構造を抽象的に扱うための枠組み。
(∞,1)-カテゴリー:対象と射だけでなく、高次の同値(ホモトピー)を持つカテゴリー。
L∞-代数:リー代数の高次元一般化であり、物理学や微分幾何学で対称性や保存量を記述する。
証明:
トーラス
𝑇
1
T
1
は、円周
𝑆
1
S
1
[
,
1
]
[0,1] の両端を同一視して得られる。
𝑇
1
T
1
を高次トポス理論の枠組みで扱うために、位相空間のホモトピータイプとして考える。
これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。
閉曲線のホモトピー類:
𝑇
1
T
1
上の閉曲線は、連続写像
𝛾
:
𝑆
1
→
𝑇
1
γ:S
1
→T
1
で表される。
2つの閉曲線
𝛾
1
,
𝛾
2
γ
1
,γ
2
がホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。
基本群の計算:
トーラス
𝑇
1
T
1
の基本群
𝜋
1
(
𝑇
1
)
π
1
(T
1
𝑍
Z と同型である。
これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。
各閉曲線
𝛾
𝑛
この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。
円周
𝑆
1
S
1
のループ空間のL∞-代数構造を考えると、ホモトピー類の加法的性質を代数的に記述できる。
つまり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。
結論:
𝑇
1
T
1
上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。
解説:
この証明では、与えられた高度な数学的概念を用いて、基本的なトポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプルな問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。
高次トポス理論は、空間のホモトピー的性質を扱うのに適しており、基本群の概念を一般化できます。
(∞,1)-カテゴリーの言葉で基本群を考えると、対象の自己同型射のホモトピー類として理解できます。
L∞-代数を使うことで、ホモトピー類の代数的構造を詳細に記述できます。
まとめ:
このように、高度な数学的枠組みを用いて、基本的な定理を新たな視点から証明することができます。これにより、既存の数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます。
定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、
1. H = ∪iεI Ai
2. Ai ∩ Aj = ∅ for i ≠ j
3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H
ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅
事象の地平面上の量子状態を密度作用素 ρ ε B(H) で表現する。
S(ρ) = -Tr(ρ log ρ)
AdS/CFT対応に基づき、バルク空間の重力理論と境界のCFTの間の同型を考える:
Zgravity[φ0] = ZCFT[J]
I[H] = ∫H √h d³x I(x)
ここで、hはHの誘導計量、I(x)は局所的な情報密度である。
I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]
が成り立つ。
プランクスケールでの量子効果を考慮するため、非可換幾何学を導入する。
H上の座標演算子 X̂i に対して:
[X̂i, X̂j] = iθij
limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε
ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である。
このモデルは、バナッハ=タルスキーのパラドックスとブラックホールの情報量問題を統合している。
量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量を記述することが可能となる。
このアプローチは、量子重力理論と情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックスの解決に向けた理論的基盤を提供する。
定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。
定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:
M ≃ Ω∞-∞TFT(Bord∞)
ここで、TFT は位相的場の理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。
命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論の臨界次元に対応する。
定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。
定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。
定義 3: 弦場理論の代数構造を、∞-オペラッド O の代数として定式化する。
定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化が存在し、Maurer-Cartan方程式
MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}
の解空間として特徴付けられる。
定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。
定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。
定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:
ShvCat(X) ≃ Fuk∞(Y)
ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である。
定義 5: M理論のコンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。
定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。
定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。
定理 7 (Hopkins-Singer): M理論の量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:
[G/2π] ∈ TMF(M)
ここで、TMF は位相的モジュラー形式のスペクトラムである。
定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である。
定理 8 (Connes-Marcolli-Ševera): 量子重力の有効作用は、適切に定義されたスペクトラル∞-作用の臨界点として特徴付けられる。
定義 8: 弦理論の真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。
予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。
定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:
Z: Bord∞ → (∞,∞)-Cat
