はてなキーワード: 幾何とは
そもそもマンションは消費財ではないので消費者物価指数に入っていないから築年数とか以前の話だぞ。消費財としてはあくまで住居サービスというものであって、それは家賃や帰属家賃という形で測られている。
あと、ヘドニック調整が嫌いで文句をつける人は昔から絶えないが、では十数年前の機種のSoCやメモリ(と、それで動くレベルのアプリだけ使用可能)だったり、あるいはその時代のカメラだったりのレベルに戻って不自由を感じないかといえばそんなわけもなく、品質が上がった分の調整は必要。そして、iPhoneだけ採り上げて議論すると勘違いしやすいが、本来はもっと幅広い品目についてヘドニック調整を行わなければならないのに、実際には調整幅が実態より小さかったりあるいは技術的理由でまったく行われていなかったりするので、品質調整の問題トータルではむしろ消費者物価指数の上昇率を実際より上振れさせてしまっている。「CPIの上方バイアス」って単語は聞いたことがあるかもしれないが、あれはラスパイレス指数だからというよりもこっちの品質調整の問題の方が原因として大きい(しかもパーシェ指数と幾何平均を取って概ね対処できるラスパイレス指数バイアスより対処も難しい)。
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係を、抽象数学を用いて厳密に数理モデル化する。
まず、以下のデータを考える。
- このスタックはアルティンスタックであり、代数幾何学的な手法で扱われる。
- 𝑋 上の ᴸ𝐺-局所系(つまり、平坦 ᴸ𝐺-束)の同型類全体のスタック。
- これは、基本群 π₁(𝑋) の表現のモジュライスタックと同一視できる。
幾何学的ラングランズ予想は、以下のような圏の同値を主張する。
𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) ≃ 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
ここで、
この同値は、フーリエ–ムカイ変換に類似した核関手を用いて構成されると予想されている。
核関手 𝒫 を 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) 上の適切な対象として定義し、それにより関手
Φ\_𝒫: 𝐷ᵇ\_ℎₒₗ(𝐵𝑢𝑛\_𝐺(𝑋)) → 𝐷ᵇ\_𝑐ₒₕ(𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋))
Φ\_𝒫(ℱ) = 𝑅𝑝₂ₓ(𝑝₁∗ ℱ ⊗ᴸ 𝒫)
ここで、
𝑝₁: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐵𝑢𝑛\_𝐺(𝑋), 𝑝₂: 𝐵𝑢𝑛\_𝐺(𝑋) × 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋) → 𝐿𝑜𝑐\_{ᴸ𝐺}(𝑋)
問題点は、この核 𝒫 を具体的に構成することが難しく、これが幾何学的ラングランズ予想の核心的な課題となっている。
ヒッチン写像を導入する。
ℎ: ℳₕ(𝐺) → 𝒜 = ⨁ᵢ₌₁ʳ 𝐻⁰(𝑋, Ωₓᶦᵈⁱ)
ここで、ℳₕ(𝐺) は 𝐺-ヒッグス束のモジュライ空間、ᶦᵈⁱ は 𝐺 の基本不変式の次数。
完全可積分系: ヒッチンファイブレーション ℎ は完全可積分系を定義し、そのリウヴィル可積分性がモジュライ空間のシンプレクティック構造と関係する。
Kontsevich のホモロジカルミラー対称性予想に基づく。
𝐷ᵇ\_𝑐ₒₕ(ℳₕ(𝐺)) ≃ 𝐷ᵖⁱ 𝐹ᵘₖ(ℳₕ(ᴸ𝐺))
ここで、
- 𝐷ᵇ\_𝑐ₒₕ は連接層の有界導来圏。
- 𝐷ᵖⁱ 𝐹ᵘₖ はフカヤ圏のコンパクト対象からなる導来圏。
この同値は、ヒッチンファイブレーションを介してシンプレクティック幾何と複素幾何の間の双対性を示唆する。
𝐷ᵇ(𝐹ₗₐₜ\_𝐺(𝑋)) ≃ 𝐷ᵇ(𝐻ᵢ₉₉ₛ\_𝐺(𝑋))
ここで、
- 𝐹ₗₐₜ\_𝐺(𝑋) は 𝑋 上の平坦 𝐺-束のモジュライスタック。
- 𝐻ᵢ₉₉ₛ\_𝐺(𝑋) は 𝑋 上の 𝐺-ヒッグス束のモジュライスタック。
作用素:
M 理論におけるブレーンの配置:
- ℝ¹,³ は 4 次元の時空。
- Σ は曲線 𝑋。
