はてなキーワード: 数学者とは
Xで、最初は好きな人からフォローするけど、徐々にフォローする界隈が好きではない度合いが高まっていって、ある時点から嫌いな界隈になる
俺の場合、まず友人からフォローし、その次に海外数学者、海外物理学者、海外コンピュータサイエンティスト...
日本の数学者、日本の物理学者、日本のプログラマー、という具合に遷移していったのだけど、この時点で「ひろゆき」にたどり着いた
ひろゆきは嫌いではないのでフォローしたが、その次から「茂木」「成田」「落合」「よびのり」など、嫌な雰囲気に到達してしまったため、フォローをやめた
この時点でフォロー人数100人。世間には100人しかフォローするに値する人間がいないということか(ちなみに、科学者やプログラマーも、俺が知らない奴はフォローしていない)
君たちの文章はね、なんというか、政治厨の延長線なんだよ。なぜって?それはね、本質的に数学とは相容れない思考回路で成り立っているからさ。
数学では、厳密な定義と論理的な証明に基づいて真理を追求する。感情や主観は完全に排除されるんだ。例えば、ピタゴラスの定理は、誰が言おうと、どんな時代でも普遍的に成り立つ。
一方で、君たちの議論は、まさにその対極にある。客観的な事実よりも、主観的な解釈や感情に重きを置いている。「正しい」「間違っている」という判断も、論理的な証明ではなく、個人の価値観や信念に基づいているんだ。
さらに、数学では問題を単純化し、本質を見抜くことが重要だ。でも、君たちは逆に、単純な問題を複雑化し、本質から外れた議論を好む傾向がある。例えば、純粋に経済的な問題を、イデオロギーや歴史観と絡めて語りたがる。
そして何より、君たちは「議論すること自体」を楽しんでいるように見える。数学者にとって、議論は真理を見出すための手段に過ぎない。しかし君たちは、議論そのものを目的化し、勝ち負けにこだわる。これこそが政治厨の本質なんだ。
結局のところ、君たちの思考様式は、数学的な厳密さや客観性とは相容れないものなんだよ。そして、そういった議論を好むこと自体が、まさに政治厨そのものなんだ。
数学者の目から見れば、君たちの議論は感情的で主観的で、真理の追求からはかけ離れている。それが「政治厨の延長線」と言わざるを得ない理由さ。
数学の世界には無限の可能性が広がっている。無数のパターンやそれらに隠された法則。
三人の応用数学者が、自分の全霊魂を賭けてある難問に挑んでいる。
ドミニク・シュタイナーはベルリンの研究室で、論理的な一連の方程式を前にしていた。彼は数学が絶対的な真理を解き明かすものであり、そこには一切の曖昧さが許されないと信じていた。数式は純粋であり、その解は厳密でなければならない。
その日、彼のデスクに届いた論文は、アレクサンドラ・イワノフからのものだった。彼女はロシアの数学者で、非線形ダイナミクスを用いた社会変革のモデルを研究している。ドミニクはその論文に目を通し、数式の整合性や論理性を冷静に評価した。
パリでの国際数学会議で、ドミニクは自身の研究成果を発表した。壇上に立ち、彼は無駄のない言葉で論理の精緻さを示す数式の力を説明した。彼の発表は冷静であり、数学的な厳密さに基づいていた。聴衆は静かに耳を傾け、数学の普遍性に魅了されているようだった。
発表が終わると、アレクサンドラ・イワノフが手を挙げた。彼女は冷静に質問を始めた。
「シュタイナー教授、あなたの理論は数理的に整合していますが、社会の複雑な相互作用を完全に捉えているでしょうか?非線形ダイナミクスを適用することで、社会変革の予測可能性が高まると考えられませんか?」
ドミニクは一瞬考え、冷静に答えた。
「イワノフ教授、非線形方程式は確かに複雑系の挙動を捉えるには有効かもしれませんが、その安定性が保証されていない場合、結果は信頼できません。数学の役割は、ランダム性を排除し、真理を探求することです。過剰に変数を導入することで、モデルの頑健性が失われるリスクがあります。」