定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間は量子化された時空の∞-圏を与える。
ジョン・ホイーラーの "it from bit" 仮説の数学的定式化を行う。
まず、圏論的基礎として量子情報圏 Q を定義する。Q の対象は完備von Neumann代数であり、射は完全正写像である。次に、古典情報圏 C を定義する。C の対象は可測空間であり、射は確率核である。
量子-古典対応を表現するために、量子-古典関手 F: Q → C を導入する。この関手は量子系の観測過程を表現する。
情報理論的構造を捉えるために、エントロピー関手 S: Q → Vec を定義する。ここで Vec は実ベクトル空間の圏である。S(A) = (S_von(A), S_linear(A), S_max(A)) と定義し、S_von はvon Neumannエントロピー、S_linear は線形エントロピー、S_max は最大エントロピーを表す。
トポス理論的解釈として、量子論理トポス T を構築する。T の対象は量子命題の束であり、部分対象分類子 Ω は量子確率値を取る。
"It from Bit" の数学的定式化として、以下の定理を提示する:
定理 1 (It from Bit): 任意の量子系 A ∈ Ob(Q) に対して、以下が成り立つ:
∃ {Bi}i∈I ⊂ Ob(C), ∃ {φi: F(A) → Bi}i∈I :
A ≅ lim←(Bi, φi)
ここで、≅ は Q における同型を、lim← は逆極限を表す。
証明は以下の手順で行う:
2. 各 p ∈ P(A) に対して、射影測定 Mp: A → C({0,1}) を定義する。
3. {Mp}p∈P(A) から誘導される射 φ: A → ∏p∈P(A) C({0,1}) を構築する。
4. 普遍性により、A ≅ lim←(C({0,1}), πp∘φ) が成り立つ。
系 1 として、S(A) = lim→ S(F(Bi)) が成り立つ。
この定理と系は、任意の量子系が古典的な二値観測の無限の組み合わせとして再構成可能であり、そのエントロピーが古典的観測のエントロピーの極限として表現できることを示している。
一般化として、n-圏 Qn を導入し、高次元の量子相関を捉える。予想として、Qn の対象も同様に古典的観測の極限として表現可能であると考えられる。
YesとNoである。論文を書く人や研究する内容は文化の産物であり、アメリカでは長い間、文化に人種差別の歴史がある。しかし、定理自体は人種とは無関係。
数学は現実を正確で抽象的かつ形式的にモデル化する。これは一見すると特定の地域や民族に限定されず、多くの場所で独立して発展し、文化間の協力があったようにみえる。この考えは「白人性」よりも数千年前に遡る。ピタゴラスは文化的ショーヴィニストであったが、現代の意味で人種差別主義者ではなかった。彼の肌の色は不明であり、彼が白人のギリシャ人であるとは言えない。
幾何学は文化的な構築物であり、逃れることはできない。πは円周の直径に対する比率であるが、幾何学的な円は文化が発展させた概念である。ピタゴラス派は代数よりも幾何学を発展させる文化的偏見を持っていた。
私はピタゴラス派の文脈で無理数を学んだが、インドでは異なる代数的文脈で発展した。数学教育は文化的である。
現代の数学の多くは人種差別的な権力構造の産物であり、人種的な文脈で教えられている。数学は人種差別を反映している。
アメリカでは、人種差別が高速道路の建設場所や利益に影響を与えたが、道路自体は人種差別的ではない。黒人の居住者に家を売らせて白人の利益のために道路を建設することは人種差別である。都市の形状は人種差別を反映している。
プリンストン大学は奴隷によって建設され、奴隷所有者によって資金提供された。歴史的に黒人学生や女性を受け入れず、現代の人種政治が学生生活に影響を与えている。これがプリンストンの数学を人種差別的にするわけではないが、ブラインドピアレビューがない場合、その論文が発表されたかどうかを問うことができるという点で、差別的である。
数学の論文や抽象的な証明、大学の建物は人種差別ではないが、黒人に大学を建設させて白人の富を築くことは人種差別である。数学研究の形状はその人種差別を反映している。
したがって、答えはYesとNoの両方である。数学の定理や抽象的な考えは人種差別とは関係がないが、数学的試みは人種差別の文化的文脈で行われている。つまり、誰が認められるかとかそういった話になると一気に政治的になる。
複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である。
𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))
証明:
1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。
2. 生成元の設定: フロアーコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである。
3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標やラグランジアンの相対的な位置関係から決定される。
4. 微分の定義: フロアー微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスクが存在しないため、微分は消える(𝑑 = 0)。
5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。
𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)
Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)
ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである。
- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアーコホモロジー群は生成元 [𝑝] で張られる。
- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアンの相対的な位相データとモノドロミーから決定される。
2. Ext 群の計算:
- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は
𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅
{ ℂ, 𝑖 = 0, 1
0, 𝑖 ≠ 0, 1 }
3. 対応の確立: フロアーコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係を、抽象数学を用いて厳密に数理モデル化する。
まず、以下のデータを考える。
- このスタックはアルティンスタックであり、代数幾何学的な手法で扱われる。
- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック。
- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。
幾何学的ラングランズ予想は、以下のような圏の同値を主張する。
𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
ここで、
この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。
核関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手
Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)
ここで、
𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)