Lurie の高次圏論:
幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係は、以下の数学的構造を通じてモデル化される。
これらの数学的構造を組み合わせることで、幾何学的ラングランズ・プログラムと M 理論・超弦理論の関係性をモデル化できる。
M を11次元コンパクト多様体、G を複素簡約代数群、L(G) をそのラングランズ双対群とする。
D^b(M) を M 上のコヒーレント層の導来圏、D^b(Bun_G(M)) を M 上の G-主束のモジュライ空間 Bun_G(M) 上のコヒーレント層の導来圏とする。
以下の圏同値を構築する:
Φ: D^b(D_M) ≃ D^b(Coh(Bun_L(G)(M)))
M 上の Chern-Simons 理論の量子化を考える。その分配関数 Z(M,k) を以下のように定義する:
ここで、CS(A) は Chern-Simons 作用である。
F: D^b(Bun_G(M)) → Mod(MF_q)
を構築する。ここで、Mod(MF_q) は有限体 F_q 上のモチーフの圏である。
G の既約表現 ρ に対し、以下の等式を予想する:
L(s,ρ,M) = det(1 - q^(-s)F|H*(M,V_ρ))^(-1)
ここで、V_ρ は ρ に付随する M 上のローカル系である。
以下の図式が可換であることを示す:
D^b(D_M) --Φ--> D^b(Coh(Bun_L(G)(M))) | | | | F F | | V V Mod(MF_q) -----≃----> Mod(MF_q)
M の次元を一般の n に拡張し、Voevodsky のモチーフ理論を用いて、上記の構成を高次元化する。
以上の構成により、M理論の幾何学的構造とラングランズ・プログラムの数論的側面の関連を見た。このモデルは、導来圏論、量子場の理論、モチーフ理論を統一的に扱う枠組みを提供するものである。
今後の課題として、この理論的枠組みの厳密な数学的基礎付けと、具体的な計算可能な例の構築が挙げられる。特に、Langlands スペクトラル分解との関連や、Grothendieck の標準予想との整合性の検証が重要である。
数学の世界には無限の可能性が広がっている。無数のパターンやそれらに隠された法則。
三人の応用数学者が、自分の全霊魂を賭けてある難問に挑んでいる。
ドミニク・シュタイナーはベルリンの研究室で、論理的な一連の方程式を前にしていた。彼は数学が絶対的な真理を解き明かすものであり、そこには一切の曖昧さが許されないと信じていた。数式は純粋であり、その解は厳密でなければならない。
その日、彼のデスクに届いた論文は、アレクサンドラ・イワノフからのものだった。彼女はロシアの数学者で、非線形ダイナミクスを用いた社会変革のモデルを研究している。ドミニクはその論文に目を通し、数式の整合性や論理性を冷静に評価した。
パリでの国際数学会議で、ドミニクは自身の研究成果を発表した。壇上に立ち、彼は無駄のない言葉で論理の精緻さを示す数式の力を説明した。彼の発表は冷静であり、数学的な厳密さに基づいていた。聴衆は静かに耳を傾け、数学の普遍性に魅了されているようだった。
発表が終わると、アレクサンドラ・イワノフが手を挙げた。彼女は冷静に質問を始めた。
「シュタイナー教授、あなたの理論は数理的に整合していますが、社会の複雑な相互作用を完全に捉えているでしょうか?非線形ダイナミクスを適用することで、社会変革の予測可能性が高まると考えられませんか?」
ドミニクは一瞬考え、冷静に答えた。
「イワノフ教授、非線形方程式は確かに複雑系の挙動を捉えるには有効かもしれませんが、その安定性が保証されていない場合、結果は信頼できません。数学の役割は、ランダム性を排除し、真理を探求することです。過剰に変数を導入することで、モデルの頑健性が失われるリスクがあります。」
「そのリスクは承知していますが、社会変革は非線形な過程であり、そこにこそ数学の力を発揮する余地があると考えます。複雑系の理論に基づくシミュレーションによって、より現実に即したモデルが構築できるのではないでしょうか?」
ドミニクは彼女の意見に静かに耳を傾けた後、言葉を選びながら答えた。
「社会変革が非線形であるという見解は理解できますが、モデルの複雑性を高めることが必ずしも精度の向上を意味するわけではありません。安定した予測を行うためには、シンプルで確定的なモデルが必要です。」