「そのリスクは承知していますが、社会変革は非線形な過程であり、そこにこそ数学の力を発揮する余地があると考えます。複雑系の理論に基づくシミュレーションによって、より現実に即したモデルが構築できるのではないでしょうか?」
ドミニクは彼女の意見に静かに耳を傾けた後、言葉を選びながら答えた。
「社会変革が非線形であるという見解は理解できますが、モデルの複雑性を高めることが必ずしも精度の向上を意味するわけではありません。安定した予測を行うためには、シンプルで確定的なモデルが必要です。」
「シュタイナー教授、イワノフ教授、両方のアプローチにはそれぞれの強みがありますが、私は数学的美学の観点から異なる提案をさせていただきます。リーマン幾何や複素解析の観点から、数式が持つ内在的な対称性やエレガンスは、解が収束するかどうかの指標となる可能性があります。特に、複素平面上での調和関数の性質を用いることで、社会変革のような複雑なシステムでも、特定のパターンや法則が見出せるかもしれません。」
「タカハシ教授、あなたの視点は興味深いものです。調和関数の性質が社会変革にどのように適用できるのか、具体的な数理モデルを提示していただけますか?」
「例えば、調和関数を用いたポテンシャル理論に基づくモデルは、複雑系の中でも安定した解を導き出せる可能性があります。リーマン面上での解析を通じて、社会的変革の潜在的なエネルギーを視覚化し、それがどのように発展するかを追跡することができます。エネルギーの収束点が見えるなら、それが社会の安定点を示すかもしれません。」
「そのアプローチは確かに興味深いですが、実際の社会では多数の変数が絡み合い、単純なポテンシャル理論だけでは捉えきれない動きもあります。その点を考慮すると、複雑系のシミュレーションとの併用が必要ではないでしょうか?」
「もちろんです。私が提案するのは、調和関数を基盤とした解析が複雑系のシミュレーションと補完し合う可能性です。単独のアプローチでは見落とされがちなパターンや収束性を明確にするための道具として捉えていただければと思います。」
三人は、お互いに目配せをすると別れを惜しむかのようににこやかに近付き合い、お互い談笑しながら出口へと歩みを進めた。
一方その日のパリは過去にないほどの快晴で、会議場の外ではどういうわけか、太陽の下で穏やかにほほえむ人々で溢れ返っていた。
都市伝説によれば、かつてアインシュタインの古典的重力理論「一般相対性理論」を理解していたのは3人だけだったと言われている。
それが真実かどうかは別として、その3人のうちの1人がダフィッド・ヒルベルトである。彼は、今日の初学者でも一般相対性理論を理解できるように、それを数学で明確かつ正確(すなわち厳密)に形式化した。
古典的なアインシュタインの重力は、時空上の擬リーマン計量のモジュライ空間上のスカラー曲率密度汎関数の積分の臨界点の研究にすぎない。
物理学の基本的な理論は数学での基本的な定式化を持つべきだと信じたことで、ヒルベルトは本質的にアインシュタインを先取りすることができた。そのため、この汎関数は現在、アインシュタイン・ヒルベルト作用汎関数と呼ばれている。
ヒルベルトは、1900年の有名なヒルベルトの問題の一環として、この一般的なアイデアを以前から提唱していた。ここでヒルベルトの第6問題は、物理学の理論の公理を見つけることを数学者に求めている。
それ以来、そのような公理化のリストが見つかっている。例えば、
物理学 | 数学 |
力学 | シンプレクティック幾何学 |
重力 | リーマン幾何学 |
ゲージ理論 | チェルン・ヴェイユ理論 |
量子力学 | 作用素代数 |
トポロジカル局所量子場理論 | モノイダル(∞,n)-カテゴリ理論 |
このリストには注目すべき2つの側面がある。一方で、数学の最高の成果が含まれており、他方で、項目が無関係で断片的に見えることだ。
