はてなキーワード: 量子コンピュータとは
「漫画家イエナガの複雑社会を超定義」の「量子コンピューター」の回がこの後1:20からNHK総合で再放送するようなので、本放送を見たときの自分の感想を改めてここにまとめる。
一般のメディアにおける「量子コンピューター」の取り上げ方はいつも、専門知識を持っている人間から見たらとんでもない誇張と飛躍で充ちている。もはやSTAP細胞詐欺か何かに近い危険性を感じるので、こういう話に接する時の注意点、「ここを省略していることに気づくべき」要点を解説する。
メディアにおける「量子コンピューター」の説明は、大体いつもストーリーが似通っている。
件の軽い調子の番組だけでなく、ニュートンだろうと日経サイエンスだろうと、まあおおよそ複素関数論の「ふ」の字も紙面に出したら読者がついてこれなくなる程度のメディアではほとんど同じ構成である。
これはこの20年ほど変わらない一種のパターンになっているが、実はこのそれなりに繋がっているように見える一行一行の行間すべてに論理的な問題を孕んでいる。
この行間に実は存在する論理の省略、あるいは嘘と言っても良い誤摩化しをひとつひとつ指摘していこうと思う。
量子ビットには重ね合わせの状態が保持できる。これに対して計算処理をすれば、重ね合わせたすべての状態に並列に計算を実行できる。ように見える。
しかし、これも一般的に聞いたことがあるはずなので思い出して欲しいが、「量子力学の重ね合わせの状態は、『観測』により収束する」。
つまりどういうことか? 量子ビットに対する処理が並列に実行出来たとしても、量子コンピュータの出力はそれをすべて利用できるわけではない。
量子コンピュータの出力とは、量子ビットに対する並列処理の結果の、確率的な観測に過ぎない。
なので、手法的な話をすれば、量子アルゴリズムとはこの「確率(確率振幅という量子状態のパラメータ)」を操作して、望む入力に対する結果が観測されやすくする、というちょっとひとひねりした考え方のものになる。
単に並列処理ができるから凄いんだという説明は、増田自身一般向けの説明に何度も繰り返したことがあるが、まあ基本的には素人相手の誤摩化しである。
ここさえ踏まえれば、知識がなくともある程度論理的にものを考えられる人には、量子コンピュータに対する色々な期待も「そう簡単な話ではない」となんとなく感じられると思う。
量子コンピュータのキラーアプリとされている暗号解読は「ショアのアルゴリズム」という非常に巧妙な計算を通して得られる。
上で説明したように、量子コンピュータは単に「並列計算だから」なんでも高速な処理ができる訳ではない。暗号解読については、この「ショアのアルゴリズム」という自明でない計算手法(高速フーリエ変換の応用)が見つかってしまったからこそ問題になっているのであって、このアルゴリズムの実行が出来なければ暗号解読ができるとは言えない。
さてここからは量子力学というより計算機科学の話になるが、あるチューリングマシン上のアルゴリズムが別の計算モデルで実行可能かどうかは、その計算モデルがチューリング完全であるかどうかによるというのはプログラマには常識である。
これは量子コンピュータにおいても変わらない。量子コンピュータの一般に知られる多くのアルゴリズムはドイチュの量子チューリングマシンを前提に作られており、チューリング完全でないアーキテクチャでは実行できない。できるはずがない。ショアのアルゴリズムも当然そうだ。
しかしながら、この20年弱、D-Wave社が最初の「自称・量子コンピュータ」を開発したと発表して以来、さまざまな企業が「開発に成功した」と発表した「量子コンピューター」の中で、このチューリング完全なものは何一つ存在しない。
これらでは、今後どれだけ「性能」が伸びようとも、暗号解読の役には立たないのである。
以上の議論から総合すればわかると思うが、量子コンピュータで世界が一変するなんてヴィジョンははっきり言ってSF以下のファンタジーというレベルでしかない。
第一に、量子コンピュータの利用できるドメインは非常に限られたものであるし、第二に、その中の最も宣伝されているものである暗号解読の可能な量子チューリングマシンの開発の目処などまったく立っていない。どころか、業界のほとんど誰も挑戦することすら本気では考えていない。
現状の「自称・量子コンピュータ」(量子情報システム、とでも言おうか)にも利用の可能性はある。何より量子状態そのものが作れるので、物理学や化学領域の量子システムをシミュレーションするのに適しているのは言うまでもないだろう。しかし、まあ、現状あり得る比較的現実味のある用途というのは、それくらいではないか。