「シュタイナー教授、イワノフ教授、両方のアプローチにはそれぞれの強みがありますが、私は数学的美学の観点から異なる提案をさせていただきます。リーマン幾何や複素解析の観点から、数式が持つ内在的な対称性やエレガンスは、解が収束するかどうかの指標となる可能性があります。特に、複素平面上での調和関数の性質を用いることで、社会変革のような複雑なシステムでも、特定のパターンや法則が見出せるかもしれません。」
「タカハシ教授、あなたの視点は興味深いものです。調和関数の性質が社会変革にどのように適用できるのか、具体的な数理モデルを提示していただけますか?」
「例えば、調和関数を用いたポテンシャル理論に基づくモデルは、複雑系の中でも安定した解を導き出せる可能性があります。リーマン面上での解析を通じて、社会的変革の潜在的なエネルギーを視覚化し、それがどのように発展するかを追跡することができます。エネルギーの収束点が見えるなら、それが社会の安定点を示すかもしれません。」
「そのアプローチは確かに興味深いですが、実際の社会では多数の変数が絡み合い、単純なポテンシャル理論だけでは捉えきれない動きもあります。その点を考慮すると、複雑系のシミュレーションとの併用が必要ではないでしょうか?」
「もちろんです。私が提案するのは、調和関数を基盤とした解析が複雑系のシミュレーションと補完し合う可能性です。単独のアプローチでは見落とされがちなパターンや収束性を明確にするための道具として捉えていただければと思います。」
三人は、お互いに目配せをすると別れを惜しむかのようににこやかに近付き合い、お互い談笑しながら出口へと歩みを進めた。
一方その日のパリは過去にないほどの快晴で、会議場の外ではどういうわけか、太陽の下で穏やかにほほえむ人々で溢れ返っていた。
・学問、幅広い知識、精神の修養などを通して得られる創造的活力や心の豊かさ、物事に対する理解力。また、その手段としての学問・芸術・宗教などの精神活動。
・教養とは,一般に人格的な生活を向上させるための知・情・意の修練,つまり,たんなる学殖多識,専門家的職業生活のほかに一定の文化理想に応じた精神的能力の全面的開発,洗練を意味する
・実利主義的,立身出世的,政治的な明治の〈修養〉概念に対して,大正の〈教養〉には内面的,精神的,非ないし反政治的,人格主義的等々のニュアンスが強く帯びさせられているわけである。
・人間の精神を豊かにし、高等円満な人格を養い育てていく努力、およびその成果をさす。とかく専門的な知識や特定の職業に限定されやすいわれわれの精神を、広く学問、芸術、宗教などに接して全面的に発達させ、全体的、調和的人間になることが教養人の理想である
・精神文化一般に対する理解と知識をもち,人間的諸能力が全体的,調和的に発達している状態。
・教養教育を意味するLiberal Artsは、近代大学のルーツといわれる中世ヨーロッパ大学においては、聖書を読み解くための能力(論理、修辞、文法)と神の摂理による自然現象を理解するための能力(天文、算術、幾何、音楽)から構成されていました。つまり教養とは、キリスト教世界において「神につながる」力を意味したのです。
・生きていく上で価値判断の基準となる自分なりのものさしを持っている人のことを教養があると表現しています。
・自分の力で「いかに生きるか」を考える人々が出現しました。彼らは古典語(ラテン語)を駆使して「いかに生きるか」に思いを巡らしました。教養とは古典語に精通することでもありました。
https://kotobank.jp/word/%E6%95%99%E9%A4%8A-53100
https://www.cshe.nagoya-u.ac.jp/nu_stips/sub2_colum_2.html
色々定義はあるが教養は単なる知識に留まらず、文化理解や精神的な豊かさなどの非実利的な意味合いを含む定義が多くある。
これらの意味合いを含める定義に従うなら、知識量あっても知識マウント取ったりする人間は人格に問題があるので教養がないし、知識量等は平均レベルでも精神的に円熟してる人は教養があると言えよう。
情報理論を幾何学的に定式化するには、微分幾何学、特にリーマン幾何学とアフィン接続の理論を使う。