学生時代、ウィリアム・ローヴィアは「合理的熱力学」と呼ばれる熱力学の公理化の提案に触れた。彼は、そのような連続体物理学の基本的な基盤は、まず微分幾何学自体の良い基盤を必要とすることに気づいた。彼の生涯の出版記録を見てみると、彼が次の壮大な計画を追求していたことがわかる。
ローヴィアは、最初の2つの項目(圏論的論理、初等トポス理論、代数理論、SDG)への画期的な貢献で有名になった。なぜか、このすべての動機である3番目の項目は広く認識されていないが、ローヴィアはこの3番目の点を継続的に強調していた。
この計画は壮大だが、現代の基準では各項目において不十分である。
現代数学は自然にトポス理論/型理論ではなく、高次トポス理論/ホモトピー型理論に基づいている。
現代の幾何学は「変数集合」(層)だけでなく、「変数ホモトピー型」、「幾何学的ホモトピー型」、「高次スタック」に関する高次幾何学である。
現代物理学は古典的連続体物理学を超えている。高エネルギー(小さな距離)では、古典物理学は量子物理学、特に量子場理論によって精緻化される。
とある高名な環境建築家(YouTubeに動画も上げている)が省エネ建築の経済的・社会福祉的合理性を説明するときに、「ちゃんと計算すれば小学生でもわかる(のに、相応の地位にいる人がいい加減なことを言うのはけしからん)」という言い回しを多用する。
いや、実際のところ、自分にとってそれは余りにも耳慣れたフレーズのため、特に気に留めるほどのものとも思っていなかったのだが、ある動画に「小学生だとか人を馬鹿にするような言い方はやめろ」とクレームがついていて驚いたのだ。
それなりに整った環境で理系教育を受けたものにならわかると思うが、「研究発表は『頭のいい小学生にならわかる』ようにせよ」というのは誰がいつ言い出したかもわからないくらいあまりにもそこら中で聞く言葉で、これを特に何かを見下したとか馬鹿にした言い方だと思う奴はいない。
何故ならば、ここで言う『頭のいい小学生』は『特に専門知識はないが理解力は深い人』を意味するのであり、具体的には『専門分野の違う他ゼミの教授陣』のことを指すからだ。
これが「人を馬鹿にした言い方」だと思う時点で驚き、非アカデミックなキャリアを詰んだ人々との文化の壁をまずは思わざるを得なかったが、よく考えるとこれこそがつまり『理系』という知性の特殊性と汎用性を表す側面なのだと思うに至った。
『小学生』と比較されると、普通の人は怒るらしい。何故か。小学生を劣った存在だと思っているからだ。
この人たちにとって『小学生』と呼ばれることは『頭が悪い』とか『未熟』とかを意味するのだろう。
しかし、理系の認識においてはそんな意味合いはほとんどないと言って良い。
理系は思考力の学問なので、「知識がなくてもわかる奴には説明すればわかる」「わからない奴、考えようとしない奴はどれだけ本を読んでもわからない」という認識が当たり前だからだ。
これらの競技が若いうちに才能を発揮できなければ辛いと言われるように、数学や物理の仕事も若いうちにできなければその後もあまり希望はない。
若さは可能性ではあってもなんら見下す要素ではないのが理系の世界だ。
さらに考えを深めてみよう。
将棋や囲碁は、ルールはシンプルだが組み合わせが複雑で、知識より思考力がいるものだというのは誰にでもわかる。
しかし数学や物理は難しい数式や抽象的な概念を覚えなければいけないから、小学生に難しい問題は理解できないはずだ。と、考える人も多いかも知れない。
だが実のところそれ自体、そんなことはないと証明されているのだ。
チューリングマシンという概念がある。イギリスの数学者アラン・チューリングの考えた計算モデルで、現在のコンピュータの元になっている。
さて、ではなぜチューリングマシンは「コンピュータの元」たりうるのか? 言い換えれば、「チューリングマシンには何ができることが保証されているのか」?
