はてなキーワード: 佐藤幹夫とは
劣等感ほどは無いんだけど、
高校の同級生の天才が東大理1から東大数学科博士を出て、旧帝大で数学のポストについている。
僕は普通に社会人になって、でもコツコツと数学自体は勉強している。
数学のレベルだが、自分は一応は大学レベルの数学は理解している。
代数学は雪江先生とかハーツホーン、幾何学は多様体と数え上げ幾何学、解析はルベーグ、関数解析とか。
佐藤幹夫先生の数学が好き。工学の微妙な数学を数学に昇華してくれてて溜飲が下がるっていうか。
適当な修士とか博士論文をコツコツ読んでるけど、それすら難しい。
普通は数学科の人は25くらいには研究レベルには到達してるんでしょうね。
僕は人より時間がかかるみたいです。
数学や物理を大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。
地球儀を切り開いて、平面にしようとしても、2次元の世界地図はできません。
という定理。
3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子のリーマンが、「じゃあ、4次元から3次元とか、もっと高次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論(空間が曲がる)の記述へと繋がる。
2位 論理回路
信号機とかのプログラムを電気回路で表現するにはどうすればいいのか?ということの理論。
4ビットの信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計が必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単に電気回路を設計することができる。
物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。
なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動や位置が後」という理論。
4位 再起構文
再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。
いまだに原理を理解できていないけど、結果的にそうなってる。不思議すぎる。
なんと、光の半分くらいまでしか画像を読み取ることができない。
光以外にも、エコー(超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。
だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい
6位 5次以上の方程式の解の公式(代数的な表現の)はない。(ガロア理論)
これは証明をぜひ追ってみて欲しい。
実際に、これらの手法が提案されたときは数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。
量子力学とかも物理の不安定な理解が、数学的にどう不安定なのかが納得できる。