はてなキーワード: 標準模型とは
その核心は、具体的な数や図形から離れ、演算の性質そのものに着目することにある。
群論を例に取ると、群とは集合G上の二項演算・が結合法則を満たし、単位元が存在し、各元に逆元が存在するという公理を満たす代数的構造である。
この抽象的な定義により、整数の加法群(Z,+)や置換群S_nなど、一見異なる対象を統一的に扱うことが可能となる。
群論の発展は、ガロア理論を生み出し、5次以上の代数方程式の代数的解法が存在しないことの証明につながった。
環論では、可換環を中心に、イデアルや素イデアルの概念が導入され、代数幾何学との深い関連が明らかになった。
体論は、代数的閉体や有限体の理論を通じて、ガロア理論や暗号理論の基礎を提供している。
これらの理論は、単に抽象的な概念の探求にとどまらず、数論や代数幾何学、さらには理論物理学や量子情報理論など、広範な分野に応用されている。
例えば、リー群論は素粒子物理学の基礎理論となっており、SU(3) × SU(2) × U(1)という群構造が標準模型の対称性を記述している。
また、抽象代数学の概念は圏論によってさらに一般化され、函手や自然変換といった概念を通じて、数学の異なる分野間の深い関連性が明らかにされている。
圏論的視点は、代数的位相幾何学や代数的K理論などの現代数学の発展に不可欠な役割を果たしている。
単純な公理から出発し、複雑な数学的構造を解明していく過程は、純粋数学の醍醐味であり、同時に自然界の根本法則を理解する上で重要な洞察を与えてくれるのである。
といった式について、素粒子では後者が支配し、天体では前者が支配する。
近距離における強い力のために、電子は原子核に螺旋状に落ち込むが、明らかに事実と違う。
というハイゼンベルグの関係式に従う。このため、r=0となることはなくなり、問題は回避される。
多様体上の楕円型作用素の理論全体が、この物理理論に対する数学的対応物で、群の表現論も近い関係にある。
しかし特殊相対性理論を考慮に入れるとさらに難しくなる。ハイゼンベルグの公式と同様の不確定性関係が場に対して適用される必要がある。
電磁場の場合には、光子というように、新しい種類の粒子として観測される。
電子のような粒子もどうように場の量子であると再解釈されなければならない。電磁波も、量子を生成消滅できる。
数学的には、場の量子論は無限次元空間上の積分やその上の楕円型作用素と関係する。
量子力学は1/r^2に対する問題の解消のために考え出されたが、特殊相対性理論を組み込むと、この問題を自動解決するわけではないことがわかった。
といった発展をしてきたが、場の量子論と幾何学の間の関係性が認められるようになった。
では重力を考慮するとどうなるのか。一見すれば1/r^2の別な例を重力が提供しているように見える。
しかし、例えばマクスウェルの方程式は線型方程式だが、重力場に対するアインシュタインの方程式は非線形である。
また不確定性関係は重力における1/r^2を扱うには十分ではない。
物理学者は、点粒子を「弦」に置き換えることにより、量子重力の問題が克服できるのではないかと試した。
量子論の効果はプランク定数に比例するが、弦理論の効果は、弦の大きさを定めるα'という定数に比例する。
もし弦理論が正しいなら、α'という定数は、プランク定数と同じぐらい基本的定数ということになる。
ħやα'に関する変形は幾何学における新しいアイデアに関係する。ħに関する変形はよく知られているが、α'に関する変形はまだ未発展である。
これらの理論は、それぞれが重力を予言し、非可換ゲージ対称性を持ち、超対称性を持つとされる。
α'に関する変形に関連する新しい幾何学があるが、理解のために2次元の共形場理論を使うことができる。
ひとつは、ミラー対称性である。α'がゼロでない場合に同値となるような2つの時空の間の関係を表す。
まずt→∞という極限では、幾何学における古典的アイデアが良い近似となり、Xという時空が観測される。
t→-∞という極限でも同様に時空Yが観測される。
そして大きな正の値であるtと大きな負の値であるtのどこかで、古典幾何学が良い近似とはならない領域を通って補間が行われている。
α'とħが両方0でないときに起こり得ることがなんなのかについては、5つの弦理論が一つの理論の異なる極限である、と説明ができるかもしれないというのがM理論である。
自然界の法則の探索は、一般相対性理論と量子力学の発展の中で行われてきた。
相対性理論はアインシュタインの理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。
相対性理論においては、時空はアインシュタインの方程式に従って力学的に発展することになる。
すなわち初期条件が入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学の問題になるわけである。
相対性理論が天体や宇宙全体の振る舞いの理解のために使われるのに対し、量子力学は原子や分子、原子を構成する粒子の理解のために用いられる。
粒子の量子論(非相対論的量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。
しかし量子論の深淵は場の量子論にあり、量子力学と特殊相対性理論を組み合わせようとする試みから生まれた。
場の量子論は、重力を除き、物理学の法則について人類が知っているほどんどの事柄を網羅している。
反物質理論に始まり、原子のより精密な記述、素粒子物理学の標準模型、加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。
数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題が研究されている。
その例が、4次元多様体のドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体のミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。
それは陰謀論ではないだろ
仮説と陰謀論を同じに考えるのは頭が悪すぎるぞ
物理学だろうと哲学だろうと陰謀論だろうと個人的な意見だろうと、データによって確かな検証がされていないならそれはすべて「仮説」と言えるのでは。
それと、人によって認識が異なるということと、自分が間違っている可能性があるということを考慮すれば自然に謙虚になるはずで、他人様に「頭が悪い」なんて言えないでしょうね。
多宇宙が存在すると仮説を立てた場合、数学的に矛盾が起きていないならば、多宇宙が存在するという考え方は誤りである可能性が低いということでしかない
多宇宙と宗教は本質的に同じだとSabine Hossenfelderは言ってるよ。検証可能な仮説ではないからね。数学的矛盾が起きない物理理論なんてものは無数に考えることができるので、データが存在しない限りは誤りである可能性について一切述べることはできない。素粒子物理学の標準模型だって「モデルの微調整」の問題が指摘されているし。