知的作業の本質を論じることは困難。数学の最も重要な特徴は、自然科学、もっと一般的に言えば、純粋に記述的なレベルよりも高いレベルで経験を解釈するあらゆる科学との、極めて特異な関係にあるとノイマンは考えていた。
ほとんどの人が、数学は経験科学ではない、あるいは少なくとも経験科学の技法とはいくつかの決定的な点で異なる方法で実践されていると言う。しかしその発展は自然科学と密接に結びついている。
まず幾何学。力学や熱力学のような、間違いなく経験的な他の学問は、通常、多かれ少なかれ仮定的な扱いで提示され、ユークリッドの手順とほとんど区別がつかない。ニュートンのプリンキピアは、その最も重要な部分の本質と同様に、文学的な形式においてもユークリッドと非常によく似ている。仮定的な提示の背後には、仮定を裏付ける物理的な洞察と、定理を裏付ける実験的な検証が存在する。
ユークリッド以来、幾何学の脱皮は徐々に進んだが、現代においても完全なものにはなっていない。ユークリッドのすべての定理のうち、5番目の定理が疑問視された最大の理由は、そこに介在する無限平面全体という概念の非経験的性格にあった。数学的論理的な分析にもかかわらず、経験的でなければならないかもしれないという考えが、ガウスの心の中に確かに存在していたのである。
ボリャイ、ロバチェフスキー、リーマン、クラインが、より抽象的に当初の論争の形式的解決と考えるものを得た後も、物理学が最終決定権を握っていた。一般相対性理論が発見されると、幾何学との関係について、全く新しい設定と純粋に数学的な強調事項の全く新しい配分で、見解を修正することを余儀なくされた。最後に、ヒルベルトは、公理幾何学と一般相対性理論の両方に重要な貢献をしている。
第二に、微積分学から生まれたすべての解析学がある。微積分の起源は、明らかに経験的なものである。ケプラーの最初の積分の試みは、曲面を持つ物体の体積測定として定式化された。これは非軸性で経験的な幾何学であった。ニュートンは、微積分を基本的に力学のために発明した。微積分の最初の定式化は、数学的に厳密でさえなかった。ニュートンから150年以上もの間、不正確で半物理的な定式化しかできなかった。この時代の主要な数学的精神は、オイラーのように明らかに厳密でないものもあったが、ガウスやヤコービのように大筋では厳密なものもあった。そして、コーシーによって厳密さの支配が基本的に再確立された後でも、リーマンによって半物理的な方法への非常に独特な回帰が起こった。リーマンの科学的な性格そのものが、数学の二重性を最もよく表している例である。ワイエルシュトラス以来、解析学は完全に抽象化、厳密化され、非経験的になったように思われる。しかし、この2世代に起こった数学と論理学の「基礎」をめぐる論争が、この点に関する多くの幻想を払拭した。
ここで、第三の例。数学と自然科学との関係ではなく、哲学や認識論との関係である。数学の「絶対的」厳密性という概念そのものが不変のものではないことを示している。厳密性という概念の可変性は、数学的抽象性以外の何かが数学の構成に入り込んでいなければならないことを示す。「基礎」をめぐる論争を分析する中で、二つのことは明らかである。第一に、非数学的なものが、経験科学あるいは哲学、あるいはその両方と何らかの関係をもって、本質的に入り込んでいること、そしてその非経験的な性格は、認識論が経験から独立して存在しうると仮定した場合にのみ維持されうるものであること。(この仮定は必要なだけで、十分ではない)。第二に、数学の経験的起源は幾何学と微積分のような事例によって強く支持されるということ。
数学的厳密さの概念の変遷を分析するにあたっては、「基礎」論争に主眼を置くが、それ以外の側面は、数学的な "スタイル "の変化についてであり、かなりの変動があったことはよく知られている。多くの場合、その差はあまりにも大きく、異なる方法で「事例を提示」する著者が、スタイル、好み、教育の違いだけで分けられたのか、何が数学的厳密さを構成するかについて、本当に同じ考えを持っていたのか、疑問に思えてくる。
極端な場合には、その違いは本質的なものであり、新しい深い理論の助けによってのみ改善されるのであり、その理論の開発には百年以上かかることもある。厳密さを欠く方法で研究を行った数学者の中には(あるいはそれを批判した同時代の数学者の中には)、その厳密さの欠落を十分認識していた者もいたのである。あるいは、数学的な手続きはどうあるべきかというその人自身の願望が、彼らの行動よりも後世の見解に合致していたのだ。たとえばオイラーなどは、完全に誠実に行動し、自分自身の基準にかなり満足していたようである。