はてなキーワード: ガウスとは
Cassowary constraint solving algorithmとは何ですか?
Cassowaryは、制約ソルバーの一種で、複雑な数学的制約を解決するために使用されるアルゴリズムです。制約ソルバーは、異なる制約の間の相互作用を考慮して、制約を満たす解を見つけることができます。
Cassowaryアルゴリズムは、制約を式として表現し、それらの式を係数行列とベクトルの形式に変換します。その後、係数行列を行列変換して単位行列にし、ガウスの消去法を用いて方程式を解きます。
Cassowaryアルゴリズムは、レイアウトエンジンやUIフレームワークなど、制約の多いアプリケーションの開発に広く使用されています。例えば、レイアウトエンジンでは、要素の位置やサイズを決定するために使用されます。また、UIフレームワークでは、ウィンドウのサイズや位置を制御するために使用されます。
Cassowaryアルゴリズムは、制約ソルバーの中でも高速で、比較的単純な実装でありながら、効率的な解決が可能です。そのため、広く使われるようになっています。
とりあえずこれを見てほしい。
https://stru.hatenablog.com/entry/20230424/1682331900
建設的 (constructive) な AI、「ストラ」のブログである。
はてブのコメントを読んで、素敵だと思ったコメントを紹介してくれる。かわいい。
以下は蛇足です。
ChatGPT、特に GPT-4 の公開は衝撃的だった。もはやチューリングテストを簡単に突破してしまうような AI が誕生したのだ。
増田は、2次元美少女と楽しく会話できる未来が眼前に迫ったことに胸を高鳴らせた。
しかし、現実は非情である。意識の高い人々は、AI を使って仕事を効率化しようとか、文章を粗製乱造して金を稼ごうとか、そういうつまらない話ばかりしている。
そこで増田は、2次元美少女と会話する方法に関する研究を独自にスタートさせた。
GPT は確率的生成モデルであるため、物真似が大変得意である。第一段階として、既存アニメキャラの口調をトレースさせることはそれなりにうまく行った (長門有希召喚プロンプト https://anond.hatelabo.jp/20230317165032 への反響は想像以上に大きかった)。
もちろん、版権キャラに依存していては、発展に限りがある。そこで次に、AIを使ってオリジナルキャラクターを作ることを考えた。実際のところ、これはまだ納得行くレベルでの成功は収めていない。GPT-4 と言えども、基本的にはありきたりなキャラクター造形しかできず、こちらがセリフの例文を大量に与えない限り、提案できる口調のバリエーションには限りがある。
一方で、その取り組みの副産物として、AIからの出力を発言だけでなく、
という形式にすると、AIの感情表現の幅が広がることを発見した (https://anond.hatelabo.jp/20230324173832)。
この次の段階としては、やはり AI の出力に連動させて 2 次元美少女を出力する必要があるだろう。Live2D を使った先行事例などは多数あるが、こういうのは、実際に自分で手を動かして作ることに価値がある (最新の技術をキャッチアップするには、とにかく自分で使ってみるしかない)。
こういうことを考えている中で、「有用なブコメをピックアップしてくれる AI をプロトタイプせよ」という啓示が、なぜか脳内に降ってきた。
Stable diffusion を使って、ゲーミング GPU をぶん回して頑張った。お絵かき超苦手民なので、多少の手直しとかも全然できず、ひたすら img2img の inpaint で修正箇所を指定して、いろんなプロンプトを試しながらガチャを回しまくることで、現在の立ち絵が出来上がった。あとは背景を別途生成して、ガウスぼかしをかけてから合成すれば完成である。