この答えが、まさに「理系の議論に『小学生にもわかる』説明を義務づけることができる理由」である。
チューリングマシンは、本来ただの計算機のアイデアではない。それは『数学自体の定義』である。
『計算とは何か』『計算できるとはどういうことか』この答えを探した結果チューリングが得たのが、『計算とはチューリングマシンで解ける問題のことである(意訳)』という、現代ではもはや計算の定義、数学の定義として認められている回答である。
計算とはチューリングマシンで解けるもののことなので、どのような数学的問題もコンピュータのプログラムとして書き、計算することができる。
コンピュータのプログラムとは、ifとgotoを伴った算数レベルの計算の連続のことなのだから、これはつまりどのような数学的問題も、深い思考力さえあれば『算数』レベルの説明に落としこんで理解できることを意味する。(方程式がなくても鶴亀算が解けるように。)
ここで必要なのは、純粋に算数程度の知識と、それを深く複雑に組み合わせる思考力だけである。
従って、理系の説明、数学的に表される定量的な議論というものは、説明者にきちんとした理解があれば必ず算数レベルの話に落とし込める。
最近は、ネットの声の大きいマナー講師たちによって「専門的なことを誰にでもわかるように説明することなんてできない」という言い訳を聞くことが多いが、少なくとも理系の問題において、定量的な議論をする限りは、『数学』は『算数』の複雑化、抽象化に過ぎないのであり、必ず噛み砕いて説明することは可能だ。
ただし、ここで聞き手に求められるのは、何をおいても『算数レベルでならしっかり理解できる知能』ということになる。
つまり『頭のいい小学生』には必ず理解させられても、算数すら苦手な『馬鹿な大人』に希望はないということである。
『小学生でもわかる』は、小学生を劣ったものと考えている言葉では決してない。しかし、それ故にこそ、小学生レベルの算数も覚束ない大多数の大人が、劣ってるどころではない論外の存在であることを突きつけてしまう厳しい言葉なのだ。使い方には気をつけなければいけない。と思った。
「百年の孤独」読んだ後にこれを読むべきってネット記事が書かれ始めていて面白い。こういうの好きで、色々なジャンルでこの類の記事を読んで探求してる。だけど時々「いや確かに自分は素人なんすけど、もっと段階踏んだ後に読むべき、玄人向けのやつも読んで背伸びしたいんすよ!」と思う時がある。多分、そういうやつここにもいるだろ?そういう同類に捧ぐ。
エドゥムンド・パス・ソルダン/ 服部綾乃&石川隆介「チューリングの妄想」(ボリビア)
今、ボリビア、クーデター未遂があったとかで混乱してるらしいけど、そんな国を描いたテクノスリラー小説がこれ。“チューリング”ってある通り暗号やらインターネットやらサイバー犯罪やら色々先端技術出てきて、いわゆる魔術的リアリズムとかそういうの全然ない。つーか作者自身、ラテンアメリカ文学といえば魔術的リアリズムとかざけんなや!とか思ってこれ書いたとか書いてないとか。クソ分厚いけどオモロイよ。
ここで紹介するなかで一番新しいやつ。これも魔術的リアリズムとかそういうのじゃなくて、科学のとんでもない功罪の数々についてフリッツ・ハーバーとかシュヴァルツシルトとか、あと数学者のグロタンディークの生涯から描いてるめっちゃ禍々しい本。あれだよ、ノーランの「オッペンハイマー」と並べられるべき本、本内にオッペンハイマー出てきた気もする。物理学者の全卓樹がこの本の翻訳はよ出せはよ出せとか言ってて、冷静なフォロワーが「この前もう翻訳出版されてましたよ」とか言われてたのが印象的だった。
ラテンアメリカはラテンアメリカでも南米じゃなくて中米の文学は日本でもあんま読めない。そん中でもこの人はエルサルバドル出身の作家で中米についてずっと書いてる。この本はグアテマラの先住民虐殺を綴った報告書を読んでる主人公がその残虐さ陰惨さにどんどん正気を失っていくって本で、読んでてただただ気が滅入る。トーマス・ベルンハルトとか好きな陰気な人にオススメ。
セルヒオ・ブランコ「テーバイ・ランド」/仮屋浩子(ウルグアイ)
これはラテンアメリカ文学好きにも知られてないやつで、何故なら戯曲だから。何かウルグアイっていう結構マイナーな国の戯曲が日本で演劇化されて、その勢いで本として出版されたっぽい。こういうのいいよな。内容はめちゃ小賢しい。ギリシャ神話、作者自身が登場するメタい設定、そんで現実と虚構が混ざりあう、みたいな。でも小賢しく技巧凝らしてるからこそ面白い物語もあんだよなあ。