1. 統計多様体: 統計多様体𝓜は、パラメータ空間Θ上の確率分布p(x|θ)の集合として定義され、滑らかな多様体の構造を持つ。ここで、θ = (θ¹, θ², ..., θⁿ)は局所座標系である。
2. フィッシャー情報計量: 統計多様体𝓜上のリーマン計量gは、フィッシャー情報計量として与えられる。これは、次のように定義される二次形式である:
gᵢⱼ(θ) = ∫ (∂ log p(x|θ)/∂θⁱ)(∂ log p(x|θ)/∂θʲ) p(x|θ) dx
1. アフィン接続: 統計多様体には、双対のアフィン接続∇と∇*が定義される。これらは、次の条件を満たす:
- 接続∇は、∇g = 0を満たし、統計多様体の平行移動を定義する。
- 双対接続∇*は、∇*g = 0を満たし、∇に対する双対接続である。
2. 双対平坦性: 統計多様体が双対平坦であるとは、∇と∇*の両方の曲率テンソルがゼロであることを意味する。これにより、𝓜は双対平坦な多様体となる。
1. エントロピー: 確率分布p(x|θ)のエントロピーH(θ)は、次のように定義される:
H(θ) = -∫ p(x|θ) log p(x|θ) dx
2. KLダイバージェンス: 二つの確率分布p(x|θ)とq(x|θ')の間のKLダイバージェンスは、次のように定義される:
Dₖₗ(p ∥ q) = ∫ p(x|θ) log (p(x|θ)/q(x|θ')) dx
KLダイバージェンスは、統計多様体上の測地距離として解釈されることがある。
3. 測地線: フィッシャー情報計量に基づく測地線は、統計多様体上で最小のKLダイバージェンスを持つ経路を表す。測地線γ(t)は、次の変分問題の解として得られる:
δ ∫₀¹ √(gᵧ(t)(ẏ(t), ẏ(t))) dt = 0
ここで、ẏ(t)はtに関するγ(t)の微分を表す。
連続時間モデルにおいて、最適投資戦略は Hamilton-Jacobi-Bellman (HJB) 方程式を解くことで導出される。
投資家の効用関数を U(x) とし、リスク資産の価格過程を幾何ブラウン運動
このとき、最適な投資比率 π*(t,x) は以下の HJB 方程式を解くことで得られる:
0 = sup_π { U'(x)(rx + (μ-r)πx) + ½U''(x)σ²π²x² + V_t }
ここで、V(t,x) は価値関数、r は無リスク金利である。
完備市場を仮定し、リスク中立測度 Q のもとでのオプション価格を導出する。
ヨーロピアン・コール・オプションの価格 C(t,S) は以下で与えられる:
C(t,S) = e^(-r(T-t)) E_Q[(S_T - K)⁺ | F_t]
ここで、K は行使価格、T は満期、F_t は時刻 t までの情報集合である。
Black-Scholes モデルの下では、この期待値は解析的に計算可能であり、以下の公式が得られる:
C(t,S) = SN(d₁) - Ke^(-r(T-t))N(d₂)
ここで、N(・) は標準正規分布の累積分布関数、d₁ と d₂ は所定の公式で与えられる。
Heston モデルなどの確率ボラティリティモデルでは、ボラティリティ自体が確率過程に従うと仮定する:
ここで、W¹ₜ と W²ₜ は相関 ρ を持つウィナー過程である。
このモデルの下でのオプション価格は、特性関数法を用いて数値的に計算される。
大口注文の最適執行を考える。Almgren-Chriss モデルでは、以下の最適化問題を解く:
min_x E[C(x)] + λVar[C(x)]
ここで、C(x) は執行コスト、x は執行戦略、λ はリスク回避度である。
市場インパクトを線形と仮定すると、最適執行戦略は時間に関して指数関数的に減少する形となる。
極値理論を用いて、稀な事象のリスクを評価する。一般化極値分布 (GEV) を用いて、最大損失の分布をモデル化する:
F(x; μ, σ, ξ) = exp{-(1 + ξ((x-μ)/σ))^(-1/ξ)}
ここで、μ は位置パラメータ、σ はスケールパラメータ、ξ は形状パラメータである。
これにより、通常の VaR や ES では捉えきれないテールリスクを評価できる。
確率制御理論を用いて、時間変動する市場環境下での最適資産配分を導出する。
dXₜ = μ(Xₜ,αₜ)dt + σ(Xₜ,αₜ)dWₜ
sup_α E[∫₀ᵀ f(Xₜ,αₜ)dt + g(X_T)]