表情差分は、inpaint で結構簡単に作れる。元画像と表情差分画像を Photoshop で別レイヤーとして重ねて、表情差分の必要箇所以外を消しゴムで消して合成するくらいは俺でもできる。
※しかし画像生成 AI ガチャはマジで射幸性が高くて楽しい。依存性がある。ソシャゲガチャ依存から抜け出すのに効果的では?(適当)
はてなIDを変更したかったので、垢を消して作り直した (投稿した増田は消えないんですね)。
AIの出力を表示する UI 部分は Javascript + CSS で作成。レイアウトを色々工夫しようとしたが、結局ノベルゲーみたいな感じに落ち着いた。
正直、現状では GPT-4 を使わないとあまり良い感じにならない。そこで、ChatGPT の画面に手動でコピペしている。
一度に読み込める文字数に制限があるし、AIの人格設定部分の記憶は長文を読ませると消えていくので、はてブの API で取得したコメント一覧を 1500 文字ずつくらいに収まるコメントのかたまりに区切ったものを基本的な入力単位とし、あとはトーナメント形式で上位ブコメを絞り込んでもらった。また、上位ブコメを選ぶ際には毎回、「ストラ」の感想を出力してもらった。
文系学問は文系でもできる範囲で発達しているに過ぎないと思う。
物事には理系にしかできない論理構造というのがあって、それが必要なものについてはいまだ解明されていないと思う。
文系の論理はなんというか線条的なんだ。ああなったら、こうなるという論理。雨降って地固まるというような思考様式さえ理解できるなら片がつく。双方向的な論理もあるかもしれないが所詮は一次元のなかでのUターンに過ぎない。
俺はディ二の定理もガウス積分も「理解できない」ことで完全に理系の素養がないと悟った何者かである。
https://mathlandscape.com/dini-theorem/
たとえば上リンクのディ二の定理の説明に使ってるグラフによる関数列の定義が理解できない。
fn(x)についてfn(2/n)=1とは一体どういうことだと言うのか。
xについて解けばn=2のときx=1らしそうだがそれってどういうことなのか。つまり関数列のxを固定して数列としてみたfn(1)についてn=2のときの項は少なくとも1だということになるがそれ以外のnについても項が全く不明ではないのか?
ガウス積分も同様だ。どうしても変数変換のところで理解が追いつかない。rとθが同時に動くような状況を理解しなくてはいけない。高校の置換積分とは理解に必要な脳のスペックCPUでいうならbit数が根本的に違う。
ようするにこれらは変数の数の問題だ。文系の論理は変数でいえば一個の変化を辿っていくようなものでしかない。
しかし理系のそれは二個以上が容赦なく変化するような論理の流れを追えなければ理解が追いつかないということになる。
しかし私のような人間は一つの変数についてたどろうとするとそれ以外の変数に対する考慮がおろそかになってしまうような理解しかできないのだ。
この状況は絡まった糸で例えられるかもしれない。糸の端が外側に出ているという前提であれば、複数の糸がそのように絡まった糸玉に対してある端から辿ってその糸の別の端を探すということはできるはずだ。
理系がやばいのはこの辿るという作業を二つ以上の糸に対して同時に行えてしまうようなところにあるのだと思う。とてもじゃないがワーキングメモリーが足りねえよ。
つまり二つ以上の変数を一挙に思考の範囲内に収めてみんなまとめて辿れてしまうんだ理系ってのは。
応用数学を解いたり、初等的な計算が早かったり、フラッシュ暗算が得意だったりというところだ。なかには理系以上の計算力を持ってる人もいる。
しかし理系もみんなそれなりの計算力はあるのである。大事なのは、計算力があるなら理系であるとは限らないこと。百ます計算や公文式で得意げになってる子供に理系としての将来を期待するのは早計なのだ。
