はてなキーワード: 方程式とは
M理論と行列模型の数理は、拡張された超対称チャーン-サイモンズ理論に根ざしている。
Let M be a (2+1)-dimensional manifold. The action of the supersymmetric Chern-Simons theory is given by:
S = ∫_M Tr(A ∧ dA + (2/3)A ∧ A ∧ A) + ∫_M Ψ̄ ∧ DΨ
ここで、A はゲージ場、Ψ はMajorana spinor field、D は共変微分を表す。
M理論の行列模型として知られるBFSS模型のハミルトニアンは以下で与えられる:
H = Tr[1/2 Π_i^2 + 1/4 [X_i, X_j]^2 + 1/2 θ^T γ_i [X_i, θ]]
ここで、X_i (i = 1, ..., 9) は N×N エルミート行列、Π_i はその共役運動量、θ は16成分のMajorana-Weyl spinor である。
11次元のM理論から BFSS 模型への次元還元は、以下の対応を通じて実現される:
∂/∂t → [iH, ·], X^i → A^i, θ → Ψ
この対応により、M理論の動力学が行列模型の言葉で記述される。
N → ∞ の極限で、離散的な行列構造が連続的な膜の描像に移行する。この極限で、行列交換子は Poisson bracket に対応する:
lim(N→∞) [·,·] → {·,·}_PB
チャーン-サイモンズ理論の重要な特徴は、そのトポロジカル不変性にある。Wilson loop の期待値は、結び目不変量(例:Jones 多項式)と関連付けられる:
⟨W(C)⟩ = exp(ikCS(A)) = J(q), q = exp(2πi/(k+2))
ここで、CS(A) はチャーン-サイモンズ汎関数、J(q) は Jones 多項式を表す。
M理論における BPS 状態は、行列模型中の特定の配位に対応する。これらは超対称性を部分的に保存し、以下の方程式を満たす:
[X_i, X_j] = iε_ijk X_k
この関係は、Lie 代数 su(2) の交換関係と同型であり、ファジー球面の構造を示唆する。
M理論の行列模型は、AdS/CFT 対応の文脈でも重要な役割を果たす。特に、AdS_4 × S^7 背景での M2-ブレーンの理論は、3次元の超対称チャーン-サイモンズ理論(ABJM 理論)と双対である:
(Ω, ℱ, (ℱ_t)_t≥0, ℙ) を完備確率空間とし、ℋ = L²(Ω, ℱ, ℙ) をヒルベルト空間とする。
状態変数を無限次元ヒルベルト空間 𝒳 の要素 x_t ∈ 𝒳 とする。
dx_t = A(x_t)dt + B(x_t)dW_t
ここで、A: 𝒳 → 𝒳 は非線形作用素、B: 𝒳 → ℒ₂(𝒰, 𝒳) はヒルベルト空間値作用素、W_t は 𝒰-値のシリンドリカルウィーナー過程である。
代表的主体の価値汎関数 V: 𝒳 → ℝ を以下のように定義する:
V(x) = sup_α∈𝒜 𝔼[∫₀^∞ e⁻ᵖᵗ ⟨U(c_t, l_t), μ⟩ dt | x₀ = x]
ここで、𝒜 は許容制御の集合、ρ > 0 は割引率、U: 𝒳 × 𝒳 → 𝒳 は効用作用素、μ は 𝒳 上の測度、⟨·, ·⟩ は内積を表す。
最適性の必要条件として、以下の無限次元 HJB 方程式が成立する:
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
ここで、DV と D²V はそれぞれ V のフレシェ微分と二階フレシェ微分、B* は B の共役作用素である。
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
Y(x) = F(K(x), L(x))
C(x) + I(x) = Y(x)
DU_c(C(x), L(x)) = DV(x)
DU_l(C(x), L(x)) = DV(x)F_L(K(x), L(x))
ここで、F, K, L, C, I はすべて 𝒳 上の非線形作用素である。
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
ここで、(T_i, M_i) は価格改定のタイミングと大きさを表す二重確率点列、δ はディラックのデルタ測度である。
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
ここで、𝒜 は線形作用素、𝒦 は非線形作用素、𝒮 はヒルベルト空間値作用素、W_t^π は 𝒳-値のシリンドリカルウィーナー過程である。
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
ここで、Θ, Φ_π, Φ_y, Σ はすべてヒルベルト空間上の線形作用素である。
ケインズ派モデルの一般均衡は、以下の確率偏微分方程式系の解として特徴付けられる:
dx_t = 𝒜(x_t, π_t, i_t)dt + ℬ(x_t, π_t, i_t)dW_t
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
y_t = 𝒴(x_t) - 𝒴*
𝔼[dV(x_t, π_t, i_t)] = ρV(x_t, π_t, i_t)dt - ⟨U(C(x_t), L(x_t)), μ⟩dt
1. 状態空間: 新古典派モデルでは実物変数のみで状態を記述するが、ケインズ派モデルでは名目変数(インフレ率、名目金利)も含む無限次元空間を考慮する。