クラリッセ・リスペクトル/高橋邦彦&ナヲエ・タケイ・ダ・ジルバ「G・Hの受難/家族の絆」(ブラジル)
リスペクトルな、俺「星の時」読んで泣いたよ。何でって、ここまで複雑な設定を使って無垢な登場人物を痛めつける作者はサディストのクズ人間で、小説読んでここまで怒りを覚えたことマジでないよ。でも「G・Hの受難」は凄かった。何かずっとゴキブリについて語ってて、そのゴキブリの死骸を通じて瞑想して悟りに至るみたいな。は?ってなるよな。ガチで意味不明で、そういうのって文学の醍醐味だわ。
エドゥアルド・ハルフォン/松本健二「ポーランドのボクサー」(グアテマラ)
これは何か、主人公が恋人の乳首噛んでたことしか覚えてねえや。でも読んで色々印象に残った本だとか、全く印象に残らなかった本とかは数多いなかで、“主人公が恋人の乳首噛んでた”みたいに局所的に1つだけ何か覚えてるみたいな本はそう多くない。いや何で読んだんだっけな、白水社のエクス・リブリスシリーズから出てたからかな、それも忘れた。でも確かに主人公が恋人の乳首噛んでたのは覚えてんだよ。不思議だな。
IUT信者は「IUT否定派と擁護派が対立している」と必死に思い込みたがっているみたいだが、
実際は「IUT否定派」なんてものは匿名掲示板などを除けばほぼいない。ほとんどの人は単に無関心なのだ。大半の数学者が、数学基礎論の込み入った議論に関心がないのと同じだ。
著書を残さなかったが、弟子や信者がその思想を書き留めて後世に伝えた思想家の例として、以下のような人物が挙げられます。
ソクラテスは著作を残さず、対話を通じて思想を伝えました。彼の教えは弟子のプラトンによって書き留められ、プラトンの対話篇を通じて後世に伝えられています。
ギリシアの数学者であり哲学者であるピタゴラスも自身で著書を残さず、彼の教えは弟子たちによって伝えられました。彼の思想はピタゴラス教団によって広められました。
仏教の開祖である釈迦は自身で著書を残さず、彼の教えは弟子たちによってまとめられ、仏典(経典)として伝えられました。
孔子自身は書物を残していませんが、彼の言行録である『論語』は弟子たちによってまとめられました。
老子は道家の思想家で、彼の教えは弟子たちによってまとめられ、『道徳経』として伝えられました。ただし、老子自身が書いた可能性も否定されていません。
イエス自身は何も書き残していませんが、彼の教えや生涯については弟子たちによって書かれた新約聖書に記録されています。
イスラム教の創始者であるムハンマドは自ら書を残さず、彼の教えは弟子たちによってまとめられ、『クルアーン』として伝えられました。
これらの人物は直接著作を残さず、弟子や信者が彼らの教えをまとめ、後世に伝えました。そのため、彼らの思想は間接的に伝えられています。
当該発言を庇うつもりはまったくないけど、事実関係が違うのはどうかと思うので。
『「そろそろ薬で男性の性欲をコントロールすべきでは」准教授の訴え』へのコメント
この人、人文系じゃないよ。専門はタイの政治、つまり政治学者であって、政治学は社会科学系なので、文系ではあっても人文系ではない(文系は、文学・哲学・歴史学などの人文系と、政治学・社会学・経済学などの社会科学系におおまかに分類される。もちろん境界的な研究領域はあるけど、下で書いたようにこの人は直球の社会科学系)。
Synodosでも色々タイ情勢に関する記事を書いてらして、普通に面白いのでみんな読むといいと思う(正直、これらの記事を通して認知してた人だったので、twitterでの発言を見て「Oh......」となってしまう感じ。作者と作品は……別だから……!)>https://synodos.jp/expert/toyamaayako/
筑波大の「人文社会系」というのは、人文系と社会科学系の教員が所属する集団という意味であって(cf. https://www.jinsha.tsukuba.ac.jp/about)、そこに所属しているからといって人文系の研究者とは限らない。同大学の「数理物質系」に所属しているからといって物理学者とは限らない(数学者や化学者かもしれない)のと同じ。
大学も貢献してますよ感出すためだけにジェンダー系のポスト設けてあげてるのにどんどんヘイト集めるからかなり煙たいだろうなぁ