Ωを仮に100次元の実ベクトル空間R^100とする。各次元は特定の神経活動パターンに対応する。
Ω = {ω ∈ R^100 | ||ω||₂ ≤ 1}
ここで||・||₂はユークリッドノルムである。τは標準的なユークリッド位相とする。
O : Ω → Ω
O(ω) = Aω / ||Aω||₂
ここでAは100×100の実行列で、||Aω||₂ ≠ 0とする。
S[ω] = -∫Ω p(x) log p(x) dx
S[O(ω)] ≤ S[ω] + log(det(AA^T))
dω/dt = F(ω) + G(ω, O)
F(ω) = -αω + β tanh(Wω)
G(ω, O) = γ(O(ω) - ω)
ここでα, β, γは正の定数、Wは100×100の重み行列、tanhは要素ごとの双曲線正接関数である。
g_ij(ω) = E[(∂log p(x|ω)/∂ω_i)(∂log p(x|ω)/∂ω_j)]
ここでE[・]は期待値、p(x|ω)は状態ωでの条件付き確率密度関数である。
ψ(x) = √(p(x)) exp(iθ(x))
Φ[ω] = min_π (I(X;Y) - I(X_π;Y_π))
ここでI(X;Y)は相互情報量、πは可能な分割、X_πとY_πは分割後の変数である。
勾配降下法を用いて定式化する:
ω_new = ω_old - η ∇L(ω_old, O)
L(ω, O) = ||O(ω) - ω_target||₂²
G = (V, E)
V = {v_1, ..., v_100}
E ⊆ V × V
各頂点v_iはω_iに対応し、辺(v_i, v_j)はω_iからω_jへの因果関係を表す。
このモデルはPythonとNumPyを用いて以下のように実装できる:
import numpy as np from scipy.stats import entropy from scipy.integrate import odeint import matplotlib.pyplot as plt class ConsciousnessModel: def __init__(self, dim=100): self.dim = dim self.omega = np.random.rand(dim) self.omega /= np.linalg.norm(self.omega) self.A = np.random.rand(dim, dim) self.W = np.random.rand(dim, dim) self.alpha = 0.1 self.beta = 1.0 self.gamma = 0.5 self.eta = 0.01 def observe(self, omega): result = self.A @ omega return result / np.linalg.norm(result) def entropy(self, omega): p = np.abs(omega) / np.sum(np.abs(omega)) return entropy(p) def dynamics(self, omega, t): F = -self.alpha * omega + self.beta * np.tanh(self.W @ omega) G = self.gamma * (self.observe(omega) - omega) return F + G def update(self, target): def loss(o): return np.linalg.norm(self.observe(o) - target)**2 grad = np.zeros_like(self.omega) epsilon = 1e-8 for i in range(self.dim): e = np.zeros(self.dim) e[i] = epsilon grad[i] = (loss(self.omega + e) - loss(self.omega - e)) / (2 * epsilon) self.omega -= self.eta * grad self.omega /= np.linalg.norm(self.omega) def