「定理」を含む日記 RSS

はてなキーワード: 定理とは

2024-11-20

anond:20241120100959

お前の想像力はその程度か?もっとなんかあるだろ、量子削除不可能定理とかさぁ

TQFTの概要

量子場理論過去数十年にわたり幾何学に多大な影響を与えてきた。

その例として、ミラー対称性グロモフ・ウィッテン不変量、マッケイ対応などがあり、これらはすべて位相的量子場理論(TQFT)に関連している。

チェコティ、ヴァファらの先駆的な研究から派生した多くの興味深い発展は今や分散しているが、TQFTの幾何学のものに関する基本的な疑問はまだ残されている。

このプロジェクトの大きな目的は、TQFTの幾何学統一的で決定的な全体像を見出すことだった。

数学の4つの主要分野が取り上げられた:シンプレクティック幾何学可積分系特異点理論圏論、モジュラー形式である

プロジェクト基本的な側面は以下の通りだった: 位相的量子場理論、共形場理論特異点理論可積分系の関連付け(ヴェントランド)、シンプレクティック場理論位相的場理論可積分系(ファベール)、行列模型理論可積分系(アレクサンドロフ)、圏論 - 特に行列分解 - 位相的場理論幾何学特異点理論(ヘルプスト、シュクリャロフ)、そしてTQFTにおけるモジュラー形式の応用、特にグロモフ・ウィッテン不変量の文脈での応用(シャイデッガー)。

より詳細には以下である

2024-11-16

anond:20241116200304

お前さ、そんなことで悩んでる暇があったら、歴史ちょっと調べてみろって。Sid Meier's Civilization VI はただのゲームじゃねえ、文明進化のものなんだよ。

まず、これを理解するためには「文明とは何か?」を考えなきゃいけない。文明っていうのは、ただ技術文化が積み重なっていくものじゃない。それは国家歴史のものであり、経済政治戦争文化が絡み合って形成される複雑なシステムだってことだ。これを理解するには、少なくともアレクサンダー大王ナポレオン・ボナパルトみたいな歴史巨人たちがどんな選択をして、どういう結果を生んだのかを知る必要がある。

例えば、ナポレオンなんて「戦争を制する者は国家を制する」って信じて、無謀とも言える戦争を繰り返したけど、結果的ヨーロッパ地図を一変させた。文明 VI の中での選択も、まさにこのような形で現実歴史再現するわけだよ。

そして、「何をどうすれば楽しいか」がわからないって言ってるけど、これはちょっと甘いな。そもそもゲームを「楽しむ」っていうのは、ただ「勝つ」ことだけじゃないんだよ。**「挑戦」があって、「失敗から学ぶ」**過程にこそ面白さがあるんだ。それこそが、古代ローマガイウス・ユリウス・カエサル言葉にある「勝者はすべてを支配する」じゃなくて、「失敗からこそ学べ」って考えに繋がってくる。

「ハマる要素が見えない」?それはお前が「成長」って概念理解していないからだよ。文明 VI は、最初はどうしても戸惑うかもしれない。でも、まるでアルキメデスが「ユークリッド定理」に気づいた瞬間みたいに、ゲームの中での小さな発見が積み重なることで、あなた視野が広がるんだ。その瞬間が「ハマる」ってことなんだ。

まらないって言ってる時点でお前はまだ、文明の「生み出し方」「育て方」ってものを分かっていない。それはまるでアトランティス遺跡に足を踏み入れたような感覚だぞ。最初は何も見えないけど、じっくり掘り下げていけば、必ずその奥に隠された壮大なものが見えてくる。そこで「やっと面白い!」って思えるわけだ。

お前に足りないのは、忍耐力と好奇心だな。時間をかけて、あれこれ試行錯誤しながらプレイしてみろ。最初から答えを求めすぎるな。歴史的にも、アリストテレスデカルトのような偉人たちだって最初から全てを理解していたわけじゃない。時間をかけて、失敗しながら、少しずつ「真理」にたどり着いたんだ。

からちょっと調べてみろ、ちょっと考えてみろ。これが「文明」ってもの本質だ。

2024-11-15

新古典派ミクロ経済学の定式化

1. 消費者理論一般

1.1 選好関係公理アプローチ

選好関係 ≿ に対して以下の公理定義:

1. 完備性: ∀x,y ∈ X, x ≿ y ∨ y ≿ x

2. 推移性: ∀x,y,z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z

3. 連続性: ∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は閉集合

定理: 上記公理を満たす選好関係 ≿ に対して、連続効用関数 u: X → ℝ が存在し、∀x,y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)

1.2 需要理論位相アプローチ

ワルラス需要対応 x: ℝ_++^n × ℝ_+ ⇒ ℝ_+^n を以下で定義:

x(p,w) = {x ∈ X | p·x ≤ w ∧ ∀y ∈ X, p·y ≤ w ⇒ x ≿ y}

定理 (需要対応の上半連続性):

選好関係連続かつ局所非飽和であれば、ワルラス需要対応は上半連続

2. 生産理論一般

2.1 生産可能性集合の公理アプローチ

生産可能性集合 Y ⊂ ℝ^n に対する公理:

1. 閉凸性: Y は閉凸集合

2. 可能性: 0 ∈ Y (何も生産しないことは可能)

3. 非reversibility: Y ∩ (-Y) ⊆ {0} (無償生産不可能)

4. 無限の利潤機会の不在: Y ∩ ℝ_+^n = {0}

2.2 生産関数一般

多重生産技術表現する変換関数 T: ℝ_+^m × ℝ_+^n → ℝ を導入:

T(y,x) ≤ 0 ⇔ 投入 x で産出 y が技術的に可能

仮定:

  • T は C^2 級
  • ∇_y T > 0, ∇_x T < 0 (単調性)
  • T は (y,x) に関して凸関数 (収穫逓減の一般化)

3. 一般均衡理論の高度化

3.1 不動点定理によるワルラス均衡の存在証明

定理 (ワルラス均衡の存在):