2. 確率過程: 新古典派モデルは主に無限次元拡散過程を用いるが、ケインズ派モデルではマーク付きポアソン点過程も導入し、不連続な価格調整を表現する。
3. 均衡の特徴づけ: 新古典派モデルでは無限次元HJB方程式を用いるが、ケインズ派モデルでは確率偏微分方程式系を用いる。
4. 作用素の性質: 新古典派モデルでは主に非線形作用素を扱うが、ケインズ派モデルでは線形作用素と非線形作用素の組み合わせを扱う。
5. トポロジー: 新古典派モデルは主にヒルベルト空間のトポロジーを用いるが、ケインズ派モデルではより一般的なバナッハ空間やフレシェ空間のトポロジーを考慮する必要がある。
楕円曲線暗号(Elliptic Curve Cryptography, ECC)は、数論と代数幾何学に基づく公開鍵暗号方式である。
特に有限体上の楕円曲線の構造を利用して安全性を確保する手法として知られ、RSA暗号に比べて少ないビット数で同等の安全性を実現できる。
楕円曲線とは、一般的に次の形で表される三次方程式により定義される:
y² = x³ + ax + b
ここで、係数 a, b は、定義する体 F 上の元である。特に、上記の式が体 F 上で非退化(特異点が存在しない)であるためには、判別式がゼロでないこと、すなわち
4a³ + 27b² ≠ 0
楕円曲線上の点の集合 E(F) は、無限遠点 O を加えた集合として群構造を持ち、加法演算が定義できる。加法演算は、点の「和」を取る操作であり、次の規則に従う:
このように、楕円曲線上の点の集合はアーベル群となる。この群の構造を活用し、暗号方式が構築される。
実際の暗号応用では、有限体 Fₚ(p は素数)や拡大体 F₂ᵐ 上の楕円曲線を使用する。有限体上の楕円曲線 E(Fₚ) は有限個の点から構成され、その数は次のようにハッセの定理によって評価される:
|E(Fₚ)| = p + 1 - t,
ただし、トレース t は |t| ≤ 2√p を満たす。
ECCの代表的な応用として、楕円曲線上のディフィー・ヘルマン鍵共有(ECDH)がある。これを次のように構成する:
1. 楕円曲線 E と基点 G ∈ E(Fₚ) を公開する。
2. ユーザーAは秘密鍵 a を選び、公開鍵として P_A = aG を計算して送信する。
3. ユーザーBは秘密鍵 b を選び、公開鍵として P_B = bG を計算して送信する。
4. 双方は共通鍵として K = aP_B = bP_A = abG を計算する。
この手法の安全性は、離散対数問題、特に「楕円曲線離散対数問題(ECDLP)」に依存している。楕円曲線上の点 P と Q = nP が与えられたとき、係数 n を求めるのは計算的に難しいため、敵対者が秘密鍵を推測するのが困難である。
例えば、リーマン予想の特別な場合であるヴェイユ予想は、有限体上の楕円曲線の点の数に対する評価を与え、暗号設計の基礎となっている。
さらに、現代の暗号学では楕円曲線とモジュラー形式の関係やガロア表現といった高度な数論的構造が研究されており、これらが量子耐性を持つ新たな暗号方式の研究に貢献している。
楕円曲線暗号はこのようにして、抽象代数学、数論、代数幾何学の融合によって成り立ち、安全性と効率を両立させた暗号技術として広く利用されている。
について書こうとしたら桜井政博が完璧な動画を挙げていたのでもうこれを見て終わりにしよう
同じ職域でプレーヤー→プレイングマネージャー→マネージャーと順調に狭い世界の中を渡ってきた管理職にありがちな勘違い。
自分の経験や能力を過信して「俺と同じことが出来るやつが集まったらそれが最強のチームなのに・・・」と意味不明な苦悩を抱え込みだしたら完全にアウト。
その職域で最もメジャーなスキルについては一番長くやってる自分が一番得意ということは確かにあるけど、それだけで人を見て「俺と同じことが出来ないから駄目」とやっていくと誰もついていかなくなる。
長くやってるからこそ出にくいアイディアや、職域の外にある固有スキルとかをちゃんと活かしていけないならチームでやるメリットが薄れる。
というか、管理職にいる人間がプレーヤーの目線だけで部下を評価しているのがそもそも間違い。
チーム全体の雰囲気作りや、数字は出にくいけど組織に必要とされてる業務の貢献などの、全体を俯瞰してようやく全容が見えてくる仕事をちゃんと物差しに加えていけないと駄目。
そうしたらとてもじゃないけど「同じタイプの人間だけで構成された部隊が最高である」とは言えないことに気付けるはず。
不機嫌な態度で部下をコントロールしようとしたり、威圧的なオーラを出しながら頼み事をしたりすると部下の気持ちはドンドン離れていく。
単に自分がウォーターフォールの中間地点にいるだけであっても、多くの仕事は自分が部下に頼む側となる。
定型業務を淡々と割り振るだけですまない仕事の分配について、ついつい「なんで俺がここでストレスを抱えなきゃいけないの?理不尽じゃない?」と不機嫌になることもあると思う。
でもそこで自分のストレスを安易に「こんな仕事が来たよ!本当に許せないよね!俺は忙しいからやってよ!暇でしょ!?」なんてやってたら部下からの信頼はあっという間に無くなる。
要は頼み方一つなんだけど、「こんな仕事が来ちゃいました・・・ごめんなさい・・・上に現場のことをちゃんと見てもらえるように努力しきれませんでした・・・本当に申し訳ないのですが手伝って頂けないでしょうか?」ぐらいに弱気にいった方がまだ部下からの印象はいいよ。
上司からの泣き落としとか断れ無さすぎて最悪ではあるんだけど、どうせ上司から振られる仕事って断れないもんなんだから、せめて相手側に「申し訳無そうな空気」ぐらいは貰っておきたいと考えるもんでしょ?