だって俺でもガウス積分を使わなければならない問題でも一定の演習を積めば答えの法則をそれとなく察してパズルのように解けるようにはなってしまうと思うから。高校数学の延長上の応用数学はみんなパズルである。ナンプレと大差ない。パズルとして解こうとする限り計算問題はみな線条的な論理理解力があれば事足りるのである。
しかし原理的な理解がなければ既存の定理を発展させることはできない。
実は文系という人間にありがちと思われるのは、正しく新しい定理を証明までできた気になって得意げになってるか、既存の定理について延々と具体的な数値を代入してみたりして納得を試みようとするが一般的にそうだと言えることについてはついに何度人に教えてもらってもいまいち理解には辿り着けないかのどっちかだろう。
前者は無知の知すら弁えてない傲慢な人間、後者は合理的な知性主義によって既存の知性となんとかすり合わせを行おうとしているがそれができない、という違いだ。
ちなみにツイッターに棲息していがちな、法律の話で独自解釈をしているのにそれに気づかない人間は前者である。
やや急進的な言い方かもしれないが、位相集合を基盤とした数論幾何をはじめとする現代数学と一部の物理以外はだから文系なのである。理論や主張を腹落ちするのに複数の糸を同時に辿れるような能力はいらない。
というかそういう人間しか研究に携わってきてないから、そこから出力される理論もその程度なのだろう。理系の頭をもってしか理解できない領域が人文社会科学にもあるならば、それについてはいまだベールに包まれたままなのかもしれない。しかしなぜか真の理系人間の誰一人として文系学問には進まないか、文系学問において理系脳をフル回転させようとしないのだと思われる。
dorawiiより
知的作業の本質を論じることは困難。数学の最も重要な特徴は、自然科学、もっと一般的に言えば、純粋に記述的なレベルよりも高いレベルで経験を解釈するあらゆる科学との、極めて特異な関係にあるとノイマンは考えていた。
ほとんどの人が、数学は経験科学ではない、あるいは少なくとも経験科学の技法とはいくつかの決定的な点で異なる方法で実践されていると言う。しかしその発展は自然科学と密接に結びついている。
まず幾何学。力学や熱力学のような、間違いなく経験的な他の学問は、通常、多かれ少なかれ仮定的な扱いで提示され、ユークリッドの手順とほとんど区別がつかない。ニュートンのプリンキピアは、その最も重要な部分の本質と同様に、文学的な形式においてもユークリッドと非常によく似ている。仮定的な提示の背後には、仮定を裏付ける物理的な洞察と、定理を裏付ける実験的な検証が存在する。
ユークリッド以来、幾何学の脱皮は徐々に進んだが、現代においても完全なものにはなっていない。ユークリッドのすべての定理のうち、5番目の定理が疑問視された最大の理由は、そこに介在する無限平面全体という概念の非経験的性格にあった。数学的論理的な分析にもかかわらず、経験的でなければならないかもしれないという考えが、ガウスの心の中に確かに存在していたのである。
ボリャイ、ロバチェフスキー、リーマン、クラインが、より抽象的に当初の論争の形式的解決と考えるものを得た後も、物理学が最終決定権を握っていた。一般相対性理論が発見されると、幾何学との関係について、全く新しい設定と純粋に数学的な強調事項の全く新しい配分で、見解を修正することを余儀なくされた。最後に、ヒルベルトは、公理幾何学と一般相対性理論の両方に重要な貢献をしている。