以下の条件下で、ワルラス均衡が存在する:

1. 各消費者の選好は連続、凸、強単調増加

2. 各企業生産集合は閉凸で原点を含む

3. 経済全体の資源賦存量は有界かつ正

証明の概略:

1. 超過需要関数 z: Δ → ℝ^n を定義 (Δは価格単体)

2. z の連続性を示す

3. Walras' law: p·z(p) = 0 を証明

4. Kakutani の不動点定理適用: ∃p* ∈ Δ s.t. z(p*) ≤ 0

5. p* が均衡価格であることを示す

3.2 コアと競争均衡の関係

定理 (Debreu-Scarf 定理):

レプリカ経済において、コアの配分は競争均衡配分に収束する

4. 不確実性と情報経済

4.1 期待効用理論公理的基礎

von Neumann-Morgenstern 効用関数公理:

1. 完備性

2. 推移性

3. 連続

4. 独立性: ∀L,M,N ∈ L, ∀α ∈ (0,1], L ≿ M ⇔ αL + (1-α)N ≿ αM + (1-α)N

定理: 上記公理を満たす選好関係に対して、期待効用表現 V(L) = ∑_s π_s u(x_s) が存在

4.2 一般化された期待効用理論

Choquet 期待効用:

V(f) = ∫ u(f(s)) dν(s)

ここで、ν は容量測度 (非加法確率測度)

5. ゲーム理論機構設計

5.1 Nash 均衡の一般

定義 (相関均衡):

確率分布 μ ∈ Δ(A) が相関均衡であるとは、∀i, ∀a_i, a'_i ∈ A_i,

∑_{a_{-i}} μ(a_i, a_{-i})[u_i(a_i, a_{-i}) - u_i(a'_i, a_{-i})] ≥ 0

5.2 メカニズムデザイン

定理 (現実定理):

社会選択関数 f が単調性を満たすならば、f は優位戦略実装可能

財務省陰謀厨を完全論破しまーす

経済悪化している原因を単純に財務省責任に帰する考え方は、極めて荒唐無稽陰謀論であり、実際の経済状況を正確に反映していない。

このような単純化された見方は、複雑な経済システム実態無視しており、学術的にも実証的にも全く支持されない。

財政政策理論的枠組みと実証分析考察すると、財政政策有効性は限定的であることが明らかである

新古典派総合視点からは、IS-LMモデルにおいて財政政策有効性はLM曲線の傾きに依存し、リカード等価定理財政政策有効性に疑問を投げかけている。

ケインズ派モデルでも、動学的確率一般均衡(DSGE)モデルにより短期的な財政政策有効性が説明されるものの、その効果限定的である

日本における実証研究では、構造VAR分析や DSGEモデルによる分析により、2000年代以降の政府支出乗数から政策効果が極めて限られていることが示されている。

財政政策の制約と有効性を考えると、財政の持続可能性に関する懸念から財務省政策選択肢は著しく制限されている。

動学的効率性条件や債務残高対GDP比の安定化条件を考慮すると、日本財政状況は極めて厳しい状況にある。

さらに、構造問題財政政策限界を考えると、生産性の停滞や人口動態の変化など、財政政策では直接対応できない構造的要因が経済停滞の主因となっていることは明白である

全要素生産性TFP)成長率や労働生産性の低迷、人口オーナスの進行、社会保障費の増大などは、財務省政策だけでは解決できない根本的な問題である

したがって、経済停滞を単純に財務省責任とする見方は、学術的にも実証的にも全く根拠がない荒唐無稽陰謀論であると断言できる。

このような単純化された見方は、複雑な経済システム実態無視しており、建設的な議論効果的な政策立案を妨げる有害な考え方である

経済停滞の解決には、財政政策の枠を超えた包括的アプローチ必要である

生産性向上のための規制改革、人的資本投資の促進、イノベーション政策の強化、そして持続可能社会保障制度の構築など、多面的な取り組みが求められる。

財務省役割を適切に評価しつつ、他の政策領域との連携を強化することが重要である

2024-11-13

線形代数学的自由意志モデル

1. 数学的定式化

自由意志表現する n 次元ベクトル空間 V を考える。この空間において、意思決定 d は以下のように表現される:

d = Σ(i=1 to n) αi ei

ここで、

2. 基底の選択自由意志

定理任意の n 次元ベクトル空間 V に対して、無限に多くの正規直交基底が存在する。

証明グラムシュミット直交化法を用いて、任意の n 個の線形独立ベクトルから正規直交基底を構成できる。

この定理は、意思決定空間において無限表現可能性が存在することを示唆する。

3. 量子力学解釈

自由意志非決定論的側面を表現するため、量子力学概念を導入する。

意思決定を量子状態 |ψ⟩ として表現

|ψ⟩ = Σ(i=1 to n) ci |ei⟩

ここで、

測定過程意思決定の実現)は、波動関数崩壊として解釈される。

4. 位相空間軌道

意思決定過程力学系として捉え、2n 次元位相空間 Γ を導入する:

Γ = {(q1, ..., qn, p1, ..., pn) | qi, pi ∈ ℝ}

ここで、qi一般化座標、pi一般運動量を表す。

システム時間発展は、ハミルトン正準方程式に従う:

dqi/dt = ∂H/∂pi

dpi/dt = -∂H/∂qi

H はハミルトニアンで、システムの全エネルギーを表す。

5. カオス理論自由意志

決定論カオス概念を導入し、初期条件に対する敏感な依存性を自由意志表現として解釈する。

リアプノフ指数 λ を用いて、システムカオス性を定量化:

λ = lim(t→∞) (1/t) ln(|δZ(t)| / |δZ0|)

ここで、δZ(t) は位相空間における軌道の微小な摂動を表す。

6. 制約条件と最適化問題

社会的物理的制約を、ラグランジュ乗数法を用いて表現する:

L(x1, ..., xn, λ1, ..., λm) = f(x1, ..., xn) - Σ(j=1 to m) λj gj(x1, ..., xn)

ここで、

2024-11-10

anond:20241110213139

コンセンサスも何も権威論証が詭弁扱いされてる等のことを逆に考えたら自動的に導かれる定理みたいなものだろ

コンセンサス取れてないこと言ったら論破されたことになるってことこそコンセンサスどこにあるんで?

