「可換環」を含む日記 RSS

はてなキーワード: 可換環とは

2021-06-11

数学科飲み会

「Xが飲めて〜」

「Yが飲めない〜」

「わけがない〜〜〜 (f: X→Y)」

ハイ !

単射全射全単射!」

写像対応準同型!」

ハイ !

「環!可換!可換!非可換環!」

ハイ !

任意の〜」「任意の〜」

任意任意の〜アルアルアルアル」

絶対値からの不等式〜〜〜」

ハイ !

2020-06-03

有限体って何?

位数が有限な体のことです。

定義

集合Fに二項演算+: F×F→Fが定義され、以下の性質を満たすとき、Fは群であるという。

  1. 任意のa, b, c∈Fに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Fが存在して、任意のa∈Fに対して、a + 0 = 0 + a = a
  3. 任意のa∈Fに対して、ある元-a∈Fが存在して、a + (-a) = a + (-a) = 0

Fの元の個数をFの位数という。

上に加えて、さらに次の性質を満たすとき、Fをabel群という。

  • 任意のa, b∈Fに対して、a + b = b + a

Fが環であるとは、2つの二項演算+: F×F→F、*: F×F→Fが定義され、以下を満たすことである

  1. Fは、+を演算としてabel群になる
  2. 任意のa, b, c∈Fに対して、(ab)c = a(bc)
  3. 任意のa, b, c∈Fに対して、a(b + c) = ab + bx
  4. 任意のa, b, c∈Fに対して、(a + b)c = ac + bc
  5. ある元1∈Fが存在して、任意のa∈Fに対して、1a = a1 = a

Fが環であり、さらに以下を満たすとき、Fは可換環であるという。

Fが環であり、さらに以下を満たすとき、Fは斜体または可除環であるという。

  • 任意のa∈F\{0}に対して、あるa^(-1)が存在して、aa^(-1) = a^(-1)a = 1

Fが可換環であり、斜体であるとき、Fは体または可換体であるという。

基本的定理

位数有限な斜体は、可換体である。(Wedderburn)

有限体の位数は、pを素数として、p^nの形である

逆に、任意素数pと自然数n≧1に対して、位数p^nである体が同型を除いて一意的に存在する。q=p^nとして、この体をF_qと書く。


  • pを素数として、整数をpで割った余りに、自然加法乗法を入れたものは、有限体F_pになる。
  • F_pに、F_p上既約な多項式の根を添加した体は有限体になる。逆にq=p^nとなる有限体F_qはすべてこのようにして得られる。
  • F_pの代数閉包Fを固定すると、F_q (q=p^n)はFの元のうちx^q=xを満たす元全体である

有限体の代数拡大

有限体F_qの有限拡大はF_(q^m)の形。

これはすべてGalois拡大であり、そのGalois群はFrobenius準同型

φ_q: x→x^q

で生成される位数mの巡回群である

2019-11-19

結局掛け算の前後は入れ替えてもいいのか、ダメなのか

結論から言うと、「入れ替えてもいい」が自分意見である

が、そこに至るまでの結論はわりと複雑で、単純に論じられる問題ではない。

いちおう言っておくと、自分旧帝大数学科出身で、代数学計算機科学的な議論はひととおりできるし、教育にも携わったことがある。

まず第一論点として、少し厳密性に欠ける話なのだが、掛け算の左右は本質的には同じものではない。

まり、(結果として交換可能かどうかではなく)意味的に交換可能か、というと、これは交換不可能である

すなわち「掛け算の右と左は全く異なる意味を持つ」ということができると思う。

そもそも掛け算というのは、●を▲回足す、といった素朴な定義からスタートしている(現代的な数学基礎論立場でもこのように掛け算を定義していると言ってよい)。

●を▲回足すことと、▲を●回足すことは、結果の同一性は置いておいて、少なくとも意味としては異なる話であろう。

実際、たとえば●を▲回掛けることと▲を●回掛けることを比べると、これは結果すら異なってくるわけだから、素朴に交換してよい、という話にはならない。

数学では、非可換環だとかベクトル作用だとかわけわからんものが山ほどあり、そこでは乗法やそれに類する演算が交換不可能なことは日常茶飯である

ところがこれが交換可能になってしまうというのが、「交換法則」の主張するところである

これは掛け算そのものがその定義の中に「自明に」有している主張ではなく、定義から証明することによって主張される、いわゆる「定理である

するとここで「学校教育において、未だ習っていない定理テストの解答に使用してもよいか」という第二の論点が現れる。

これに対する解答は、「よくない」である

例えば大学入試においてロピタルの定理を使うことは、それが問題を解くために非常に役に立つにもかかわらず、許されていない。

どうしても使用する場合は、自らそれを解答用紙中で証明したうえであれば使うことができる、というルールだ。

小学校算数でも基本的にこのルールに従うべきではあろう。

さらにいえば、仮に交換法則を使ってもよいとして、「交換法則を使った」ことを明記せずに最初から定理適用後の姿で立式してしまうことにも疑問点が残る。

この論点でもやはり基本的には交換不能である側の意見に理があると考える。

にもかかわらず、自分結論はやはり「交換可能である」。

と、言うのも、基本的文章題においては日本語を数式に変換するための「解釈」は解き手に委ねられているからだ。

まり、3個ずつのリンゴを5人に配りました、という日本語から「3個を5回足すんだな」と解釈することにも、「5人を3回足せばいい」と考えることにも一定妥当さがあり、そこには読み取りの自由がある。

