「標準模型」を含む日記 RSS

はてなキーワード: 標準模型とは

2024-08-28

抽象代数学の魅力とは

抽象代数学は、代数的構造を探求する数学の一分野である

その核心は、具体的な数や図形から離れ、演算性質のものに着目することにある。

群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元存在し、各元に逆元が存在するという公理を満たす代数的構造である

この抽象的な定義により、整数加法群(Z,+)や置換群S_nなど、一見異なる対象統一的に扱うことが可能となる。

群論の発展は、ガロア理論を生み出し、5次以上の代数方程式代数的解法が存在しないことの証明につながった。

環論では、可換環を中心に、イデアルや素イデアル概念が導入され、代数幾何学との深い関連が明らかになった。

体論は、代数的閉体や有限体の理論を通じて、ガロア理論暗号理論の基礎を提供している。

これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。

例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造標準模型対称性記述している。

また、抽象代数学概念圏論によってさら一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。

圏論視点は、代数位相幾何学代数的K理論などの現代数学の発展に不可欠な役割果たしている。

抽象代数学の魅力は、その普遍性と深遠さにある。

単純な公理から出発し、複雑な数学構造を解明していく過程は、純粋数学醍醐味であり、同時に自然界の根本法則理解する上で重要洞察を与えてくれるのである

2024-06-10

1/r^2について: M理論に至るまでの過程

  • -GM_{1}M_{2}/r^2
  • q_{1}q_{2}/r^2

といった式について、素粒子では後者支配し、天体では前者が支配する。

これが電子原子核が見つかると問題となった。

距離における強い力のために、電子原子核螺旋状に落ち込むが、明らかに事実と違う。

この問題解決のために量子力学が考案され、

  • [p, x] = -iħ

というハイゼンベルグ関係式に従う。このため、r=0となることはなくなり、問題回避される。

これが、粒子の量子力学というものである

多様体上の楕円型作用素理論全体が、この物理理論に対する数学対応物で、群の表現論も近い関係にある。

しか特殊相対性理論考慮に入れるとさらに難しくなる。ハイゼンベルグ公式と同様の不確定性関係が場に対して適用される必要がある。

電磁場場合には、光子というように、新しい種類の粒子として観測される。

電子のような粒子もどうように場の量子であると再解釈されなければならない。電磁波も、量子を生成消滅できる。

こうして、物質反物質の生成消滅という予想が導かれる。

数学的には、場の量子論無限次元空間上の積分やその上の楕円型作用素関係する。

量子力学は1/r^2に対する問題の解消のために考え出されたが、特殊相対性理論を組み込むと、この問題自動解決するわけではないことがわかった。

といった発展をしてきたが、場の量子論幾何学の間の関係性が認められるようになった。

では重力考慮するとどうなるのか。一見すれば1/r^2の別な例を重力提供しているように見える。

しかし、例えばマクスウェル方程式線型方程式だが、重力場に対するアインシュタイン方程式非線形である

また不確定性関係重力における1/r^2を扱うには十分ではない。

物理学者は、点粒子を「弦」に置き換えることにより、量子重力問題が克服できるのではないかと試した。

量子論効果プランク定数に比例するが、弦理論効果は、弦の大きさを定めるα'という定数に比例する。

もし弦理論が正しいなら、α'という定数は、プランク定数と同じぐらい基本的定数ということになる。

ħやα'に関する変形は幾何学における新しいアイデア関係する。ħに関する変形はよく知られているが、α'に関する変形はまだ未発展である

弦のない物理学は、複素数のない数学のようなものと言える。

理論には5つのバリエーションがある。

  • IIA型、IIB型においては、弦は閉じた弦で、向きづけられ、電気的に絶縁体。
  • SO(32)あるいはE_8×E_8というゲージ群を持つヘテロ型の弦理論2つにおいては、弦は閉じた弦で、向きづけられ、電気的に超伝導体。
  • I型という理論については、弦は向き付けられておらず、電気的に絶縁体で、端点を持ちえる。端点を持つ場合は端点に電荷を持てる。