integrated_information(self, omega): def mutual_info(x, y): p_x = np.abs(x) / np.sum(np.abs(x)) p_y = np.abs(y) / np.sum(np.abs(y)) p_xy = np.abs(np.concatenate([x, y])) / np.sum(np.abs(np.concatenate([x, y]))) return entropy(p_x) + entropy(p_y) - entropy(p_xy) total_info = mutual_info(omega[:self.dim//2], omega[self.dim//2:]) min_info = float('inf') for i in range(1, self.dim): partition_info = mutual_info(omega[:i], omega[i:]) min_info = min(min_info, partition_info) return total_info - min_info def causal_structure(self): threshold = 0.1 return (np.abs(self.W) > threshold).astype(int) def run_simulation(self, steps=1000, dt=0.01): t = np.linspace(0, steps*dt, steps) solution = odeint(self.dynamics, self.omega, t) self.omega = solution[-1] self.omega /= np.linalg.norm(self.omega) return solution def quantum_state(self): phase = np.random.rand(self.dim) * 2 * np.pi return np.sqrt(np.abs(self.omega)) * np.exp(1j * phase) # モデルの使用例 model = ConsciousnessModel(dim=100) # シミュレーション実行 trajectory = model.run_simulation(steps=10000, dt=0.01) # 最終状態の表示 print("Final state:", model.omega) # エントロピーの計算 print("Entropy:", model.entropy(model.omega)) # 統合情報量の計算 phi = model.integrated_information(model.omega) print("Integrated Information:", phi) # 因果構造の取得 causal_matrix = model.causal_structure() print("Causal Structure:") print(causal_matrix) # 観測の実行 observed_state = model.observe(model.omega) print("Observed state:", observed_state) # 学習の実行 target_state = np.random.rand(model.dim) target_state /= np.linalg.norm(target_state) model.update(target_state) print("Updated state:", model.omega) # 量子状態の生成 quantum_state = model.quantum_state() print("Quantum state:", quantum_state) # 時間発展の可視化 plt.figure(figsize=(12, 6)) plt.plot(trajectory[:, :5]) # 最初の5次元のみプロット plt.title("Time Evolution of Consciousness State") plt.xlabel("Time Step") plt.ylabel("State Value") plt.legend([f"Dim {i+1}" for i in range(5)]) plt.show()