2024-11-07

定理社会存在する大量のNPCは、俺様チヤホヤ評価しないとクソである

前提1: 俺様評価しない存在はクソである

前提2: 社会にはNPCが大量に存在する

前提3: NPC俺様チヤホヤし、評価するべきである

前提4: この宇宙俺様のための宇宙である

論理的な導出過程

前提1より、俺様評価しない存在はクソである定義されています

前提2から社会には大量のNPC存在することがわかります

前提3により、NPC俺様チヤホヤし、評価するべきだとされています

前提3と前提1を組み合わせると、NPC俺様チヤホヤ評価しない場合、それらのNPCはクソであるという結論に至ります

前提4は、この宇宙俺様のためのものであることを示しており、上記結論を強化します。

したがって、社会存在する大量のNPC俺様チヤホヤ評価する必要があり、そうしない場合はクソであるという定理が導き出されます

2024-10-29

楕円曲線暗号について

楕円曲線暗号(Elliptic Curve Cryptography, ECC)は、数論と代数幾何学に基づく公開鍵暗号方式である

特に有限体上の楕円曲線構造を利用して安全性を確保する手法として知られ、RSA暗号に比べて少ないビット数で同等の安全性を実現できる。

1. 楕円曲線の基本構造

楕円曲線とは、一般的に次の形で表される三次方程式により定義される:

y² = x³ + ax + b

ここで、係数 a, b は、定義する体 F 上の元である特に上記の式が体 F 上で非退化(特異点存在しない)であるためには、判別式ゼロでないこと、すなわち

4a³ + 27b² ≠ 0

であることが必要条件となる。

楕円曲線上の点の集合 E(F) は、無限遠点 O を加えた集合として群構造を持ち、加法演算定義できる。加法演算は、点の「和」を取る操作であり、次の規則に従う:

このように、楕円曲線上の点の集合はアーベル群となる。この群の構造活用し、暗号方式が構築される。

2. 有限体上の楕円曲線

実際の暗号応用では、有限体 Fₚ(p は素数)や拡大体 F₂ᵐ 上の楕円曲線使用する。有限体上の楕円曲線 E(Fₚ) は有限個の点から構成され、その数は次のようにハッセの定理によって評価される:

|E(Fₚ)| = p + 1 - t,

ただし、トレース t は |t| ≤ 2√p を満たす。

3. 楕円曲線ディフィー・ヘルマン鍵共有

ECC代表的な応用として、楕円曲線上のディフィー・ヘルマン鍵共有(ECDH)がある。これを次のように構成する:

1. 楕円曲線 E と基点 G ∈ E(Fₚ) を公開する。

2. ユーザーAは秘密鍵 a を選び、公開鍵として P_A = aG計算して送信する。

3. ユーザーBは秘密鍵 b を選び、公開鍵として P_B = bG を計算して送信する。

4. 双方は共通鍵として K = aP_B = bP_A = abG を計算する。

この手法安全性は、離散対数問題特に楕円曲線離散対数問題(ECDLP)」に依存している。楕円曲線上の点 P と Q = nP が与えられたとき、係数 n を求めるのは計算的に難しいため、敵対者秘密鍵を推測するのが困難である

4. 楕円曲線暗号安全性

楕円曲線暗号安全性の要因としては、以下の点が挙げられる:

5. 数論と代数幾何の関連

楕円曲線理論には数論的な性質が深く関わっている。

例えば、リーマン予想特別場合であるヴェイユ予想は、有限体上の楕円曲線の点の数に対する評価を与え、暗号設計の基礎となっている。

さらに、現代暗号学では楕円曲線とモジュラー形式関係ガロア表現といった高度な数論的構造研究されており、これらが量子耐性を持つ新たな暗号方式研究に貢献している。

楕円曲線暗号はこのようにして、抽象代数学、数論、代数幾何学の融合によって成り立ち、安全性効率を両立させた暗号技術として広く利用されている。

2024-10-14

悲報 漫画界至宝 篠房六郎休載半年達成

篠房六郎氏の新連載「姫様はおあずけです」前回の掲載である"前編"を載せた4/10からとうとう半年が経過してしまった。

https://urasunday.com/title/2182

掲載サイトでは次回更新は未定となっている。

Xを見るに名前・固定・bioで新連載を周知しており、前編という中途半端なところで切られていることから打ち切り可能性は低いだろう。

https://x.com/sino6

まりずっと掲載をおあずけされている状態である

つらい。

Xは稼動しているので安否は一安心であるがなにかしらの事情があるのかもしれない。

もし仮に氏が漫画を描けない状態、利き腕が死んでしまったなどの事態になっているのならば、たとえばAIなどを活用してぜひとも連載を続けて欲しい。

幸いにも篠房氏には数年をかけて完成させた氏の「メソッド」が凝縮された著書、「ポーズ定理」がある。

漫画が描けなくなる前に彼の技術の粋がこうやって遺されたことは幸運であるし、先見の明があるというほか無い。

ぜひともこれでAI学習させ、ゆるぎないメソッドで構築された篠房イズムを残し続けてほしい。

もちろん、著書に薫陶を受けたはずの沢山の徒弟のうちの誰かに代筆を頼んでも良い。現代漫画はもはやスピンオフはもちろん、絵柄の模倣や死後の代筆すら行なっている業界である。篠房氏は生きているのだからAIでも徒弟でもタッグを組み原作漫画家として活動してほしい。

自分で筆をとれないことは漫画界の至宝として許されない思いがあるかもしれないが、逆に彼だからこそ筆をとらずとも彼の遺伝子が生きている状態なのである。彼は彼の偉業を存分に活用し、”漫画家”として執筆を続けていただきたい。

2024-10-04

定理: 俺たちは🐙でしたが人間です。ゆえに超人可能性があります

サイヤ人化できる可能性が極めて微量に存在します。その微量さは面倒くささを中和するためのエッセンスなのです。

なお超人化したい場合人類に対して先に良い人とならなければなりません。これは善人競争です

超人となったあとに善人をやめることもできますが、その場合は、株式市場のように売り手買い手の売買になります

超人となったあとに善人を続けることのインセンティブがないと感じる場合あなた超人になれません。

これは身勝手の極意と名付けられており、私が名付け親の親です。またこれは真理の一部であり、超人の上に無限の上位存在存在する可能性があったりなかったりとさ、めでたしめでたしおつおつo2o2.