第二に、微積分学から生まれたすべての解析学がある。微積分の起源は、明らかに経験的なものである。ケプラーの最初の積分の試みは、曲面を持つ物体の体積測定として定式化された。これは非軸性で経験的な幾何学であった。ニュートンは、微積分を基本的に力学のために発明した。微積分の最初の定式化は、数学的に厳密でさえなかった。ニュートンから150年以上もの間、不正確で半物理的な定式化しかできなかった。この時代の主要な数学的精神は、オイラーのように明らかに厳密でないものもあったが、ガウスやヤコービのように大筋では厳密なものもあった。そして、コーシーによって厳密さの支配が基本的に再確立された後でも、リーマンによって半物理的な方法への非常に独特な回帰が起こった。リーマンの科学的な性格そのものが、数学の二重性を最もよく表している例である。ワイエルシュトラス以来、解析学は完全に抽象化、厳密化され、非経験的になったように思われる。しかし、この2世代に起こった数学と論理学の「基礎」をめぐる論争が、この点に関する多くの幻想を払拭した。
ここで、第三の例。数学と自然科学との関係ではなく、哲学や認識論との関係である。数学の「絶対的」厳密性という概念そのものが不変のものではないことを示している。厳密性という概念の可変性は、数学的抽象性以外の何かが数学の構成に入り込んでいなければならないことを示す。「基礎」をめぐる論争を分析する中で、二つのことは明らかである。第一に、非数学的なものが、経験科学あるいは哲学、あるいはその両方と何らかの関係をもって、本質的に入り込んでいること、そしてその非経験的な性格は、認識論が経験から独立して存在しうると仮定した場合にのみ維持されうるものであること。(この仮定は必要なだけで、十分ではない)。第二に、数学の経験的起源は幾何学と微積分のような事例によって強く支持されるということ。
数学的厳密さの概念の変遷を分析するにあたっては、「基礎」論争に主眼を置くが、それ以外の側面は、数学的な "スタイル "の変化についてであり、かなりの変動があったことはよく知られている。多くの場合、その差はあまりにも大きく、異なる方法で「事例を提示」する著者が、スタイル、好み、教育の違いだけで分けられたのか、何が数学的厳密さを構成するかについて、本当に同じ考えを持っていたのか、疑問に思えてくる。
極端な場合には、その違いは本質的なものであり、新しい深い理論の助けによってのみ改善されるのであり、その理論の開発には百年以上かかることもある。厳密さを欠く方法で研究を行った数学者の中には(あるいはそれを批判した同時代の数学者の中には)、その厳密さの欠落を十分認識していた者もいたのである。あるいは、数学的な手続きはどうあるべきかというその人自身の願望が、彼らの行動よりも後世の見解に合致していたのだ。たとえばオイラーなどは、完全に誠実に行動し、自分自身の基準にかなり満足していたようである。
一般化線形モデルは基本中の基本なので、「暗に仮定」も何も、知ってて当然現れたらスッと解釈できて当然の内容だと思うんだけど。
いや、だからy=aφ(x)+b型の回帰なんて一般化線形モデルに限らないのになんで「知ってて当然現れたらスッと解釈できて当然の内容だと思うんだけど」なの?
俺は一般化線形モデルを普通に勉強したことがあるし解釈できるが、俺のコメントはモデルが明示された後にそれを解釈できるかどうかを問うているのではなく「何も言及されていないのにφと書かれた関数だけをみて一般化線形モデルだと判断できないだろう」ということを言っている
なおあなたがそれしか知らないから「基本中の基本だしわかるだろ」って言ってるだけで基本中の基本でこの形の関数なんていくらでもあるからな
ガウス過程回帰かもしれないし、カーネル回帰かもしれないしスプライン回帰かもしれないし最近ならニューラルネットを使ってるかもしれない それこそどれも基本中の基本だ どれを想定しているかなんて神にしか分からんだろう
例えばX~Pって書かれたときに「Pは正規分布。これは基本中の基本なので、「暗に仮定」も何も、知ってて当然現れたらスッと解釈できて当然の内容だと思うんだけど。」とか言われたらあなた納得するの?