Ω = (X, τ)
O : Ω → Ω'
S : Ω → ℝ
S[ω] = -∫ f(ω(x)) dx
S[O(ω)] ≤ S[ω]
dω/dt = F[ω] + G[ω, O]
g_ij(ω) = ∂²S[ω] / (∂ω_i ∂ω_j)
Q : Ω → H
Φ[ω] = min_π I[ω : π(ω)]
ω_new = ω_old + η ∇_g L[ω, O]
ここで∇_gは情報計量gに関する勾配、Lは適切な損失汎関数である。
G = (V, E)
このモデルは、意識の特性についての仮説である。「観測能力」と「エントロピー減少」を一般化された形で捉えている。具体的な実装や解釈は、この抽象モデルの特殊化として導出可能。
課題としては、このモデルの具体化、実験可能な予測の導出、そして計算機上での効率的な実装が挙げられる。さらに、この枠組みを用いて、意識の創発、自己意識、クオリアなどの問題にも着手できる。
逆に言えば発想力を持ってる人には当たり前の思考過程を言語化せず省略してる場合が大学レベルの学問の文章には無数にあり得るということなんだよね…
あとは中学算数のひねくれたパズルみたいな初等幾何問題も数千年前に一つの真理として立派な考察対象だったわけで…
逆になんで「現代では受験問題として問われるようになった」発想力で解く問題に要するような発想力やテクニックは軽んじられるようになったのだろうと思う。
これらのことも世界をよりよく理解するのにあるに越したことはないのではないかなあ
少なくとも数千年前は世界の理解に必要な価値ある真理のピースの一つとしてまじめにそれらを解くことに取り組まれてたわけで、解けることはより世界を理解してるかのように認識されていたであろうわけで。
数学における自然数みたいなものの定義、が形成する概念を、たとえば数式の3という表記が指示する概念が、我々が日常見てる、3個のりんごやひもとその3倍のひもが並べられてる光景や、時計の長針と短針が三目盛り分ずれてるみたいなのから得られる共通の世間一般に3とよばれる性質と同じだと思うのは、すでに「解釈」なんだよな。
数学において3、「0の次の次の次の数」と自然言語では説明されるような概念はただの操作対象である記号列でしかない。
その記号列にどんな意味を持たせるかは、「物理現象の中に見いだされる3という性質」以外にもあるかもしれないし、ないかもしれない。
「直線と呼ばれるものの定義」についても、幾何的なイメージで解釈するのも、イデアル?だかで解釈するのも勝手。日常生活の個数や順番などとして見出される3の性質も、それと同程度に解釈でしかない。
トポロジーなんかが典型的だと思う。あれが示す証明が、幾何的なイメージとしての立法を内包する何かに対する性質を示してると考えるのは解釈でしかない。
そうすると自然言語で認識してる3や△というのは、たとえそのもっとも理想的なものを持ち出しても、数学の定義にとっては一段レイヤーの低いイデアということになるかもしれない。
数学の定義に対して、複数の3や三角形というイデアが解釈として結びつくなら、数学の定義はメタイデアか。
その前は、定義もまたイデアとするなら、3や三角形は物理的イデア、と物理的を冠して存在する領域を区別すればいいのかなとか思った。
言いたいことはよくわかった。ちなみに文章は全部変なところは感じなかった(笑)
そのうえで、それはその芸術家崩れがおかしいんじゃねーのって思うわけよ。もちろんおかしいといくら思ったところで憎まれっ子世に憚るだから、そういうのが嫌なら自分が避けるための対策こそ大事なのはわかる。
でも上手い絵の基準は単純に言語化できるものじゃないのよね。もちろんパースは射影幾何の範疇だし骨格的におかしいとうのも生物学と統計学で完全に定量的な評価が可能そうなので要素によりけりだけど。
ただそれは裏を返せば、なぜそれが変かの説明が理論的に説明不可能な要素もあるということで、たとえばそれを変とみるにはある種の感覚が必要なら、そもそもなぜその「感覚」はそうじゃない人の感覚より上位にあるのか。その理論的根拠はどこにあるのか。