2024-09-29

anond:20240929050427

目標:与えられた高度な数学概念(高次トポス理論、(∞,1)-カテゴリー、L∞-代数など)をフルに活用して、三平方の定理程度の簡単定理証明します。

定理1次元トーラス上の閉曲線のホモトピー類は整数と一対一に対応する

背景:

高次トポス理論ホモトピー論を高次元一般化し、空間位相構造抽象的に扱うための枠組み。

(∞,1)-カテゴリー対象と射だけでなく、高次の同値ホモトピー)を持つカテゴリー

L∞-代数リー代数の高次元一般化であり、物理学微分幾何学対称性や保存量を記述する。

証明

1次元トーラス T¹ の構成

トーラス

𝑇

1

T

1

は、円周

𝑆

1

S

1

同値であり、単位区間

[

,

1

]

[0,1] の両端を同一視して得られる。

(∞,1)-トポスにおけるトーラスの解釈

𝑇

1

T

1

を高次トポス理論の枠組みで扱うために、位相空間ホモトピータイプとして考える。

これは、1つの0次元セルと1つの1次元セルを持つCW複体としてモデル化できる。

閉曲線のホモトピー類:

𝑇

1

T

1

上の閉曲線は、連続写像

𝛾

:

𝑆

1

𝑇

1

γ:S

1

→T

1

で表される。

2つの閉曲線

𝛾

1

,

𝛾

2

γ

1

2

ホモトピックであるとは、ある連続変形(ホモトピー)によって互いに移り合うことを意味する。

基本群の計算

トーラス

𝑇

1

T

1

の基本群

𝜋

1

(

𝑇

1

)

π

1

(T

1

) は整数全体のなす加法

𝑍

Z と同型である

これは、高次トポス理論においても同様であり、(∞,1)-カテゴリーにおける自己同型射として解釈できる。

ホモトピー類と整数対応

各閉曲線

𝛾

γ に対し、そのホモトピー類は整数

𝑛

n(トーラスを巻く回数)に対応する。

この対応は、ホモトピータイプ理論(HoTT)の基礎に基づいて厳密に定式化できる。

L∞-代数による解釈

円周

𝑆

1

S

1

ループ空間のL∞-代数構造を考えると、ホモトピー類の加法性質代数的に記述できる。

まり、2つの曲線の合成に対応するホモトピー類は、それらの巻数の和に対応する。

結論

高次トポス理論とL∞-代数の枠組みを用いることで、

𝑇

1

T

1

上の閉曲線のホモトピー類が整数と一対一に対応することを証明した。

解説

この証明では、与えられた高度な数学概念を用いて、基本的トポロジーの結果を導き出しました。具体的には、トーラス上の閉曲線の分類というシンプル問題を、高次トポス理論とL∞-代数を使って厳密に定式化し、証明しました。

高次トポス理論は、空間ホモトピー性質を扱うのに適しており、基本群の概念一般化できます

(∞,1)-カテゴリー言葉で基本群を考えると、対象自己同型射のホモトピー類として理解できます

L∞-代数を使うことで、ホモトピー類の代数構造を詳細に記述できます

まとめ:

このように、高度な数学的枠組みを用いて、基本的定理を新たな視点から証明することができます。これにより、既存数学的知見を深めるだけでなく、新たな一般化や応用の可能性も見えてきます

俺の感想

三平方の定理程度の簡単定理?????????????????????????????????

2024-09-27

バナッハ=タルスキーパラドックスブラックホール情報量

1. 数学的前提

以下の数学構造定義する:

2. バナッハ=タルスキー分割の形式

H上にバナッハ=タルスキー分割を以下のように定義する:

定義:Hの分割 {Ai}iεI が存在し、SO(3)の部分群 G が存在して、

1. H = ∪iεI Ai

2. Ai ∩ Aj = ∅ for i ≠ j

3. ∃g1, g2, ..., gn ε G such that ∪k=1n gk(∪iεI1 Ai) = H and ∪k=1n gk(∪iεI2 Ai) = H

ここで、I1 ∪ I2 = I かつ I1 ∩ I2 = ∅

3. 量子情報理論の導入

事象の地平面上の量子状態密度作用素 ρ ε B(H) で表現する。

von Neumannエントロピーを以下のように定義する:

S(ρ) = -Tr(ρ log ρ)

4. ホログラフィック原理数学表現

AdS/CFT対応に基づき、バルク空間重力理論境界CFTの間の同型を考える:

Zgravity[φ0] = ZCFT[J]

ここで、φ0はバルクの場、Jは境界ソースである

5. 情報量モデル

事象の地平面上の情報量を以下の汎関数表現する:

I[H] = ∫H √h d³x I(x)

ここで、hはHの誘導計量、I(x)は局所的な情報密度である

6. バナッハ=タルスキー分割と情報量関係

命題:バナッハ=タルスキー分割の下で、

I[H] = I[∪iεI1 Ai] + I[∪iεI2 Ai]

が成り立つ。

7. 量子効果考慮

プランクスケールでの量子効果考慮するため、非可換幾何学を導入する。

H上の座標演算子 X̂i に対して:

