「ワイエルシュトラス」を含む日記 RSS

はてなキーワード: ワイエルシュトラスとは

2020-05-27

anond:20200527134829

実数論は、ワイエルシュトラスの上限定理またはコーシー列の収束性を公理として認めるのが実際的と思う。

実数構成については、デデキント切断ではなく、有理数絶対値による完備化を採用し、関数解析などの講義でより一般距離空間の完備化を扱う時に、例として挙げるのが適切ではないかと思う。その頃には、コーシー列等の概念が身についているだろうから

大学に入って最初にやることが「実数構成」では、数学が嫌いになるのは必然

そういうことはいずれは、(数学科なら)いざとなったら分かるレベルにならないといかんが、大学一年生がやって実りあるものとは思えない。

理学系にいくにせよ工学系にいくにせよ、教養数学でやるべきなのは高校微分積分の復習をしつつ、

のような基本的な結果をしっかり理解して使えるようになることじゃないだろうか。

こういうものを示すのには実数連続性を厳密に定式化しなければいけないが、一年相手にわざわざ「デデキント切断に順序構造を導入して」などとやらずとも、

空ではない上に有界実数の集合には上限が存在する。

というワイエルシュトラス定理を認めれば十分である。これはデテキント切断による実数の特徴付けと同値であり、他の命題を示す際にも扱いやすく、直感的にも理解できる。

思うに、あらゆることを厳密にやるのが大学数学の「伝統」や「洗礼」などと言った価値観を持っている人が多い気がする。もちろん、それは一面では正しいし、高校数学までは曖昧だった部分がはっきりすることに喜びを感じる学生もいるだろう。しかし、たいていの学生は、数学が嫌いになるんじゃないだろうか。

2019-09-02

人名を並べた○○=△△型の理論が好き

数学には人名を並べた定理がわりにある。共同研究、同時期に発表されたもの、元からあった予想が補われることで成立したもの、経緯はさまざまだけど何人もの切磋琢磨想像できる『=』の名付けが俺は好きだ。

よく知られているコーシーシュワルツの不等式とか、大学で扱うボルツァノ=ワイエルシュトラス定理フェルマーの最終問題証明に用いられた谷山志村予想(定理)とか。ああ、フェルマーのも今はフェルマーワイルズ定理か。

こういうのって他の学問でもあるのだろうか。

 
ログイン ユーザー登録
ようこそ ゲスト さん