単に昔の偉い人が持ってた感覚だからみたいな権威主義的なことなのか。そうすると、場合によっては(定量化できる要素については変なところがないものを楽しんでるという前提が必要かもしれないが)、「変だと思わない。いい絵だ」という人(たち)にたいして「変だ。お前らが知識がないだけだ」と否定するのは、知識という権威を使った民主的な評価のちゃぶ台返しにすら感じるから、俺は好きじゃないなあと。
それに感覚を研ぎ澄ませた結果変だと思うようになるなら、それすなわち楽しめる作品が減る(変と思いつつ楽しめる器用な人でない限り)リスクを負うわけで、手間をかけてまでそういう感覚を磨く価値があるかどうかは、よっぽど粘着増田が嫌いな人とかじゃなきゃ微妙だよね。
感覚を研ぎ澄ませて「上手い絵の良さがわかるようになる」のと、いまのままで、誰かにとって変だと思う絵が楽しめることのどちらが幸せなのか…
既に投稿してあるのがもう一つあるのでこっちも見といてくれるとうれしい↓
アルバート アインシュタインが一般相対性理論で説明したように、大規模なスケールでは重力が時空構造の曲線のように見えるように、重力を自然の量子法則に適合させるという非常に困難な仕事を担っている。
どういうわけか、時空の湾曲は、重力エネルギーの量子化単位、つまり重力子として知られる粒子の集合的な影響として現れる。
しかし、重力子がどのように相互作用するかを単純に計算しようとすると、無意味な無限が生じ、重力についてより深く理解する必要があることがわかる。
M理論は、宇宙のあらゆるものの理論の有力な候補としてよく言われる。
しかし、それについての経験的証拠や、重力が他の基本的な力とどのように統合されるかについての代替アイデアはない。
この理論は、重力子、電子、光子、その他すべてのものは点粒子ではなく、さまざまな方法で振動する、目に見えないほど小さなエネルギーの「糸」であると仮定していることは有名である。
1980 年代半ばに弦理論への関心が高まり、物理学者は弦理論が量子化重力の数学的に一貫した記述を与えることに気づいた。
しかし、ひも理論の既知の 5 つのバージョンはすべて「摂動的」であり、一部の体制では破綻することを意味していた。
理論家は、2 つの重力子の紐が高エネルギーで衝突したときに何が起こるかを計算できるが、ブラック ホールを形成するほど極端な重力子の合流がある場合には計算できない。
その後、1995 年に物理学者のエドワード・ウィッテンがすべての弦理論の母を発見した。
彼は、摂動弦理論が一貫した非摂動理論に適合することを示すさまざまな兆候を発見し、これを M 理論と名付けた。
M 理論は、異なる物理的文脈におけるそれぞれの弦理論に似ているが、それ自体には、すべての理論の主要な要件である有効性の領域に制限がない。
2 年後、物理学者のフアン・マルダセナが AdS/CFT 対応関係を発見したとき、別の研究が爆発的に起こった。
これは、反ド シッター (AdS) 空間と呼ばれる時空領域の重力を粒子の量子記述 (と呼ばれる) に結び付けるホログラムのような関係である「共形場理論」がその領域の境界上を動き回る。
AdS/CFT は、AdS 時空幾何形状の特殊なケースに対する M 理論の完全な定義を提供する。
AdS 時空幾何形状には負のエネルギーが注入されており、私たちの宇宙とは異なる方法で曲がる。
このような想像上の世界では、物理学者は、原理的にはブラック ホールの形成と蒸発を含む、あらゆるエネルギーでのプロセスを記述することができる。
この基本的な一連の出来事により、ほとんどの専門家は M 理論を有力な TOE 候補とみなすようになった。
ただし、私たちのような宇宙におけるその正確な定義は依然として不明である。
それが想定する文字列、およびこれらの文字列が動き回ると思われる余分なカールした空間次元は、大型ハドロン衝突型加速器のような実験が解決できるものよりも 1,000 万分の 1 倍小さい。
そして、宇宙ひもや超対称性など、見られたかもしれない理論の巨視的な兆候のいくつかは現れていない。
一方、他の TOE アイデアにはさまざまな技術的問題があるとみなされており、重力子-重力子散乱計算など、弦理論による数学的一貫性の実証を再現したものはまだない。
遠い競争相手には、漸近的安全重力、E8 理論、非可換幾何学、因果フェルミオン系などがある。
たとえば、漸近的に安全な重力は、無限に悩まされる計算を解決するために、より小さなスケールに進むにつれて重力の強さが変化する可能性があることを示唆している。