虚勢を張って「強いボス」をアピールするのが自分の仕事だと勘違いしてる管理職がいるけど、これはよくある間違い。
「あくまで腰は低く対応しつつ、譲れないところはガンとして譲らない」ってスタイルを確立していくのがひとまずの理想形。
今の時代に横柄な態度を取って相手を威圧しても、そんなのは風邪気味で不機嫌になってる子どもみたいなモノとしか扱われないからね。
ある程度上の立場になって仕事をやっていると否が応でも見えてくるのが「絶対的なリソース不足」。
全ての項目を完璧にするのなんて絶対に不可能なんてのは下っ端のうちから見えていたけど、偉くなるほどにそれがどこまで絶望的に足りてないかが見えてくる。
その足りてなさについて下は全然見えてないから上の方から共有していかないと駄目。
でもそこでちゃんと妥協点を共有しないと「そこで手を抜いちゃ駄目でしょ。なんでわからないの?」って話を何度でもする必要がある。
漠然と自分の中にある「コレはここまで妥協できる。こっちはこの辺まで妥協できる」ってラインを部下に共有できないなら、それは管理しているとは言えないと思う。
管理って最終的にはリソース配分に対して行うものであって、そこにおいて重要なのは「何をどこまでサボったら赤点になってしまうか」という情報なんだよね。
これを自分の頭の中にある複雑な「俺様専用経験値方程式」みたいのだけで全部やろうとしてもそれは部下には伝わらない。
入ったばかりの新人はともかく3年以上いた人間なら皆理解できるレベルまで複雑を落とした「妥協点の方程式」を作り出して、それを積極的に共有していくのが管理職の仕事。
つーかこの内容でもだいぶ被ってるわ。
自分にもそういう時期があったし、多かれ少なかれ誰だってそういう問題を持ってるものだと思う。
年次からして、まだ仕事の全体像や見通しが見えてないことが大きいんじゃないか?
分かりやすく、算数に例えると、仕事って、足し算や掛け算しか習ってないのに、急に二次方程式に直面するみたいな場面が多々あると思う。
そこで足し算や掛け算のような「既に理解してる」部分を拾って、分かったフリをしてるんじゃないかと思った。
少なくとも自分はそうだった。
録音したりメモをしたりしてるのは食らいついててすごく偉いと思うよ。
そうやって頑張ってるうちに、「二次方程式って、掛け算の延長か!」って腹落ちする日が来て、一気に視界が晴れると思う。
そうこうしてるうちに、おっさんになると、「この4次方程式は難しすぎるから、俺はいいや。若手になげちゃえ」って理解してないのに、見通しだけ立てられる日が来ると思う。
頑張れ!
育休はとってないですけど(自営業なんでそういう制度がそもそもない)、私はかなり恵まれてる環境でほとんど仕事してないんで生まれて一ヶ月の家事は全てやりましたし、その後もほとんど家にいるんで半分ぐらいは家事も育児もやってたと自負してます。妻は専業主婦、両実家の支援は一切なし。
ヨッピーさんの本楽しみにしてたので発売日にさっそく買って読んで、で、感想。
「そこじゃない」
育児は大変!と思ってしまう、全ての人に届けたい育児ハック集!
家事に育児に仕事、全てを効率化してゆとりのある子育てライフを送ろう!
育児の大変さ=(子どもの手のかかり具合+家事の手のかかり具合+仕事の手のかかり具合)÷投入コスト
以下私が独断でまとめただいたいの内容です。詳しくは買って読んでください。
他の家事とかがいろいろあるから大変に感じるだけで、それがなかったら育児楽勝になるよ。
(私はこのへんで既にん?という気がしてる。)
で、洗濯乾燥機を買おう!とか服を一種類に統一しよう!とか宅食使おう!とか食洗機買おう!そういう話が続く。
次の章では運動して体力をつけろ、睡眠の質を上げるためにいい寝具買って朝日浴びてカフェインやアルコール控えて……みたいな話が続く。
さらに次の章では育児の最適化と題して、アレクサを導入してテレビのリモコンやタイマー使うと便利だよ、とか見守りカメラベビーセンサー便利、みたいな話。
次の章はお金の節約のために買い物でポイント貯めよう!ふるさと納税しよう!みたいな話。
だいたいこんな内容。
いや~~~~そうじゃないんだよな~~~~育児大変なのって私はぜんぜんそこじゃないんだよな~~~~
ヨッピーさんは本の中で育児を自動車の運転に例えてて、車の運転は短時間ならいいけどぶっつづけだと疲れるでしょ?って話をしてるんだけど、それは本当そう思う。だから交代ってすごい大事だと思う。
でも運転と全然違うのは、「目的地に到着したら運転が終わる、わけではない」ことなんですよ。そもそも育児には目的地はない。
育児の中で大変なのって「目が離せない」 「ずっとかまってないといけない」ことなんですよね、私にとって。
運転だったら休憩せずに目的地に走り続ければその分早く終わるけど、家事を早く片付けたからって子どもから目を離せるわけじゃない。
「育児のタスクなんて時間にすれば2時間ぐらいで終わる」みたいなことも書いてるけど、それだって同じ。おむつ替えとか食事とかは育児のうちの一部分でしかない。ずっと子どもを見てないといけないこと自体が育児の時間で、車の運転ってアクセル踏んでる時間だけが運転ですよね、まとめたら2時間ぐらいですよね、みたいな話されてる気がする。
そういう育児の長時間にわたる大変さから比較すれば、家事のタスクってそこまで大したことじゃない。ワンオペしてる人だと違うんだろうけど、うちは常に二人いたから家事の間は育児交代できてかえって気分転換になるぐらい。サービスエリアみたいなもん。
だから「育児ハック」というタイトルで私が期待してたのはこの退屈でずっと子どもと向き合っていないといけない時間をいかに減らせるか、退屈じゃないものにできるか、ということなんですよ。家事ハックは求めてなかったんです。
なのでちょっと育児ハックというタイトルからは期待外れだったな~って思った。
でもタイトルだけで内容思いこんで買った私が悪いだけで、Amazonの解説はちゃんと本の内容そのままなんで別にヨッピーさんが悪いわけではない。
それに家事ハックで提案されてた内容のうち服を揃える以外はだいたいもうやってることだったってのもあります。
体力つけろはそこまでやってないですけど……まあそれが言われてできれば苦労はないわけで。そもそも運動して体力つけるみたいなの、すごい地道な努力で全然「ハック」じゃないじゃないですか。
とそんな感想でした。ヨッピーさんエゴサしてるらしいから届くかな。もし届いたら退屈な時間どうすりゃいいのっての教えてほしい。
わ!おんなじこと思ってる〜!仲間やん!と思って開いてみたら過去の自分の投稿で凍りついた。惨め。
そもそも増田の中で、キャラソン=漫画を原作としたアニメのキャラクターソングのシングルCD、という方程式が出来ていたので、ゲームのキャラやVtuberの存在を完全にすっぽ抜かしていた。この2つ入れたらキャラソン文化は死んでないどころか、まだまだ元気いっぱいだ。
あとはアイドル系みたいな、もともとキャラクターが歌うのがメインの作品のキャラソンも多いね。増田の知らない作品のキャラソンもいっぱい教えてくれてありがとう。カバーとかも多いのね。てかやっぱジャンプのキャラソン文化だけ絶滅しかけてない?大丈夫?