このように、メディアが量子コンピュータについて語るとき、そこには非常に多くの誤摩化しや飛躍が含まれる。これは結構業界の根幹に関わる問題なのではと思うが、時間が来たので総括は後述にでもすることにする。
何か質問があればどうぞ。
2. モジュラスの計算: N = p * q
3. オイラーのトーシェント関数: φ(N) = (p-1)(q-1) を計算する。
4. 公開鍵と秘密鍵の生成: 公開鍵は (N, e) であり、e は gcd(e, φ(N)) = 1 を満たす整数である。秘密鍵は d であり、d * e ≡ 1 (mod φ(N)) を満たす。
RSA暗号の安全性は、合成数 N の素因数分解が計算的に困難であることに依存している。具体的には、次の問題が考えられる:
N = p * q
ショアのアルゴリズムは、量子コンピュータ上で動作する効率的な素因数分解アルゴリズムである。以下にその主要なステップを示す。
任意の整数 a を選択し、N に対して次の条件を満たすことを確認する:
整数 a の順序 r を求める。順序とは、次の条件を満たす最小の整数である:
a^r ≡ 1 (mod N)
量子フーリエ変換は、状態ベクトルを重ね合わせて次のように表現される:
|x⟩ = Σ(k=0 to N-1) |k⟩
ここで、量子フーリエ変換を適用することで周期性に関する情報が得られる。具体的には、
QFT |x⟩ = (1/√N) Σ(j=0 to N-1) Σ(k=0 to N-1) e^(2πi jk / N) |j⟩
得られた状態から測定を行うことで周期情報が得られる。この周期情報を用いて次の式を考える:
x = a^(r/2) - 1
y = a^(r/2) + 1
これらが非自明な因子である場合、p と q を次のように計算できる:
p = gcd(x, N)
q = gcd(y, N)
ショアのアルゴリズムは確率的であり、成功率は高いものの100%ではない。そのため、誤り訂正技術や複数回実行することで成功確率を向上させる必要がある。
わかった、ほんなら「量子コンピュータ」について話すで!
量子コンピュータは、古典的なコンピュータとは全く違う原理で動くんや。
基本的な単位は「キュービット」で、これが通常のビット(0か1)とは異なり、0と1の重ね合わせ状態を持つことができるんや。つまり、量子コンピュータは同時に複数の計算を行えるポテンシャルを持っとるんや。
そのおかげで処理速度が速くなったり大規模なデータ分析が可能になるんや。
以下にもう少し詳しく解説していくやで。
重ね合わせとは、キュービットが0と1の状態を同時に持つことや。
一方、エンタングルメントは、複数のキュービットが互いに強い相関を持ち、一つのキュービットの状態が変わると、他のキュービットの状態も即座に変わることを指すんや。
この現象が量子コンピュータの強力さを引き出すんやけど、理解するのが難しいところや。
たとえば、ショアのアルゴリズムというのは、整数の素因数分解を効率的に行えるんや。
これが実用化されると、現在の暗号技術が崩れる可能性があるから、セキュリティの面でも大きな影響があるで。
量子コンピュータは非常に繊細で、外部の環境からのノイズによってエラーが発生しやすいんや。
これを克服するために、量子誤り訂正という手法が開発されとる。
これは、冗長なキュービットを使ってエラーを訂正する方法やけど、従来のコンピュータに比べて非常に複雑や。
今のところ、量子コンピュータはまだ実用化の段階には達してへんけど、いくつかの企業(例:IBM、Google、D-Waveなど)が開発を進めてるで。
コンピュータ・サイエンスで取り組まれている問題の一覧を紹介しよう。
なんか前は黎明期のやつ「あああれね」って感じだったんだけど最近のまじでわからん
https://www.publickey1.jp/blog/24/2024web3nftaiai.html
People-Centric
振る舞いのインターネット
汎用人工知能
エンボディドAI
量子機械学習
商用核融合炉
ChatGPT-4o
AIが検索結果を生成し、より関連性の高い情報を提示する技術。
嬉しい点: 精度の高い情報をすぐに得られる。
企業や組織が持続可能な運営を実現するための支援ツールやシステム。
3. People-Centric