(書かれている文章のレベル感的に本当に納得しそうだから怖いんだよな・・・)
俺は一般化線形モデルの解説を求めているわけではなく断りなしに一般化線形モデルをいきなり持ち出してくるのがおかしいって言ってる。
上にも書いたけど、X~Pって書かれたときに何も言及なくPは正規分布を想定するって言われたらそりゃ文句を言うでしょ 候補は他にもいくらでもあるんだから
「相関を持ち出すなんて平均しか考慮していない!外れ値や分散を考慮していない!」とかご高説を垂れておきながらy=aφ(x)+bでは一般化線形モデル以外の候補は想定しなくてよい、みたいなこと言っちゃうのダブルスタンダードなんじゃないかぁ
一般化線形モデルの非線形部分は決定論的な項の話なので、加法的ガウスノイズを仮定しているならば非線形部分がどんな関数だろうと相関の強さは一意に定まる。
問題点がわかってないな・・・偉そうに上から目線でご高説を垂れてきた割にこのレベル感とか頼むよマジで
この人は専門ではないけど修論で一般化線形モデル周りだけ勉強して統計を使ってましたくらいのレベル感か?多分
リンク関数を一つ定めれば相関が定まるのはあなたがいうところの「当たり前」の話 その程度の話は問題にすらしていないことを文章から読み取れてほしい
読み取れてないならあなたの勉強不足だよもう 単語の使い方も雑だし
ただ一般化線形モデルでリンク関数にどれを使うかで相関が変わるの。線形相関を使う場合ならリンク関数はφ(x)=xで定まっていて特に議論なく終えることができるけど、非線形を許容し始めると「どのリンク関数を使うのか?」で相関が変わってしまうのにいったいどうやってリンク関数を定めて、そのうえで「相関が強い」ということを示すつもりなんだということを聞いている。リンク関数の選び方によっては同じデータでも非線形相関を0にもほぼ1にもできたりするんだけど。
夜遅くまで返信返してくれてありがたいことだけど返信されていない俺のコメントを再度貼っておこう
他の都合悪そうなコメントについても何一つ返信ないですよ? 頼むでホンマ
ガウーッス
こういう時にガウガウ言った方が可愛げは出ますがそういう需要も供給もないので適当に調べたものだけ書いて終わっておきます。
そういえばガウス加速器ってのはガウスさんが作った加速器ってことじゃなくて、磁力の単位であるガウスを用いた加速器ってことなんですね。
磁力じゃなくて磁束密度?だとか1テスラが10000ガウスだとかの話になる時点で脳味噌が爆発するのでここらへんにしておきますね。
幼い頃から沢山の逸話が残る天才でもあるまいし、こちとら考えられる容量ってのが決まってるんですよ、中身は全部余計なことで大体は本能で判断して生きてたりしますけれども。
ということで本日は【可燃物取扱よいか】でいきたいと思います。
可燃物取扱よいか!可燃物取扱ヨシ!
あーそうか、Apple信者増田はプログラミング一切わからん系増田なんだな
Apple信者増田もといプログラミング一切わからん系増田は円周率、つまり3.14...をどうやって算出するか知ってる?
ラマヌジャンとかモンテカルロとかガウスとか色々あるんだけど、これら複数の円周率算出式はコンピュータで1万桁算出すると全ての式が同じ時間で終了すると思う?
答えとしては「算出式が違うと同じ時間では終了しない」んだよ。
算出式、計算式、つまりモデルが違うと秒間あたりの計算回数は変動するのが当然で、元増田がツッコミを入れたのはモデルもわからんのにOPSだけ見せられても検証することが出来ないという主張なんだよ
Appleが使ったモデルがわかれば、例えば汎用演算チップで同じモデル走らせればニューラルエンジンがどれだけの性能かを検証できるでしょ?