ただまぁ、あれだ。フルアルバムだのダウンロード配信のみだの、果てはBlu-ray特典だの、増田が子供の頃友達とキャッキャしながら買ってたキャラソンとは大分違うみたいだ。時代だね。
歌2曲とカラオケ音源(まじでこれの用途がわからん)2曲のシングルで1500円は子供にとっては大金だったわ。
ぐだぐだ言ってるけど、自分の好きなキャラクターが、ばーんとアルバムの表紙を飾っているのは嬉しかったよ。
あとは、個人的にあんた歌うキャラじゃないだろ!ってキャラソンがけっこう好きなので(極端なやつだとベジータ様のお料理地獄とか)ここで教えてもらった作品の中で一番増田が想像してたキャラソンに近いのは、ブルーロックだと思います。サッカーしなくて良いんですか。
定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。
定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:
M ≃ Ω∞-∞TFT(Bord∞)
ここで、TFT は位相的場の理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。
命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論の臨界次元に対応する。
定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。
定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。
定義 3: 弦場理論の代数構造を、∞-オペラッド O の代数として定式化する。
定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化が存在し、Maurer-Cartan方程式
MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}
の解空間として特徴付けられる。
定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。
定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。
定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:
ShvCat(X) ≃ Fuk∞(Y)
ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である。
定義 5: M理論のコンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。
定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。
定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。
定理 7 (Hopkins-Singer): M理論の量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:
[G/2π] ∈ TMF(M)
ここで、TMF は位相的モジュラー形式のスペクトラムである。
定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である。
定理 8 (Connes-Marcolli-Ševera): 量子重力の有効作用は、適切に定義されたスペクトラル∞-作用の臨界点として特徴付けられる。
定義 8: 弦理論の真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。
予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。
定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:
Z: Bord∞ → (∞,∞)-Cat
定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間は量子化された時空の∞-圏を与える。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
2. 波動関数がシュレーディンガー方程式に従って時間発展する。
Hilb は次の性質を持つ。
- (S ∘ T)† = T† ∘ S†
- (T†)† = T
- id_H† = id_H
- (T ⊗ S)† = T† ⊗ S†
- 評価射: eval_H: H* ⊗ H → ℂ
- 共評価射: coeval_H: ℂ → H ⊗ H*
- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H
- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*
⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ
⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ
U(t) = exp(-iHt/ħ): H → H
- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ
- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)
ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)
U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)
H_total = H_BH ⊗ H_rad
U_total(t): H_total → H_total
- U_total(t) はユニタリ射。
E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)
- Tr_H_BH: H_BH 上の部分トレース
- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。
E(ρ) = Tr_K (V ρ V†)
- バルクの圏 Hilb_bulk: ブラックホール内部の物理を記述。
- 境界の圏 Hilb_boundary: 境界上の物理を記述。
- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像を保証。
- バルク: F_bulk: Time → Hilb_bulk
- 境界: F_boundary: Time → Hilb_boundary
- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。
η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁
- これにより、バルクと境界での時間発展が対応し、情報が失われないことを示す。
量子力学を圏論的に定式化し、ユニタリなダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理を圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手と自然変換を構成し、情報が圏全体で保存されることを示した。
物理学で「記述できる」とは、ある現象を数学的なモデルや方程式を用いて、その振る舞い、性質、将来の状態などを正確に予測したり、説明したりできることを意味します。
例えば、ニュートンの万有引力の法則は、物体の質量と距離から、その間に働く重力の大きさを正確に計算することができます。これは、重力という現象を「記述」していると言えます。
プランクスケールよりも小さなスケールでの現象を現在の物理学で「記述できない」主な理由は以下の通りです。
プランクスケールが離散的である可能性が高いと考えられている理由として、以下の点が挙げられます。
はーいろんぱっぱ😝
超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。
弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元の世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます。
S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),
ここで:
- T は弦の張力(T = 1/(2πα'))、
- h_{αβ} は世界面の計量、
- g_{μν}(X) は時空の計量テンソル、