上述の通り、専門はタイの憲法とかクーデターとかそういう話なので、ジェンダー系のポストで採用されたわけじゃなく東南アジア研究とか比較政治学とかの枠で採用されてる人。大学のウェブサイトに載ってるご本人の研究キーワードが「憲法改正と民主化、政治の司法化、汚職取締と民主化、新しい強権的政治リーダーの登場と体制変動、政軍関係、立憲君主制の国際比較研究」だからね。ゴリッゴリの政治学者ですわ。ジェンダー研究は門外漢やろ……
学者が専門外のことでいっぷう変わった発言をするの、みんな心当たりのあることだと思う。統計力学の分野で名を上げた大阪大学大学院理学研究科物理学専攻の教授が財務省についてどんな発言をなさっているか、皆さんはよくご存知でしょう。
学者は同時に市民でもあるので、学問の追求者として厳格であっても市民としては偏見まみれみたいな人は大勢いるんすよね。ほら、国際日本文化研究センターの助教の人だって本業の日本中世史ではマトモだったじゃないですか。
上述の通り、現代タイ政治の分野では有名なセンセなので、たとえばタイでまたクーデターが起きたりしたらそういう場に出てくることもあるだろうし、それは全く問題にすべきではない、とは思う。不適切な発言してる理系研究者でも、たとえばノーベル賞の解説番組なんかに出るのは全然問題ないだろうし。
「人文系」という定義の話だけで外山先生の所業に関しては何も言及していないのだが、ご専門が「タイの憲法学」と聞くと、憲法学という括りではあんまり大差ないかもしれない
すまんこれはこちらの説明も悪かったんだが、彼女は憲法学者でもないんだ……憲法学は法学の下位区分だけど、このセンセの場合は憲法そのものの研究というよりも、憲法で決められたシステムがどんなふうに現代タイの政治に影響しているかを論じているので憲法学者ではなくてあくまでも政治学者なんや……
(「9条を素直に解釈すると自衛隊は違憲になる」みたいなのが憲法学で、「9条の規定がどんなふうに与野党対立に影響しているか」みたいなのが政治学)
いわゆるダメな人文系の代表格としてあげられるのが社会学者なんだか社会科学だから人文系じゃないは通らないでしょ。むしろ哲学や倫理学の人たちはこの手の狂い方する人少ない気がする
それは、まず社会学を「ダメな人文系」扱いしてバッシングしてた人たちがカテゴリエラーを起こしていただけなのでは??????
何で他者によるカテゴリエラーの責任を呼び間違えられた側が取らないといけないんですか??????
政治学や社会学はふつうは人文系には分類されない、のは単なる事実ですが??????
文系内部の細かい違いがわからん場合は、人文系とか社会学とか言わずに素直に文系って言っておけばよいのでは。社会学者でも何でもない文学研究者や歴史家が社会学者って言われてる光景、浜の真砂ほど見たので。
社会学は社会科学ではないというのは分かるけど人文科学と社会科学の線引きは何なのだろう?法学や政治学や経済学など社会科学は「技術」を論ずるもので、人文系は「価値観」を論ずるみたいなこと?
人文学に分類されているものが人文学で社会科学に分類されているものが社会科学です(進次郎構文)
……いやマジでこれはそうとしか言えない。文学・哲学・歴史学・宗教学ってだいぶ違うし、伝統的に人文学にまとめてます以外の説明はしづらい……(アジアの本質って何ですか? って聞かれてる感がある。日本とパキスタンとモンゴルとインドネシアの共通の本質……? とりあえずヨーロッパやアメリカではないです、あとワールドカップでは同じ地区で予選してますね、みたいな……)なので、線引きがわからんって人は、こういうもんだと割り切って「人文学に含まれる学問リスト」を丸暗記するか、無理に人文学とかの言葉を使わずに個別の学問の名前で呼べばいいと思います。
何を思って増田がこれ書いたのか分からんが、学部とかどうでも良くて差別的な発言するって教育者としてどうなの?てだけの話です/コロンブスの時と良い、最近話をわざわざややこしくする人多いね。
盗人猛々しいな。話をややこしくしてんのは政治学者を人文系の学者と誤認した連中だろ。そいつらが間違った認識を振りかざしてなけりゃ訂正記事書く必要もねえんだよ。話をややこしくしたくないなら間違った事実認識に基づくコメントをつけんじゃねーよ。
カテゴリ分けがどうでも良いなら指摘されたら直せば良くないですか??????