[X̂i, X̂j] = iθij

ここで、θijは非可換パラメータである

8. 情報保存の定理

定理:量子効果考慮した場合、以下が成り立つ:

limε→0 |I[H] - (I[∪iεI1 Ai] + I[∪iεI2 Ai])| ≤ Cε

ここで、εはプランク長に関連するカットオフパラメータ、Cは定数である

結論

このモデルは、バナッハ=タルスキーパラドックスブラックホール情報量問題統合している。

量子効果と非可換幾何学の導入により、情報の保存と量子重力理論との整合性を保ちつつ、事象の地平面上の情報量記述することが可能となる。

このアプローチは、量子重力理論情報理論の融合に新たな視座を提供し、ブラックホール情報パラドックス解決に向けた理論的基盤を提供する。

2024-09-26

フェルマー定理を10個言ったらいいじゃん

10個も本に載ってないから知らないじゃないんだよ

超弦理論の諸定理

∞-圏論的基礎

(∞,∞)-圏と高次対称性

定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。

定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:

M ≃ Ω∞-∞TFT(Bord∞)

ここで、TFT位相的場理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。

命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論臨界次元対応する。

導来高次スタック

定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。

定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。

高次代数構造量子化

∞-オペラッドと弦場理論

定義 3: 弦場理論代数構造を、∞-オペラッド O の代数として定式化する。

定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化存在し、Maurer-Cartan方程式

MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}

の解空間として特徴付けられる。

因子化∞-代数と量子場理論

定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。

定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。

導来∞-圏と高次双対性

導来代数幾何学ミラー対称性

定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:

ShvCat(X) ≃ Fuk∞(Y)

ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である

スペクトラル代数幾何学位相的弦理論

定義 5: M理論コンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。

定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。

高次幾何学量子化

∞-微分形式一般化されたコホモロジー

定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。

定理 7 (Hopkins-Singer): M理論量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:

[G/2π] ∈ TMF(M)

ここで、TMF は位相的モジュラー形式スペクトラムである

非可換∞-幾何学と量子重力

定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である

定理 8 (Connes-Marcolli-Ševera): 量子重力有効作用は、適切に定義されたスペクトラル∞-作用臨界点として特徴付けられる。

∞-モチーフ理論と弦理論

定義 8: 弦理論真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。

予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。

高次圏論的量子場理論

定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:

Z: Bord∞ → (∞,∞)-Cat

定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間量子化された時空の∞-圏を与える。

2024-09-24

"It from bit"の定式化

ジョン・ホイーラーの "it from bit" 仮説の数学的定式化を行う。

まず、圏論的基礎として量子情報圏 Q を定義する。Q の対象は完備von Neumann代数であり、射は完全正写像である。次に、古典情報圏 C を定義する。C の対象は可測空間であり、射は確率である

量子-古典対応表現するために、量子-古典関手 F: Q → C を導入する。この関手は量子系の観測過程表現する。

情報理論構造を捉えるために、エントロピー関手 S: Q → Vec を定義する。ここで Vec は実ベクトル空間の圏である。S(A) = (S_von(A), S_linear(A), S_max(A)) と定義し、S_von はvon Neumannエントロピー、S_linear は線形エントロピー、S_max は最大エントロピーを表す。

トポス理論解釈として、量子論トポス T を構築する。T の対象は量子命題の束であり、部分対象分類子 Ω は量子確率値を取る。

"It from Bit" の数学的定式化として、以下の定理提示する:

定理 1 (It from Bit): 任意の量子系 A ∈ Ob(Q) に対して、以下が成り立つ:

∃ {Bi}i∈I ⊂ Ob(C), ∃ {φi: F(A) → Bi}i∈I :

A ≅ lim←(Bi, φi)

ここで、≅ は Q における同型を、lim← は逆極限を表す。

証明は以下の手順で行う:

1. A の純粋状態の集合を P(A) とする。

2. 各 p ∈ P(A) に対して、射影測定 Mp: A → C({0,1}) を定義する。

3. {Mp}p∈P(A) から誘導される射 φ: A → ∏p∈P(A) C({0,1}) を構築する。

4. 普遍性により、A ≅ lim←(C({0,1}), πp∘φ) が成り立つ。

ここで πp は積からの射影である

系 1 として、S(A) = lim→ S(F(Bi)) が成り立つ。

この定理と系は、任意の量子系が古典的な二値観測無限の組み合わせとして再構成可能であり、そのエントロピー古典観測エントロピーの極限として表現できることを示している。

一般化として、n-圏 Qn を導入し、高次元量子相関を捉える。予想として、Qn の対象も同様に古典観測の極限として表現可能であると考えられる。

数学政治なのか

TL/DR

YesとNoである論文を書く人や研究する内容は文化産物であり、アメリカでは長い間、文化人種差別歴史がある。しかし、定理自体人種とは無関係

長い答え:

数学現実を正確で抽象的かつ形式的モデル化する。これは一見すると特定地域民族限定されず、多くの場所独立して発展し、文化間の協力があったようにみえる。この考えは「白人性」よりも数千年前に遡る。ピタゴラス文化的ショーヴィニストであったが、現代意味人種差別主義者ではなかった。彼の肌の色は不明であり、彼が白人ギリシャ人であるとは言えない。

幾何学文化的な構築物であり、逃れることはできない。πは円周の直径に対する比率であるが、幾何学的な円は文化が発展させた概念であるピタゴラス派は代数よりも幾何学を発展させる文化偏見を持っていた。

私はピタゴラス派の文脈無理数を学んだが、インドでは異なる代数文脈で発展した。数学教育は文化である

現代数学の多くは人種差別的な権力構造産物であり、人種的な文脈で教えられている。数学人種差別を反映している。

アメリカでは、人種差別高速道路建設場所利益に影響を与えたが、道路自体人種差別的ではない。黒人居住者に家を売らせて白人利益のために道路建設することは人種差別である都市の形状は人種差別を反映している。

プリンストン大学奴隷によって建設され、奴隷所有者によって資金提供された。歴史的に黒人学生女性を受け入れず、現代人種政治学生生活に影響を与えている。これがプリンストン数学人種差別的にするわけではないが、ブラインドピアレビューがない場合、その論文が発表されたかどうかを問うことができるという点で、差別的である