M理論では、時空は11次元の微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となります。M2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます。作用は次のように与えられます:
S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},
ここで:
- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、
カラビ–ヤウ多様体は、超弦理論のコンパクト化において重要な役割を果たす複素代数多様体であり、スキームの言葉で記述されます。
例えば、3次元カラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます:
f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,
ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。
各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間の構造を厳密に解析できます。
弦理論では、世界面 Σ から時空多様体 M への写像の空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。
特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。
この設定では、開弦のモジュライ空間は、境界条件を考慮した写像の空間 Hom(Σ, M; ∂Σ → W) となります。
弦理論の物理量は、しばしば背景多様体のコホモロジー群の要素として表現されます。
- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます。
- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます。
- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果を計算するために使用されます。
例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます:
⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),
ここで:
- g はワールドシートの種数、
- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、
- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、
- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。
弦理論の摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。
- パンツ分解: リーマン面を基本的なペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。
- 世界面のトポロジーを組合せ論的に扱い、弦の散乱振幅を計算します。
弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます:
A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},
ここで:
- g_{s} は弦の結合定数、
- D[h] は計量に関する積分(ファデエフ–ポポフ法で適切に定義)、
- S[X,h] はポリャコフ作用。
- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数
[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}
{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},
[L_{n}, G_{r}] = (n/2 - r) G_{n+r}
を満たします。
- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論が等価である。このとき、運動量 p と巻き数 w が交換されます:
p = n/R, w = m R → p' = m/R', w' = n R',
ここで R' = α'/R。
- S-双対性: 強結合と弱結合の理論が等価であるという双対性。弦の結合定数 g_{s} が変換されます:
g_{s} → 1/g_{s}。
時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:
R_{μν} = 0。
β関数の消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):
- 重力場:
R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、
- B-フィールド:
∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、
- ディラトン場:
4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。
M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元超重力の場の方程式を満たします:
- 場の強度の方程式:
d * F = 1/2 F ∧ F、
- アインシュタイン方程式:
R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。
抽象数学を用いて、宇宙人レベルで難しい暗号の問題を作成します。
有限体 F₁₀₁(素数 q = 101)上の多項式環を考えます。具体的には、R = F₁₀₁[x]/(x² + 1) とします。ここで、x² + 1 は F₁₀₁ 上で既約なので、R は 101² 個の元を持つ有限体になります。
公開された要素 a ∈ R が与えられています。
エラー項 e ∈ R は小さな係数を持つ多項式で、ここでは計算を簡単にするため e = 0 とします。
次の式が成り立ちます:
b = a · s + e mod 101
公開情報として a と b が与えられているとき、秘密の要素 s を求めなさい。
b = a · s mod 101
となります。したがって、
s = b · a⁻¹ mod 101
ステップ1: a の逆元 a⁻¹ を求める
まず、a = x + 2 の逆元 a⁻¹ を計算します。これは次の等式を満たす u ∈ R を見つけることと同じです:
a · u ≡ 1 mod x² + 1
u を一般的な形 u = u₀ + u₁x(u₀, u₁ ∈ F₁₀₁)とします。
乗算を展開します:
a · u = (x + 2)(u₀ + u₁x)
= xu₀ + x²u₁ + 2u₀ + 2u₁x
x² を置き換えます: x² ≡ -1 mod x² + 1 なので、
x²u₁ ≡ -u₁
式を整理します:
a · u ≡ xu₀ - u₁ + 2u₀ + 2u₁x mod x² + 1
≡ (2u₁x + xu₀) + (2u₀ - u₁)
≡ x(u₀ + 2u₁) + (2u₀ - u₁)
等式を設定します:
u₀ + 2u₁ ≡ 0 mod 101 (x の係数が 0 であるため)
2u₀ - u₁ ≡ 1 mod 101 (定数項が 1 であるため)
u₀ ≡ -2u₁ mod 101
2(-2u₁) - u₁ ≡ 1 mod 101
-5u₁ ≡ 1 mod 101
3. 両辺に -1 を掛けます:
5u₁ ≡ -1 mod 101
4. 5 の逆元を F₁₀₁ で求めます。つまり、5 · 81 ≡ 1 mod 101 なので、5⁻¹ ≡ 81 mod 101。
5. したがって、
u₁ ≡ -81 mod 101
u₁ ≡ 20 mod 101 (なぜなら -81 + 101 × 1 = 20)
6. u₀ を求めます:
u₀ ≡ -2u₁ mod 101
u₀ ≡ -40 mod 101
u₀ ≡ 61 mod 101 (なぜなら -40 + 101 = 61)
したがって、a⁻¹ は:
a⁻¹ = u = u₀ + u₁x = 61 + 20x
ステップ2: s = b · a⁻¹ mod 101 を計算する
b = 45 + 67x と a⁻¹ = 61 + 20x なので、
s = b · a⁻¹ = (45 + 67x)(61 + 20x) mod x² + 1, 係数は mod 101