問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学的ラングランズ予想の核心的な課題となっている。
ヒッチン写像を導入する。
ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)
ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。
完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系を定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造と関係する。
Kontsevich のホモロジカルミラー対称性予想に基づく。
𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))
ここで、
- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。
- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。
この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。
𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))
ここで、
- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック。
- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック。
作用素:
M 理論におけるブレーンの配置:
- ℝ¹,³ は 4 次元の時空。
- Σ は曲線 𝑋。
Lurie の高次圏論:
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係は、以下の数学的構造を通じてモデル化される。
これらの数学的構造を組み合わせることで、幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係性をモデル化できる。
2. 波動関数がシュレーディンガー方程式に従って時間発展する。
Hilb は次の性質を持つ。
- (S ∘ T)† = T† ∘ S†
- (T†)† = T
- id_H† = id_H
- (T ⊗ S)† = T† ⊗ S†
- 評価射: eval_H: H* ⊗ H → ℂ
- 共評価射: coeval_H: ℂ → H ⊗ H*
- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H
- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*
⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ
⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ
U(t) = exp(-iHt/ħ): H → H
- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ
- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)
ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)
U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)
H_total = H_BH ⊗ H_rad
U_total(t): H_total → H_total
- U_total(t) はユニタリ射。
E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)
- Tr_H_BH: H_BH 上の部分トレース
- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。
E(ρ) = Tr_K (V ρ V†)
- バルクの圏 Hilb_bulk: ブラックホール内部の物理を記述。
- 境界の圏 Hilb_boundary: 境界上の物理を記述。
- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像を保証。
- バルク: F_bulk: Time → Hilb_bulk
- 境界: F_boundary: Time → Hilb_boundary
- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。
η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁
- これにより、バルクと境界での時間発展が対応し、情報が失われないことを示す。
量子力学を圏論的に定式化し、ユニタリなダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理を圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手と自然変換を構成し、情報が圏全体で保存されることを示した。
経済主体の集合 I と財の集合 L を考える。各主体 i ∈ I は以下を持つ:
市場価格ベクトル p ∈ ℝ₊ᴸ が与えられると、各主体は以下の予算集合を持つ:
Bᵢ(p) = { x ∈ Xᵢ | p · x ≤ p · ωᵢ }
競争均衡 (p*, x*) を考える。ここで、x* = (xᵢ*)ᵢ∈I は各主体の最適選択であり、市場均衡条件を満たす:
1. 最適性条件:
xᵢ* ∈ arg max{x∈Bᵢ(p*)} { x | x ≽ᵢ xᵢ }
2. 市場均衡条件:
Σᵢ∈I xᵢ* = Σᵢ∈I ωᵢ
仮に x* がパレート効率的でないとすると、ある実現可能な配分 y = (yᵢ)ᵢ∈I が存在して:
zᵢ = yᵢ - xᵢ* と定義すると:
Σᵢ∈I zᵢ ≤ 0
各主体の最適性より:
p* · yᵢ ≥ p* · xᵢ*
従って:
p* · zᵢ ≥ 0
しかし、少なくとも一人について p* · zᵢ > 0。すると:
Σᵢ∈I p* · zᵢ > 0
しかし:
Σᵢ∈I p* · zᵢ = p* · Σᵢ∈I zᵢ ≤ 0
仮定の下で、任意のパレート効率的配分は、適切な初期保有の再分配後、競争均衡として実現可能である。
任意のパレート効率的配分 x* = (xᵢ*)ᵢ∈I を考える。社会的に望ましい配分として、適切な価格ベクトル p* ∈ ℝ₊ᴸ を構築する。
パレート効率性より、以下の集合は交わらない:
これらの凸集合を分離するハイパープレーンが存在し、その法線ベクトルとして価格 p* を得る。
再分配された初期保有 ω̃ᵢ を考える(Σᵢ∈I ω̃ᵢ = Σᵢ∈I ωᵢ)。各主体は以下を最大化する:
max{x∈Xᵢ} { x | x ≽ᵢ xᵢ, p* · x ≤ p* · ω̃ᵢ }
適切な ω̃ᵢ を選ぶことで、xᵢ* が各主体の最適解となる。
ある政策変更により得られる利得者の利得が、損失者の損失を完全に補償できる場合、その政策は潜在的なパレート改善である。
経済内の二つの状態 A と B を考える。状態 B への移行で利得者と損失者が存在する。
1. カルドア基準:
利得者の余剰 G と損失者の損失 L を計測し、G > L であれば、利得者から損失者への補償が可能である。
損失者が利得者に支払ってでも状態 A を維持したい額を W とすると、G > W であれば、状態 B への移行が望ましい。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