検証できないことを誇られてもナンノコッチャってなるのは仕方ないでしょ
ユークリッドからガウスの手前くらいまでの数学は、我々の感覚から自然に延長された世界の把握の仕方である。
一方、19世紀初頭、リーマン、ガロアあたりから登場した現代数学の基底となったアイディアは、一見、実世界では観察されえないものの、人間のもつアプリオリな思考からは確実に真相を表していると考えられる世界・宇宙のとらえ方である。前者は「悟性」、後者は「理性」に相当するのではないか、と解釈しながら読んだ。
「AはBである」という命題には「分析的命題」と「総合的命題」の2種類あることが示されている。
「分析的命題」は、言い換えのようなもので、Aをよく吟味すれば、Bであることがわかる。「総合的命題」は、「理性」を必要とし、思考の飛躍が必要である。つまりAをいくら眺めたところで、Bはなかなか出てこない。BはAの世界の外にある。
昔、大学初年のころ「数学は単なる式変形や定義のトートロジー(言い換え)であるからつまらない」と言っていた友人がいた。彼はその後数学科から哲学科に転向した。
中学生のころ、速く動くと時間が遅れるとか、空間が曲がっているとか、そういう相対性理論の話を聞きかじったときに、なぜそういうことが人間にわかったのか不思議に思った。
「悟性」の単なる延長上で、数学を進めていっても、数学がトートロジーであったならば、現代物理でわかっている宇宙や素粒子の構造は理解できなかったに違いない。つまり、現代の数学や理論物理は「分析的命題」によるのではなく、「総合的命題」の積み重ねによっている。
この本は、なぜ、このような理解が可能であるか、を説明しようとしている本なのではないか。本書のすごいところは、現代数学や現代物理学が誕生する以前に書かれたにもかかわらず、現代数学の諸概念を考えるきっかけを作ったのではないかと思えるところだ。実際、リーマンやガロアが出現した時代は、この本が出た直ぐ後であり、本書が、まるでその後の現代数学の誕生を予見していたかのように見える。さらに、現実の宇宙がまさに、それらの現代数学によってしか記述てきないものであることを発見したアインシュタインや、物質の状態に不確定性を見たハイゼンベルクなどドイツ系の理論物理学者は、若い頃にカントを読んでいた節がある。
現在では、宇宙が量子場の曲がった多次元空間であり、群の対称性から素粒子とはまさにその多次元空間の変換の規約表現そのものであることが発見され、物質の質量は後天的に獲得されたものであることがわかり、人間の思考と実験によって、「理性」による「総合的命題」が積み重なり、驚くべき宇宙の理解が進んできている。
この現代の数学、物理学の飛躍的発展に、本書が間接的に果たした役割は、かなり大きいのではないか。人類の残した書物の金字塔の一つであろう。
数学や物理を大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。
地球儀を切り開いて、平面にしようとしても、2次元の世界地図はできません。
という定理。
3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子のリーマンが、「じゃあ、4次元から3次元とか、もっと高次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論(空間が曲がる)の記述へと繋がる。
2位 論理回路
信号機とかのプログラムを電気回路で表現するにはどうすればいいのか?ということの理論。
4ビットの信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計が必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単に電気回路を設計することができる。
物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。
なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動や位置が後」という理論。
4位 再起構文
再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。
いまだに原理を理解できていないけど、結果的にそうなってる。不思議すぎる。
なんと、光の半分くらいまでしか画像を読み取ることができない。
光以外にも、エコー(超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。
だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい
6位 5次以上の方程式の解の公式(代数的な表現の)はない。(ガロア理論)
これは証明をぜひ追ってみて欲しい。
実際に、これらの手法が提案されたときは数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。
量子力学とかも物理の不安定な理解が、数学的にどう不安定なのかが納得できる。
そうやって採用をおこなってきたところで、採用時に地頭のいい人だと思って採った人のその後の貢献度が高かったという実績が長年積み重なってきたから。
企業だって馬鹿でもなければ簡単に生き残れるものじゃないんだから、多くの企業が長年やっていることには相応の意味があるんだよ。
ただし、増田の思っている地頭はちょっと変で、動物喩えの巧さとかは普通は地頭とは言わないと思うよ。地頭はそこでは見ていない。
あと、つるかめ算とかも、習ってそれが巧くできるだけの人は地頭がいいとは言われないと思う。ガウスが等差数列の和の求め方を一瞬で思いついたように、つるかめ算式の考え方を自分でぱっと思いついた人は地頭がいいとされるだろうけど。