乗算を展開します:
s = (45)(61) + (45)(20x) + (67x)(61) + (67x)(20x)
= 2745 + 900x + 4087x + 1340x²
1340x² ≡ -1340
項をまとめます:
2745 - 1340 = 1405
900x + 4087x = 4987x
1405 ÷ 101 = 13 余り 92
4987 ÷ 101 = 49 余り 38
∴ 4987 mod 101 = 38
したがって、秘密の要素 s は:
s = 92 + 38x
経済全体を数学的構造としてモデル化する。以下の変数と関数を定義する。
賃金と物価の悪循環(賃金・物価スパイラル)を数学的に表現するため、名目賃金の上昇が物価上昇に与える影響をモデル化する。
ここで、φ と ψ はそれぞれ価格設定と賃金設定の抽象的な関数であり、θ は労働市場の交渉力や期待インフレ率などのパラメータを含む。
賃金と物価の時間的な変化を記述するため、動的システムを構築する。
dW_N/dt = f_W(W_N, P, M, D, S, A, K, L)
dP/dt = f_P(W_N, P, M, D, S, A, K, L)
dM/dt = f_M(W_N, P, M, D, S, A, K, L)
ここで、f_W、f_P、f_M はシステムの動態を決定する関数であり、経済全体の相互作用を抽象的に表現する。
賃金と物価の相互作用をフィードバックループとしてモデル化する。制御理論を用いて、システムの状態ベクトルを定義する。
ここで、F はシステムの動作を決定する非線形関数であり、u(t) は政策介入や外生ショックを表す入力ベクトルである。
dW_R/dt = d/dt (W_N/P) = (P dW_N/dt - W_N dP/dt) / P^2
実質賃金を上昇させる条件は、dW_R/dt > 0 となる。
g_W = (1/W_N) dW_N/dt, π = (1/P) dP/dt
と定義すると、実質賃金が上昇する条件は、g_W - π > 0 となる。しかし、名目賃金の上昇が物価上昇に影響を与える場合、π は g_W の関数となる。
賃金・物価スパイラルを防ぐため、システムの安定性を解析する。線形近似を用いて、システムのヤコビ行列 J を計算し、その固有値の実部が負であることを確認する。
J = ∂F/∂x|_(x=x*)
貨幣供給量 M(t) と物価水準 P(t) の関係をモデル化する。古典的な数量方程式を用いて、
M(t) · V(t) = P(t) · Y(t)
ここで、V(t) は貨幣の流通速度、Y(t) は実質GDPである。
生産性 A(t) を向上させることで、物価上昇を抑制し、実質賃金を上昇させることが可能である。生産関数を
Y(t) = A(t) · F(K(t), L(t))
と定義する。
政策当局が実施できる介入を制御入力 u(t) としてモデルに組み込む。制御理論を適用し、目的関数を最大化(または最小化)するように u(t) を最適化する。
min_(u(t)) ∫_0^∞ [W_R*(t) - W_R(t)]^2 dt
経済システムを抽象代数学の枠組みで捉える。賃金、価格、貨幣供給を要素とする環 R を定義し、これらの間の演算を環の操作としてモデル化する。
∂P/∂W_N < 1
∂P/∂A < 0
∂P/∂M ≈ 0 (過度なインフレを防ぐ)
以上の要素を数学的にモデル化し、適切な条件を満たすことで、実質賃金を上昇させることが可能となる。抽象数学を用いることで、経済システムの複雑な相互作用を体系的に分析し、効果的な解決策を導き出すことができる。
最初期宇宙の基本構造を記述するために、位相的弦理論の圏論的定式化を用いる。
定義: 位相的A模型の圏論的記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である。
対象: (L, E, ∇)
射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))
この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。
最初期宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。
𝔛: (cdga⁰)ᵒᵖ → sSet
ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である。
𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。
宇宙の大規模構造の位相的性質を記述するために、モチーフ理論を適用する。
定義: スキーム X に対して、モチーフ的コホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。
これは、Voevodsky の三角圏 DM(k, ℚ) 内での Hom として表現される:
Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])
最初期宇宙の高次ゲージ構造を記述するために、∞-Lie 代数を用いる。
定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコビ恒等式を満たすものである。
Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0
最初期宇宙の量子重力効果を記述するために、圏値場の理論を用いる。
定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:
Z: Cob(n) → 𝒞
特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。
最初期宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。
定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:
S(ω || φ) = {
tr(ρω (log ρω - log ρφ)) if ω ≪ φ
+∞ otherwise
}
ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である。
最初期宇宙の量子時空構造を記述するために、非可換幾何学を用いる。
∫_X f ds = Tr_ω(f|D|⁻ᵈ)
匿名サイト上のコミュニケーションシステムを、抽象的な非可換力学系として捉えます。この系を記述するため、von Neumann 代数 M 上の量子力学的フレームワークを採用します。
M を II_1 型因子とし、その上のトレース状態を τ とします。系の時間発展は、M 上の自己同型写像 α_t: M → M (t ∈ R) によって与えられるとします。この α_t は強連続な一径数自己同型群を成すと仮定します。
系のエントロピーを、Connes-Størmer エントロピーとして定義します:
h(α) = sup{h_τ(α,N) | N ⊂ M は有限次元von Neumann部分代数}
ここで、h_τ(α,N) は N に関する相対エントロピーレートです。
エントロピー最小化問題を、以下の変分問題として定式化します:
この問題に対するアプローチとして、非可換 Lp 空間の理論を用います。p ∈ [1,∞] に対し、Lp(M,τ) を M の非可換 Lp 空間とし、||x||_p = (τ(|x|^p))^(1/p) をそのノルムとします。
エントロピー汎関数の連続性を保証するため、超弱位相よりも強い位相を導入します。具体的には、L1(M,τ) と M の積位相を考えます。この位相に関して、エントロピー汎関数 h の下半連続性が成り立ちます。
次に、Tomita-Takesaki モジュラー理論を適用します。τ に付随するモジュラー自己同型群を σ_t とし、KMS 条件を満たす平衡状態を考察します。これにより、系の熱力学的性質とエントロピーの関係を明らかにします。
エントロピー最小化のための具体的な戦略として、非可換 Lp 空間上の勾配流を考えます。エントロピー汎関数 h の L2-勾配を ∇h とし、以下の発展方程式を導入します:
dα_t/dt = -∇h(α_t)
この方程式の解の存在と一意性を、非線形半群理論を用いて証明します。さらに、解の長時間挙動を分析し、エントロピー最小の状態への収束を示します。
系の構造をより詳細に理解するため、M の部分因子 N ⊂ M を考え、Jones の基本構成 M_1 = ⟨M,e_N⟩ を行います。ここで e_N は N 上への条件付き期待値の拡張です。この構成を繰り返すことで、Jones タワー
N ⊂ M ⊂ M_1 ⊂ M_2 ⊂ ...