人間中心のアプローチで、個人のニーズや体験を重視する技術やビジネス戦略。
5. 振る舞いのインターネット
不明。
都市部での空飛ぶ車やドローンによる移動手段の実現を目指す技術。
AIやIoT技術を活用して、都市全体を効率的に運営する未来の都市モデル。
多数の小型衛星を連携させ、地球全体に通信や観測サービスを提供する技術。
AIを用いてサイバー攻撃を検知し、即座に対応する自動防御システム。
不明。
不明。
13. 汎用人工知能
バーチャル空間で活動する、リアルな人間に似たキャラクターやアバター。
嬉しい点: 新たなコミュニケーションの形が広がる。
大規模言語モデル(LLM)を使ったサービス提供プラットフォーム。
嬉しい点: 高度な自然言語処理が容易に利用できる。
16. 月データセンター
月に設置されるデータセンターで、宇宙規模でのデータ処理を行う施設。
18. ヒューマノイド
Claude3
以下、各技術の説明と、それぞれのメリットを簡潔に記載します:
People-Centric:
メリット:より使いやすく、ユーザーニーズに合った製品やサービスの創出。
振る舞いのインターネット:
汎用人工知能:
月データセンター:
エンボディドAI:
量子機械学習:
商用核融合炉:
お前らはAI以外の科学研究分野になんて興味もないから知らないんだろうが、この業界には「もはやだれもできると信じてないけど、政治的にやり続けなければいけない研究」というものがある。
量子コンピュータがそうで、20年前には「無理。できない。ほぼ間違いなく」という答えが出てる。
それでもなぜ研究を辞められないか? 「ほぼ」でなく「絶対」でない限り、もし万が一にも億が一にも「敵対勢力」に先に開発されたら安全保障に重大なリスクが出るから、というだけの話だ。
違うのは、これらがある程度の結果にたどりつくことで開発競争にもケリがついたことと違って、量子コンピュータはどこまで行っても何にもならないから、ただ無駄に研究費を食うだけなこと。
成果が出ていると強弁するために、「量子超越性」などと20年前はなかった概念が作られた。しかし、今量子コンピュータと呼ばれているものは、20年前に量子コンピュータと呼ばれていたものとは全く違う。
具体的には何が違うか? 今の自称・量子コンピュータには「暗号解読」なんてできない。何もできない。
何もできないのに何かをやっていると主張するために「超越性」などという何の根拠もない言葉で誤摩化している。
専門外なので推測だが、「常温核融合」や「常温超伝導」も似たような状況なのではないか。
量子コンピュータの場合、先に開発した方が情報・通信セキュリティの覇権を握る絶大な武器を得る。
常温核融合や常温超伝導も、エネルギー利用に革命的な変化をもたらすのだから、勿論軍事上の脅威になるだろう。
そういう技術は、たとえ「ほぼ無理」でも開発を辞めることはできない。「絶対無理」を誰かが証明でもしない限り。
AIがそういう技術に当たるかと言えば、それはその可能性はあるだろう。膨大な生成情報によるネット情報の攪乱はセキュリティ上のリスクになり得る。
お前たちが量子コンピュータの可能性をいつまでも信じ込まされていつか何かになると思っているのと同じように、AIも(仮にどこにもたどりつけないとしても)そういう立場を失うことはないだろう。
反AIでもなんでも良いが、それぐらいの現実感覚は持たないで空回りしているのは傍から見ても忍びないぞ。という忠告。
大学院まで専門にしてても就職で全然違うところにいくなんてよくあることなんだがそんなことも知らないのか低学歴はw
量子ゲートが云々とかそれこそ素人向けメディアの受け売りばっかで量子チューリングマシンも知らないやつがどの面下げてと
って話をしてるの
AIの危険性を訴えれば訴えるほど権益が強化され、政治的にアンタッチャブルになるシンプルな理由。
それは、「危険ならばなおさら、敵より早く開発しなければいけない」からだ。
そして欧米のような資本主義国では、社会主義の国のように、国益に関わる開発資金を、政治の一存で湯水の如くつぎ込むのは難しい。
だから、開発資金は出来るだけ民間の、経済原理に則るカタチでまわせるようにシステムを作る。
原子力、量子コンピュータ、歴史の中で何度も繰り返されてきた、科学技術研究開発の政治的な基本サイクルだ。
なんで今さら、その程度もことも歴史に学べないのか、反AIは。
AIは、ヤバい。ヤバいから、絶対に開発は止まらない。むしろ加速する。商売としてガッチリ固まる権益になるだろう。
それだけの話。