これは算数数学問題というより、日本語としての読み取り方の部分に交換可能性が潜んでいるのである

したがって、この文章を数式にするにあたって5×3と書いても、それは何ら減点要素ではない。

まとめると、

掛け算は意味的には交換可能ではないよ→でも交換法則があるよ→でも習ってない定理は使えないよ→でも日本語の読み取りの部分に交換可能性があるよ

ってことで、左右逆に書いても丸になるというのが結論

2018-09-02

anond:20180902103608

数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます

(必要なら)微積分と線形代数の復習

微積分なら杉浦「解析入門」がおすすめ線形代数なら佐武「線型代数学」か斎藤線形代数世界」がおすすめです。

体とガロア理論

堀田可換環と体」、雪江「代数学1・2・3」あたりがよい。

環論

Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村可換環論」を買うといいかも。

整数論

Serre「A Course in Arithmetic」とか、斎藤黒川加藤「数論」の6章あたりまでとか。

これらは数学学部3〜4年のカリキュラムに含まれ基本的知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要があるかというと、買った本の各章の内容について、証明の内容も含め、何も見ずにだいたい説明できるぐらい読んでください。あともちろん演習問題は全部解いてください。詳しい数学勉強方法東京大学河東先生のこのページを参考にしてください。

http://www.ms.u-tokyo.ac.jp/~yasuyuki/sem.htm

ここまで勉強なさると、宇宙際タイヒミュラー理論を学ぶハードルがどれだけか、少しイメージが湧くようになると思いますもっと勉強したいと思ったら、また増田に来てください。期待しております

2017-09-22

不如意のふにょふにょ感が好き

可換環金属っぽさも好き

2016-08-18

漢字の読みの頭文字が全て同じ三字熟語

可換環(かかんかん

死傷者(ししょうしゃ)

徹底的(てっていてき)

他ある?

2010-06-26

茂木健一郎うぜー

http://kenmogi.cocolog-nifty.com/qualia/2010/06/post-9d62.html

日本大学入試は「プロクラステスのベッド」とか聞いた風なことを言ってる割に、自分自身の学識のなさを暴露しているんだから噴飯ものだ。

上に挙げた東京大学入試のように、高校までのカリキュラムに出題範囲を限定した上で、その中で人工的な難しさを追求した出題をしていると、大学入試が終わるまでは、高校生はそのカリキュラムの範囲に足踏みすることになる。

こいつ本当に、自分リンク張ってる東大入試の問題見てみたのかと思う。どの科目も基本的な良問がおおむね揃っている(英語については言いたいこともあるがこれは日本英語教育自体の問題になる)。専門家がこの辺の問題に全く歯が立たなければ「廃業しろ」と言われても仕方ない種の問題だ。専門から離れていたら思い出すまでに時間こそかかるだろうが、一度は身につけておかなければ教科書の内容を習得したとは言えないレベルの、基本的な知識と考え方を試す問題でしかない。この程度に深く掘り下げる能力がなければ大学での本格的な勉強になんかついて行けないだろう。

というか、アメリカ大学生勉強量が多いのは、日本受験勉強と同じような内容を学部教育に詰め込んでいるからという面もかなりある日本大学の1年後期や2年前期の電磁気学解析力学で使う米国製の教科書の序文に「本書は学部上級生から大学院生を対象としている」とか書かれていることなんて結構ザラ。

本当は、さっさと量子力学統計力学線型代数か解析幾何の進んだ内容を修得すれば良いのに、18歳の段階では、いつまで経っても高校のカリキュラムの範囲であれこれと勉強をしなければならないことになる。

解析幾何wwwww知ったかぶりがもろばれなんですけど。

あのね、解析幾何っていうのは一口に言えば平面や空間に座標を引いて図形を扱うことで、思いっきり高校範囲です。せめて位相幾何とか微分幾何とか代数幾何とか言えないかね。門前の小僧でもそのぐらいの言葉は聞きかじっておいてくれよ。あんたこそ大学で何してたのかね。

それに、あの程度の数学物理がわからない奴に量子力学統計力学なんて理解できないよ。なんとかごまかして線型代数試験単位を取ることぐらいはまあできるかもしれないけど、線型代数なんて大学入学直後に習う「イロハのイ」なわけだからねえ。

学問というものは、ある程度の段階を超えると、標準化をすることが難しくなる。どの方向に伸びていくかは、分野によっても人によっても異なるからだ。

あのね、あなたが「進んだ内容」とか言ってる「線型代数」ですら「標準化」されたレベルの内容でしかないんですが何か?いわんや高校レベルをや。

アメリカSATは簡単だが、同時に、高校生の時から非可換代数無限集合論精通した学生をつくるかもしれない。

「非可換代数」とか「無限集合論」とか素人臭い用語法(せめて「非可換環論」とか「公理集合論」とかいえよ)が気になるが、東大京大数学科あたりに行けば、高校時代から大学レベル数学に手を出している学生はかなり沢山いるよ。

だいいち、東大入試レベル普通数学を理解せずにそんなマニアックな分野(リー環論とかならマニアックとは言えないだろうが)に手を出してもありがたみが理解できないと思うのだがどうだろうか。つーかお前、非可換って言いたいだけちゃうんかと。

こんなんに釣られている奴がブクマ見ると結構いるのが驚きだよ。

2009-11-26

アマデウス

中学生が非可換環がどうのとか言ってるのを見ると、俺ってこの世に存在する必要無いんじゃないかと思っちゃうな…。

2009-01-14

http://anond.hatelabo.jp/20090114173742

その例えは適切じゃないと思うが…。

数学と計算は全く別物。非可換環上の代数構造が云々とか言うときに、いわゆる"計算"なんて1ミリも関係ないと思っていいよ。

 
ログイン ユーザー登録
ようこそ ゲスト さん