を得ます。各段階でのエントロピーの変化を追跡することで、系の階層構造とエントロピー最小化の関係を明らかにします。
最後に、自由確率論の観点から系を分析します。M 内の自由独立な部分代数の族 {A_i} を考え、それらの自由積 *_i A_i を構成します。自由エントロピーを
χ(X_1,...,X_n) = lim_m→∞ (1/m) S(tr_m ⊗ τ)(p_m(X_1),...,p_m(X_n))
と定義し、ここで X_1,...,X_n ∈ M、p_m は m 次の行列代数への埋め込み、S は古典的エントロピーです。
この自由エントロピーを用いて、系の非可換性とエントロピー最小化の関係を探ります。特に、自由次元 δ(M) = n - χ(X_1,...,X_n) を計算し、これが系のエントロピー最小化能力の指標となることを示します。
以上のフレームワークにより、匿名サイト上のエントロピー最小化問題を、非可換確率論と作用素代数の言語で記述し、解析することが可能となります。
完備確率空間 (Ω, ℱ, ℙ) 上で、右連続増大フィルトレーション {ℱₜ}ₜ≥₀ を考える。
状態空間として、実可分ヒルベルト空間 ℋ を導入し、その上のトレース類作用素のなす空間を 𝓛₁(ℋ) とする。
システムダイナミクスを以下の無限次元確率微分方程式で記述する:
dXₜ = [AXₜ + F(Xₜ, uₜ)]dt + G(Xₜ)dWₜ
ここで、Xₜ ∈ ℋ は状態変数、A は無限次元線形作用素、F, G は非線形作用素、uₜ は制御変数、Wₜ は Q-Wiener プロセスである。
経済主体の最適化問題を、以下の抽象的な確率最適制御問題として定式化する:
ここで、𝓤 は許容制御の集合、L: ℋ × 𝓤 → ℝ は汎関数である。
価値汎関数 V: ℋ → ℝ に対する無限次元Hamilton-Jacobi-Bellman方程式:
ρV(x) = sup{L(x, u) + ⟨AX + F(x, u), DV(x)⟩ℋ + ½Tr[G(x)QG*(x)D²V(x)]}
ここで、DV と D²V はそれぞれFréchet微分と2次Fréchet微分を表す。
システムの確率分布の時間発展を記述する無限次元Fokker-Planck方程式:
∂p/∂t = -divℋ[(Ax + F(x, u))p] + ½Tr[G(x)QG*(x)D²p]
ここで、p: ℋ × [0, ∞) → ℝ は確率密度汎関数、divℋ はヒルベルト空間上の発散作用素である。
dλₜ = -[A*λₜ + DₓF*(Xₜ, uₜ)λₜ + DₓL(Xₜ, uₜ)]dt + νₜ dWₜ
ここで、λₜ は無限次元随伴過程、A* は A の共役作用素である。
価格過程の一般的な表現を、以下の無限次元マルチンゲール問題として定式化する:
Mₜ = 𝔼[M_T | ℱₜ] = M₀ + ∫₀ᵗ Φₛ dWₛ
ここで、Mₜ は ℋ 値マルチンゲール、Φₜ は予測可能な 𝓛₂(ℋ) 値過程である。
Girsanovの定理の無限次元拡張を用いて、以下の測度変換を考える:
dℚ/dℙ|ℱₜ = exp(∫₀ᵗ ⟨θₛ, dWₛ⟩ℋ - ½∫₀ᵗ ‖θₛ‖²ℋ ds)
インフレーション動学を、以下の無限次元確率偏微分方程式で記述する:
dπₜ = [Δπₜ + f(πₜ, iₜ, Yₜ)]dt + σ(πₜ)dWₜ
ここで、Δ はラプラシアン、f と σ は非線形作用素、iₜ は金利、Yₜ は総産出である。
小さなパラメータ ε に関して、解を以下のように関数空間上で展開する:
Xₜ = X₀ + εX₁ + ε²X₂ + O(ε³)
dwₜ = [Bwₜ + H(wₜ, πₜ, iₜ, Yₜ)]dt + K(wₜ)dWₜ
ここで、B は線形作用素、H と K は非線形作用素である。
金利上昇の実質賃金への影響は、以下の汎関数微分で評価できる:
δ𝔼[wₜ]/δiₜ = lim(ε→0) (𝔼[wₜ(iₜ + εh) - wₜ(iₜ)]/ε)
1. 非可換確率論:
量子確率論の枠組みを導入し、不確実性のより一般的な記述を行う。
経済均衡の位相的構造を分析し、均衡の安定性を高次ホモトピー群で特徴付ける。
4. 超準解析:
無限次元確率動的一般均衡モデルは、金利、インフレーション、実質賃金の相互作用を一般的な形で記述している。
モデルの複雑性により、具体的な解を得ることは不可能に近いが、この理論的枠組みは経済現象の本質的な構造を捉えることを目指している。
このアプローチは、金利上昇がインフレ抑制を通じて実質賃金に与える影響を、無限次元確率過程の観点から分析することを可能にする。
しかし、モデルの抽象性と現実経済の複雑性を考慮すると、具体的な政策提言への直接的な適用は不適切である。
このモデルは、経済学の理論的基礎を数学的に提供するものであり、実際の経済分析や政策決定には、この抽象的枠組みから導かれる洞察を、より具体的なモデルや実証研究と慎重に組み合わせて解釈する必要がある。
このレベルの抽象化は、現代の経済学研究の最前線をはるかに超えており、純粋に理論的な探求としての意義を持つものであることを付記する。
貨幣の中立性と超中立性の概念を用いて、貨幣発行の効果を厳密に分析する。
長期的には、貨幣供給量の変化は実質変数に影響を与えないという仮説である。
定義:∀x ∈ X, f(λM, x) = λf(M, x)
ここで、
貨幣供給量の成長率の変化も実質変数に影響を与えないという、より強い仮説である。
定義:∀x ∈ X, g(μ, x) = g(μ', x)
ここで、
max E₀[Σ₍ₜ₌₀∞) βᵗU(cₜ, mₜ/pₜ)]
制約条件:cₜ + mₜ/pₜ + bₜ/pₜ = yₜ + (mₜ₋₁ + Rₜ₋₁bₜ₋₁)/pₜ + τₜ
ここで、
1. フィッシャー方程式:
i = r + π
ここで、i は名目利子率、r は実質利子率、π はインフレ率である。
ln(Mᵈ/P) = α - βi + γy
ここで、Mᵈ は貨幣需要、P は物価水準、y は実質所得である。
Mˢ = Mᵈ
μ = π
これらの方程式系から、貨幣供給量の増加が長期的にはインフレーションに直結し、実質変数に影響を与えないことが導出される。
仮定:
証明:
Let M₀ be the initial money supply and M₁ = λM₀ (λ > 1) be the new money supply after monetary expansion.