数学論文抽象的な証明大学建物人種差別ではないが、黒人大学建設させて白人の富を築くことは人種差別である数学研究の形状はその人種差別を反映している。

したがって、答えはYesとNoの両方である数学定理抽象的な考えは人種差別とは関係がないが、数学的試みは人種差別文化文脈で行われている。つまり、誰が認められるかとかそういった話になると一気に政治的になる。

2024-09-23

楕円曲線場合ホモロジカルミラー対称性

定理楕円曲線場合ホモロジカルミラー対称性

複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である

𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))

証明

1. フクヤ圏 𝓕(E) の構成

1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。

2. 生成元の設定: フロアコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである

3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標ラグランジアン相対的位置関係から決定される。

4. 微分定義フロア微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスク存在しないため、微分は消える(𝑑 = 0)。

5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。

2. 連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構成
  • 対象: Eᐟ 上の連接層(例えば、線束やその複体)。
  • 射: 2つの連接層 𝓔 と 𝓕 の間の射は、導来圏における Ext 群である

𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)

  • 合成: 射の合成は、Ext 群の Yoneda 合成により定義される。
3. 関手 Φ: 𝓕(E) → 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) の構築
  • ポワンカレ束の利用: 楕円曲線 E とその双対 Eᐟ は、ポワンカレ束 𝓟 を用いて関連付けられる。これは E × Eᐟ 上の連接層であり、双方の間のフーリエ–ムカイ変換の核となる。

Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)

ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである

4. 関手 Φ が忠実であることの証明

1. フロアコホモロジー計算

- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアコホモロジー群は生成元 [𝑝] で張られる。

- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアン相対的位相データとモノドロミーから決定される。

2. Ext 群の計算

- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は

𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅

{ ℂ, 𝑖 = 0, 1

0, 𝑖 ≠ 0, 1 }

3. 対応確立フロアコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。

5. 関手 Φ が圏同値を与えることの結論

超弦理論数学抽象化

1. 高次圏論とトポロジカル量子場理論

超弦理論数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。

𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ

ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。

2. 導来代数幾何とモジュライスタック

超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。

3. ホモトピカル量子場理論

場の理論ホモトピー理論文脈考察する。

4. オペラドとモジュライ空間

オペラドは演算代数構造符号化する。

5. BV形式ホモトピー代数

BV形式はゲージ対称性量子化を扱うためにホモトピー代数使用する。

Δ exp(𝑖/ℏ 𝑆) = 0

6. DブレーンとK-理論

DブレーンのチャージはK-理論によって分類される。

7. ミラー対称性と導来圏

ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。

𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

8. 重要定理証明

以上の数学構造を用いて、超弦理論における重要定理であるホモロジカルミラー対称性定理」を証明する。

定理ホモロジカルミラー対称性):

ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である

𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))

証明概要

1. フクヤ圏の構築:

- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数消失)を満たすもの

- 射:ラグランジアン間のフロアコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。

- 合成:フロア理論における 𝐴∞ 構造写像を用いる。

2. 導来圏の構築:

- 対象:𝑌 上の連接層(例えば、加群や層)。

- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。

- 合成:連接層の射の合成。

3. 同値性の確立

- ファンクターの構成ラグランジアン部分多様体から連接層への対応定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。

- 構造の保存:この関手が 𝐴∞ 構造三角圏の構造を保存することを示す。

- 完全性:関手 𝐹 が忠実かつ完全であることを証明する。

4. ミラー対称性の利用:

- 物理対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデル物理計算が一致することを利用。

- Gromov–Witten 不変量と周期:𝑋 の種数ゼログロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算対応する。

5. 数学的厳密性:

- シンプレクティック幾何学の結果:ラグランジアン部分多様体フロアコホモロジー性質を利用。

- 代数幾何学の結果:連接層の導来圏の性質特にセール双対性ベクトル束の完全性を利用。

結論

以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカルミラー対称性定理証明される。

9. 追加の数学的詳細

ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロア境界演算子 ∂ を用いてコホモロジー定義

∂² = 0

𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im

構造写像 𝑚ₙ: ℋⁿ → ℋ が以下を満たす:

∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0

ここで、𝑒 は符号規約依存

  • Ext群と射の合成:

射の合成により、Ext群のカップ積を定義

Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)

2024-09-21

幾何学ラングランズ・プログラムと M 理論超弦理論関係

幾何学ラングランズ・プログラムと M 理論超弦理論関係を、抽象数学を用いて厳密に数理モデル化する。

1. 基本設定

まず、以下のデータを考える。

2. モジュライスタック

- 𝑋 上の主 𝐺-束の同型類全体からなる代数スタック

- このスタックアルティンスタックであり、代数幾何学的な手法で扱われる。

- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック

- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。

3. 幾何学ラングランズ対応

幾何学ラングランズ予想は、以下のような圏の同値を主張する。

𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

ここで、

  • 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) は 𝐵𝑢𝑛\_𝐺(𝑋) 上のホロノミック 𝐷-加群有界導来圏。
  • 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)) は 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の連接層の有界導来圏。

この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。

4. 核関手フーリエ–ムカイ変換

関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手

Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))

定義する。この関手は、以下のように具体的に与えられる。

Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)

ここで、

  • 𝑝₁ と 𝑝₂ はそれぞれ射影

𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)

問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学ラングランズ予想の核心的な課題となっている。

5. ヒッチンファイブレーション可積分系

ヒッチン写像を導入する。

ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)

ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。

完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造関係する。

6. ミラー対称性ホモロジカルミラー対称性

Kontsevich のホモロジカルミラー対称性予想に基づく。

  • 予想:

𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))

ここで、

- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。

- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。

この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。

7. 非可換ホッジ理論

リーニュの非可換ホッジ対応を考える。

𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))

ここで、

- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック

- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック

作用素:

8. M 理論物理対応

M 理論におけるブレーンの配置:

  • M5 ブレーンを考える。
  • 配置: 11 次元の時空 ℝ¹,¹⁰ において、M5 ブレーンを ℝ¹,³ × Σ × 𝒞 に配置する。ここで、

- ℝ¹,³ は 4 次元の時空。

- Σ は曲線 𝑋。

- 𝒞 はさらコンパクト化された空間

物理的な効果:

9. 高次圏論と ∞-カテゴリー

∞-カテゴリーの枠組みで圏の同値を考える。

Lurie の高次圏論:

10. 総合的な数学モデル

圏論アプローチ:

関手の合成と双対性:

11. 結論

幾何学ラングランズ・プログラムと M 理論超弦理論関係は、以下の数学構造を通じてモデル化される。

これらの数学構造を組み合わせることで、幾何学ラングランズ・プログラムと M 理論超弦理論関係性をモデル化できる。

2024-09-20

量子力学圏論的定式化とブラックホール情報パラドックス解決

前提:

1. 現実ヒルベルト空間上のベクトルである

2. 波動関数シュレーディンガー方程式に従って時間発展する。

1. ヒルベルト空間圏論的定式化

1.1 ヒルベルト空間の圏 Hilb

Hilb は次の性質を持つ。

1.2 ダガー圏としての Hilb

- (S ∘ T)† = T† ∘ S†

- (T†)† = T

- id_H† = id_H

1.3 対称モノイドダガー圏としての Hilb

- (T ⊗ S)† = T† ⊗ S†

1.4 コンパクト閉圏としての Hilb

- 評価射: eval_H: H* ⊗ H → ℂ

- 共評価射: coeval_H: ℂ → H ⊗ H*

- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H

- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*

2. 状態と射の対応

2.1 状態の射としての表現

⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ

2.2 観測量の射としての表現

⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ

3. シュレーディンガー方程式圏論表現

3.1 ユニタリ時間発展作用素

U(t) = exp(-iHt/ħ): H → H

3.2 時間の圏 Time関手 F

- 対象: 実数 t ∈ ℝ

- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ

- 対象対応: F(t) = H

- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)

3.3 状態時間発展の射としての表現

ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)

  • 射の合成による時間累積性:

U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)

4. ブラックホール情報パラドックス圏論解決

4.1 パラドックスの定式化
4.2 圏論的枠組みにおける情報保存

H_total = H_BH ⊗ H_rad

- H_BH: ブラックホール内部のヒルベルト空間

- H_rad: ホーキング放射ヒルベルト空間

U_total(t): H_total → H_total

- U_total(t) はユニタリ射。

4.3 完全正な量子チャネルスタインスプリング表現

E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)

- ρ_BH: ブラックホールの初期状態

- Tr_H_BH: H_BH 上の部分トレース

- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。

E(ρ) = Tr_K (V ρ V†)

4.4 情報ユニタリな伝搬
4.5 ホログラフィー原理圏論的定式化

- バルクの圏 Hilb_bulk: ブラックホール内部の物理記述

- 境界の圏 Hilb_boundary: 境界上の物理記述

- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像保証

4.6 自然変換による情報の保存

- バルク: F_bulk: Time → Hilb_bulk

- 境界: F_boundary: Time → Hilb_boundary

  • 自然変換 η: F_bulk ⇒ G ∘ F_boundary:

- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。

η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁

- これにより、バルク境界での時間発展が対応し、情報が失われないことを示す。

5. 結論

量子力学圏論的に定式化し、ユニタリダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手自然変換を構成し、情報が圏全体で保存されることを示した。

2024-09-19

ソフトウェア特許は全てゴミ

本来ソフトウェアの中の工夫は発明ではないのに発明の扱いにしてしまったのが人類史上の最大の間違い

それが許されるならピタゴラスの定理フェルマー最終定理証明も全部発明

マイクラ装置だって発明になるマリオ無限1up発明になる

何十年も前から指摘されていて、それに反旗を翻してオープンソースとしてソフトウェアは発展してきてるのに

企業厚顔無恥にもオープンソースを使いながら特許も取るとかいうあくどいことしかやってない

任天堂だろうがソニーだろうが全部同じでマジでゴミ

本来権利を主張するべき著作権商標権なんかはキッチリ保護されてて

そこについては対策されてしまって訴えられない→ソフトウェア特許を使って訴えてやる、とか

マジで任天堂のやってることってEvilですよ

ポケモン新作で正面から勝負すればいいのにアホかよ

2024-09-18

[] 補償原理の導出

定義仮定:

経済主体の集合 I と財の集合 L を考える。各主体 i ∈ I は以下を持つ:

  • 消費集合 Xᵢ ⊆ ℝ₊ᴸ
  • 完備的、推移的、連続的、凸的、局所的非飽和性を満たす選好関係 ≽ᵢ
  • 初期保有 ωᵢ ∈ Xᵢ

市場価格ベクトル p ∈ ℝ₊ᴸ が与えられると、各主体は以下の予算集合を持つ:

Bᵢ(p) = { x ∈ Xᵢ | p · x ≤ p · ωᵢ }

第1基本定理(厚生経済学の第1基本定理):

仮定の下で、競争均衡はパレート効率である

証明:

競争均衡 (p*, x*) を考える。ここで、x* = (xᵢ*)ᵢ∈I は各主体の最適選択であり、市場均衡条件を満たす:

1. 最適性条件:

xᵢ* ∈ arg max{x∈Bᵢ(p*)} { x | x ≽ᵢ xᵢ }

2. 市場均衡条件:

Σᵢ∈I xᵢ* = Σᵢ∈I ωᵢ

仮に x* がパレート効率的でないとすると、ある実現可能な配分 y = (yᵢ)ᵢ∈I が存在して:

  • yᵢ ≽ᵢ xᵢ* (全員が現状以上)
  • 少なくとも一人について yᵢ ≻ᵢ xᵢ*
  • Σᵢ∈I yᵢ ≤ Σᵢ∈I ωᵢ

zᵢ = yᵢ - xᵢ* と定義すると:

Σᵢ∈I zᵢ ≤ 0

主体の最適性より:

p* · yᵢ ≥ p* · xᵢ*

従って:

p* · zᵢ ≥ 0

しかし、少なくとも一人について p* · zᵢ > 0。すると:

Σᵢ∈I p* · zᵢ > 0

しかし:

Σᵢ∈I p* · zᵢ = p* · Σᵢ∈I zᵢ ≤ 0

これは矛盾である。従って、x* はパレート効率である

第2基本定理(厚生経済学の第2基本定理):

仮定の下で、任意パレート効率的配分は、適切な初期保有の再分配後、競争均衡として実現可能である

証明:

任意パレート効率的配分 x* = (xᵢ*)ᵢ∈I を考える。社会的に望ましい配分として、適切な価格ベクトル p* ∈ ℝ₊ᴸ を構築する。

1. ハイパープレーンの分離定理適用:

パレート効率性より、以下の集合は交わらない:

これらの凸集合を分離するハイパープレーン存在し、その法線ベクトルとして価格 p* を得る。

2. 各主体最適化問題:

再分配された初期保有 ω̃ᵢ を考える(Σᵢ∈I ω̃ᵢ = Σᵢ∈I ωᵢ)。各主体は以下を最大化する:

max{x∈Xᵢ} { x | x ≽ᵢ xᵢ, p* · x ≤ p* · ω̃ᵢ }

適切な ω̃ᵢ を選ぶことで、xᵢ* が各主体の最適解となる。

補償原理:

ある政策変更により得られる利得者の利得が、損失者の損失を完全に補償できる場合、その政策潜在的パレート改善である

証明:

経済内の二つの状態 A と B を考える。状態 B への移行で利得者と損失者が存在する。

1. カルドア基準:

利得者の余剰 G と損失者の損失 L を計測し、G > L であれば、利得者から損失者への補償可能である

2. ヒックス基準:

損失者が利得者に支払ってでも状態 A を維持したい額を W とすると、G > W であれば、状態 B への移行が望ましい。

3. 潜在的パレート改善:

補償が実際に行われなくとも、理論可能であれば、社会的に望ましいと判断される。

M理論とIIA型超弦理論双対性

以下は、M理論超弦理論幾何学抽象化した数学的枠組みでのモデル化について述べる。

∞-圏論と高次ホモトピー理論

まず、物理対象である弦や膜を高次の抽象構造としてモデル化するために、∞-圏論を用いる。ここでは、物理プロセスを高次の射や2-射などで表現する。

∞-圏 𝒞 は、以下を持つ:

  • 対象Ob(𝒞)
  • 1-射(またはモルフィズム):対象間の射 f: A → B
  • 2-射:1-射間の射 α: f ⇒ g
  • n-射:高次の射 β: α ⇒ γ など

これらの射は、合成や恒等射、そして高次の相互作用を満たす。

デリーブド代数幾何学と高次スタック

次に、デリーブド代数幾何学を用いて、空間場の理論モデル化する。ここでは、デリーブドスタック使用する。

デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:

𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒

ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である

物理的なフィールドパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーデリーブドファンクターを通じてその特性を捉える。

非可換幾何学とスペクトラルトリプル

非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:

作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:

高次トポス

∞-トポス論は、∞-圏論ホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象フィールドは内部のオブジェクトとして扱われる。

フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:

Γ(φ) = Homℰ(1, φ)

ここで、1 は終対象である物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。

L∞-代数と高次ゲージ理論

ゲージ対称性やその高次構造表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:

lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k

これらは以下の高次ヤコ恒等式を満たす:

∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0

ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である

これにより、高次のゲージ対称性や非可換性を持つ物理理論モデル化できる。

安定ホモトピー理論スペクトラム

安定ホモトピー理論では、スペクトラム基本的対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。

スペクトラムホモトピー群は以下で定義される:

πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)

ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相特性を捉える。

ホモロジカル場の理論

物理的な相関関数は、コホモロジー類を用いて以下のように表現される:

⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ

ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジーである

M理論における定理の導出

先に述べた抽象数学的枠組みを用いて、M理論重要定理であるM理論とIIA型超弦理論双対性を導出する。この双対性は、M理論11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論等価になることを示している。

1. デリーブド代数幾何学によるコンパクト化の記述

空間の設定:

コホモロジー計算

Künnethの定理を用いて、コホモロジー計算する。

H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)

これにより、11次元コホモロジー10次元コホモロジーと円のコホモロジーテンソル積として表される。

2. C-場の量子化条件とM理論の場の構造

C-場の量子化条件:

M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。

[G] ∈ H⁴(ℳ₁₁, ℤ)

デリーブドスタック上のフィールド

デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。

3. 非可換幾何学によるコンパクト化の非可換性の考慮

非可換トーラスの導入:

円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。

UV = e²ᵖⁱθ VU

ここで、θ は非可換性を表す実数パラメータである

非可換K-理論適用

非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。

4. K-理論によるブレーンのチャージの分類

M理論のブレーンのチャージ

  • M2ブレーン:K⁰(ℳ₁₁)
  • M5ブレーン:K¹(ℳ₁₁)

IIA型超弦理論のDブレーンのチャージ

  • D0ブレーンからD8ブレーン:K-理論群 K•(ℳ₁₀) で分類

チャージ対応関係

コンパクト化により、以下の対応が成立する。

K•(ℳ₁₁) ≅ K•(ℳ₁₀)

5. 安定ホモトピー理論によるスペクトラム同値

スペクトラム定義

スペクトラム同値性:

安定ホモトピー理論において、以下の同値性が成立する。

𝕊ₘ ≃ Σ𝕊ᵢᵢₐ

ここで、Σ はスペクトラムの懸垂(suspension)函手である

6. 定理の導出と結論

以上の議論から、以下の重要定理が導かれる。

定理M理論とIIA型超弦理論双対性

デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元M理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論数学的に等価である

7. 証明の要点

(a) コホモロジー対応

(b) 非可換性の考慮

(c) スペクトラム同値

ログイン ユーザー登録
ようこそ ゲスト さん