これらの理論は、それぞれが重力予言し、非可換ゲージ対称性を持ち、超対称性を持つとされる。

α'に関する変形に関連する新しい幾何学があるが、理解のために2次元の共形場理論を使うことができる。

ひとつは、ミラー対称性である。α'がゼロでない場合同値となるような2つの時空の間の関係を表す。

またトポロジー変化という現象がある。

まずt→∞という極限では、幾何学における古典的アイデアが良い近似となり、Xという時空が観測される。

t→-∞という極限でも同様に時空Yが観測される。

そして大きな正の値であるtと大きな負の値であるtのどこかで、古典幾何学が良い近似とはならない領域を通って補間が行われている。

α'とħが両方0でないときに起こり得ることがなんなのかについては、5つの理論が一つの理論の異なる極限である、と説明ができるかもしれないというのがM理論である

2024-06-09

理論物理学最前線を探る

自然界の法則の探索は、一般相対性理論量子力学の発展の中で行われてきた。

相対性理論アインシュタイン理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。

相対性理論においては、時空はアインシュタイン方程式に従って力学的に発展することになる。

すなわち初期条件入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学問題になるわけである

相対性理論天体宇宙全体の振る舞いの理解のために使われるのに対し、量子力学原子分子原子構成する粒子の理解のために用いられる。

粒子の量子論(非相対論量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。

しか量子論深淵は場の量子論にあり、量子力学特殊相対性理論を組み合わせようとする試みからまれた。

場の量子論は、重力を除き、物理学法則について人類が知っているほどんどの事柄網羅している。

反物質理論に始まり原子のより精密な記述素粒子物理学標準模型加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。

数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題研究されている。

その例が、4次元多様体ドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体ミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。

こういった断片的な研究はあるが、問題間の関係性の理解が困難である

このような関係性の研究において「ラングランズ・プログラム」が果たす役割に期待される。

2021-07-16

anond:20210716132612

超対称性理論によって予測されている超対称性粒子は、現実存在するのか?観測できるのか?また、標準模型を超える未発見物理現象はあるのか?

じゃあ物理でこれ証明してよ

2021-05-28

anond:20210527224731

それは陰謀論ではないだろ

仮説と陰謀論を同じに考えるのは頭が悪すぎるぞ

物理学だろうと哲学だろうと陰謀論だろうと個人的意見だろうと、データによって確かな検証がされていないならそれはすべて「仮説」と言えるのでは。

それと、人によって認識が異なるということと、自分が間違っている可能性があるということを考慮すれば自然謙虚になるはずで、他人様に「頭が悪い」なんて言えないでしょうね。

宇宙存在すると仮説を立てた場合数学的に矛盾が起きていないならば、多宇宙存在するという考え方は誤りである可能性が低いということでしかない

宇宙宗教本質的に同じだとSabine Hossenfelderは言ってるよ。検証可能な仮説ではないからね。数学矛盾が起きない物理理論なんてものは無数に考えることができるので、データ存在しない限りは誤りである可能性について一切述べることはできない。素粒子物理学標準模型だってモデルの微調整」の問題が指摘されているし。

だれも多宇宙絶対存在するとは考えていない、ただ検証しているだけだ

検証不可能なことを検証しているとはどういうことでしょうか。

2008-10-06

[][]

諸行無常 - Wikipedia

諸行無常(しょぎょうむじょう、sabbe-saMkhaaraa-aniccaa)とは、

仏教用語で、この世の現実存在はすべて、すがたも本質も常に流動変化するものであり、

一瞬といえども存在同一性を保持することができないことをいう。

陽子 - Wikipedia

標準模型によれば、陽子寿命無限であるとされているが、

大統一理論によると、非常に長い時間をかけて崩壊することが予言されている。

これを陽子崩壊(ようしほうかい)という。


[無功徳][むくどく][本来無一物]

変わらぬ友を求める者は墓へ行け!

[友人][友達][友情]大学時代から20年に亘って親友

知人・友人・友達・親友・心友・莫逆の友・友情

 
ログイン ユーザー登録
ようこそ ゲスト さん