Step 1: By monetary neutrality, ∀x ∈ X, f(λM₀, x) = λf(M₀, x)
Step 2: Let P₀ and P₁ be the price levels corresponding to M₀ and M₁ respectively.
Step 3: In equilibrium, M₀/P₀ = M₁/P₁ (real money balances remain constant)
Step 4: Substituting M₁ = λM₀, we get: M₀/P₀ = λM₀/P₁
⇒ P₁ = λP₀
Step 5: For any real variable x, its nominal value at t=1 is P₁x = λP₀x
Conclusion: The monetary expansion leads to a proportional increase in all nominal variables, leaving real variables unchanged. ∎
定義 1: M理論の基礎空間を (M, g) とする。ここで M は 11 次元 C∞ 多様体、g は符号 (-,+,...,+) のローレンツ計量とする。
定義 2: M 上の主束 P(M, Spin(1,10)) をスピン構造とし、関連するスピノール束を S とする。
定義 3: M 上の外積代数を Λ*(M) とし、特に Λ³(M) と Λ⁴(M) に注目する。
C = {(g, C, ψ) | g ∈ Met(M), C ∈ Γ(Λ³(M)), ψ ∈ Γ(S)}
ここで Met(M) は M 上のローレンツ計量全体、Γ は滑らかな切断を表す。
定理 1 (作用汎関数): M理論の作用 S: C → ℝ は以下で与えられる:
S[g, C, ψ] = ∫_M (R * 1 - 1/2 dC ∧ *dC - 1/6 C ∧ dC ∧ dC - ψ̄D̸ψ) vol_g
ここで R はスカラー曲率、D̸ はディラック作用素、vol_g は g による体積要素である。
定理 2 (場の方程式): δS = 0 から以下の Euler-Lagrange 方程式が導かれる:
1. Einstein 方程式: Ric(g) - 1/2 R g = T[C, ψ]
2. C-場の方程式: d*dC + 1/2 dC ∧ dC = 0
ここで Ric(g) は Ricci テンソル、T[C, ψ] はエネルギー運動量テンソルである。
定義 5: M の 7 次元コンパクト化を X とし、M = R^(1,3) × X と分解する。
定義 6: X 上の G₂ 構造を φ ∈ Ω³(X) とし、以下を満たすものとする:
1. dφ = 0
2. d*φ = 0
3. (x ↦ i_x φ ∧ i_y φ ∧ φ) は X 上の Riemann 計量を定める。
定理 3 (Holonomy reduction):X が G₂ 構造を持つとき、X の holonomy 群は G₂ の部分群に含まれる。
定義 7: X 上の接束の構造群を G₂ に制限する縮約を σ: P → X とする。ここで P は主 G₂ 束である。
定義 8: M の K 理論群を K(M) とし、その Chern 指標を ch: K(M) → H^even(M; ℚ) とする。
定理 4 (Anomaly cancellation): M理論の量子異常が相殺されるための必要十分条件は以下である:
I₈ = 1/48 [p₂(M) - (p₁(M)/2)²] = 0
ここで p₁(M), p₂(M) は M の Pontryagin 類である。
定理 5 (Index theorem): M 上の Dirac 作用素 D̸ の指数は以下で与えられる:
ind(D̸) = ∫_M Â(M) ch(S)
ここで Â(M) は M の Â-genus、ch(S) は S の Chern 指標である。
定義 9: 位相的 CW 複体の圏を Top、アーベル群の圏を Ab とする。
定理 6 (T-duality): 適切な条件下で、以下の同型が存在する:
K(X × S¹) ≅ K(X × S¹)
定理 7 (S-duality): 適切な条件下で、以下の同型が存在する:
H^k(M; ℤ) ≅ H_{11-k}(M; ℤ)
Bombeというゲームがある。
これが全然進まない。
ニンゲンが普通にマインスイーパーをするとき、「1の横に爆弾があるからそれ以外のマスは0だな」と脳内でほぼ無意識的に処理してマスを開いていくと思うのだが、
このゲームでは「条件0=開ける」と全ての条件を設定する必要がある
ニンゲンがなんとなくやっていたことを論理的に整理していくのだ。
ビックリするほど進まない。
俺はxとyを全く理解していなかった。単純な方程式自体は分かるのだが、矛盾が発生するメカニズムがわからない。
AのときXを使用できるのに、BのときXを使用できない、みたいな壁に全部ぶつかってしまう。
辛い。
sup_{x ∈ U(X)} x subject to φ(x) ≤ w
ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である。
sup_{y ∈ T_p𝓜} ω(y)
生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:
∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}
ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})
ここで、
状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:
1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)
2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)
3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j
ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである。
(𝒜, ℋ, D)
ここで、
[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}
ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である。
H: [0,1] × X → X