「外山准教授を人文学者やジェンダー研究者と間違って呼ぶ人がいなければこんな増田を書く必要はなかった」という当然のことを忘れないでもらっていいですか??????
初代ガンダムの描写を批判するのはいいけど、「これだから萌えアニメは」とか言ってたらおかしいし突っ込まれるでしょ? マジでそのレヴェルの話であるのを分かってほしい。萌えアニメの定義がわからんなら「これだからガンダムは」とか「これだから日本アニメは」って言っとけよってこと。
そんな「アジア系以外の一般のアメリカ人視点では日本人はチャイニーズ扱いされがち」とか「非オタ以外の一般人視点では宇崎ちゃんはエロ漫画扱いされがち」みたいなこと言われても……
スコットランドの平原の真ん中に黒い羊がいるのが見えた。 天文学者:ここの羊はみんな真っ黒なんだね。 数学者:少なくとも1匹の羊が居て、さらにこっち側の片面が黒いということが分かるだけさ。
ぼく「そこはイングランドです」
結局さ、これに対する反応見てもわかるんだけど、日本のカス論壇で一番嫌われるのが「エリートの責任」を語ることなんだよね。
両方からあの手この手で無効化されて、結局エリート(権威)に求めるべき責任が何かという話はいつも曖昧に終わる。
すべての基準でそう。金持ちも、政治家(既得権益)も、学歴集団でも。
「お前、恵まれてんだから社会に責任果たせよ」って言う、日本以外の国では当たり前にある(経済が『実力主義』でも、宗教的な喜捨の精神はアメリカにすら残っている)恩返しの精神が、日本人にだけは、右も左も男も女も老人も若者も吃驚するほどない。
こういうのが「他人を助けない日本人」みたいな指標にも現れてるのに、何故か学力エリートは「そうそう日本人(田舎者で無学で自民党支持者の愚民)は他人に冷たいよね」と自分がほとんどボランティアや寄付もしないのに、批判だけする側で平気で居られる。
まあこれ、自分で考えた持論ってわけでもないんだけどね。
大学の指導教官が数学者なんだけど思想的な部分があって、「日本には本来のエリートがいない」とか「大学院の研究分野くらいになれば、世界でも数十人数百人しかいない専門家であることを自覚しなさい」とかまあまあ言われたので、今になってみると本当にそうだなって思ってるだけ。
大学の専門家が専門分野に関してツイッター(X)で言うことが、「世の中こんなことも知られてないんだねえ(他人事)」みたいなの、死ぬほど見てきた。
そりゃそうだよ、お前が専門家だってのは、みんなが知らなくて、お前が教えなきゃいけないってことだよ。そんなことが本当にわからない奴だらけなんだ。
自分がリーダーにならなきゃいけないのにリーダーになろうとしない奴が、誰か良いリーダーいないのってネットで喚いて憂さ晴らししてる、本当に希望のない国だよ。
マルクス主義の理論はソ連によってナンセンスの塊に変えられていたが、ペレルマンにその塊を噛み砕くことができたのは、彼はなんであれ政治と名のつくものにいっさい興味がなかったからとみて、まず間違いはないだろう。
「グリーシャの辞書によれば、”政治”とは貶し言葉だったのです」とゴロヴァノフは言った。
「たとえば、私が良かれと思って、なにか組織的な運動を計画したとしましょう。たとえそれが、私たちの大切なセルゲイ・ルクシンを助けるための運動だったとしても、彼はこう言ったでしょう。
『それは政治だよ。そんなことより問題を解くことに集中しよう』。
ここでぜひともわかってほしいのは、彼は本気でそう思っているということです。彼は、政治と名のつくものはなんであれ、大嫌いなのですよ」。
こういうペレルマンの姿勢は、ロシア知識人の伝統となっている政治的プロセスへの嫌悪とはあまり関係がなく、むしろ彼にとっては数学以外の一切に興味がもてなかったことに関係しているのだろう。