「ガウス」を含む日記 RSS

はてなキーワード: ガウスとは

2019-02-18

anond:20190217100150

そうかぁ?(モーツァルト

まだまだ。(メンデルスゾーン

うーん.... (ガロア

はぁ? (J.S.ミル

なるほど。(オイラー

で?  (ガウス

2018-12-21

anond:20181220235520

数学として正しければ正解だと思うんだよ。

私が疑問視していることは「数学として正しい」ことと「答が合っていれば正しい」が半ば同一視される意見が見られる、ということです。

数学的な正しさと個人個人数学的な理解を直結させるには論証が必要です。その論証が理解できているかどうかを確認するのにはさら議論を深めなくてはなりません。

私が「数学的に正しい」教師であれば、件のテストの回答時間中に約分の成立する理由を空欄にでも書いてあれば正解にすると思います

公立校小学生向けの業者の出す単元別テストなんて、表裏完答してさらにおまけのコラムまで解き切ってなお時間が余ってラクガキするほど余裕があるはずなので、将来ガウスかテレンス・タオかという天才児と言わずとも、数学嫌いにならず、担任を屈服し切る説明をしてくれるはずです。

(そんなアリアハンのザコレベルテストすら満足な答を出せない児童がいるのも公立校ならでは、なんですけど、大抵の人は学生時代記憶なんて風化してしまものなんでしょうか?)

2018-11-26

[] ギフテッドよかった(思い切りネタバレ感想

フロリダ海辺の街で、ボートの修理をして生計を立てている独り身のフランク。彼は、天才数学者だったが志半ばで自殺してしまった姉の一人娘、メアリーを養っている。彼女は、先天的数学天才児“ギフテッド”であり、周りは特別教育を受けることを勧めるが、フランクは「メアリー普通に育てる」という姉との約束を守っていた。しかし、天才児にはそれ相応の教育を望むフランクの母イブリンが現れ、フランクメアリーの仲を裂く親権問題にまで発展していく――。

映画『ギフテッド』オフィシャルサイト| 20世紀フォックス ホーム エンターテイメント

ストーリーはあちこちで語られまくっているからここではもう書かない。

本作のもうひとつの魅力はキャラクターが魅力的なことだと思う。

ただし直接言葉描写されるのではなく、会話の断片やちらりと映る写真からキャラクターの背景が浮かび上がってくるスタイルなので人によっては伝わりにくいかもしれない。語りたいので勝手に語る。以下全部ネタバレ


主人公

彼の最初イメージは、バーに入り浸り汚い家でいい加減な生活をしている駄目おやじだ。

軽口を言い合う娘との関係がなんともいえず良い。

主人公は娘を一人の人間として対等に扱い誠実に会話をする。その様子が心地よく暖かい。2人は強い信頼と愛情で結ばれている。

物語中盤で主人公の背景が徐々に明らかになる。

母親から娘を託された時点では彼はオックスフォード准教授であったらしい。

仕事育児が両立できずに辞職し、現在ではボートの修理工として不安定生活を送る。

浮かび上がってくるのは、育児のためにキャリア収入も捨てその苦労を娘にわからないように振る舞う気丈な男親の姿だ。

人生ほとんどを育児に捧げたその結果、家が汚いことと収入不安定さを理由に娘を取り上げられてしまうのはあまりにも理不尽だ。つらい。

「五分でいいか自由時間が欲しい」とうっかりこぼし、娘が激しく傷ついてしまうシーンがある。

彼は行政にも保育園にも頼らずたった1人で子供を育てて来た。娘が天才であることがバレたら取り上げられてしまうのではないか、という危惧からだ。彼の危惧現実となった。小学校天才であることがバレ、またトラブルを起こしたことからほぼ放校処分英才教育校への転入するように言われる。英才教育を望むおばあちゃんにより養育権を巡る裁判が起こされるという事態になる。

ところで彼の言動子供を育てる親の「あるある」が詰まっていてとてもよい。

LEGOを踏んで絶叫するとか。五分でも時間が欲しいとか。

『育て始めて最初の2週間で自分の手には負えないことがわかっていた。明日こそ児童相談所に行こうと毎日思った。でもその度にあの子は何かをしでかすんだ。思いもよらないことをね。』泣いたり笑ったり。あの子はいろんなことをするんだ。それでいつのまにか手放せなくなっていたと彼は続ける。

そうだろうなあ。わかる。わかるよ。


おばあちゃん

家系図



どこからどう見ても英才教育ソババアなんだけれども、物語が進むにつれ彼女の背景も明らかになる。

どうやら彼女自身も相当に優秀な数学研究者であったらしい。はっきりとは描写されていないがミレニアム問題ひとつナビエ・ストークス方程式の解について研究していたようだ。

結婚出産研究の道を諦めたが彼女の魂は数学に囚われたままだ。出来た子供母親)が数学天才自身の夢を託してしまったようだ。

英才教育の建前のもと子供人生に介入しまくるクソ親で、子供ボーイフレンドと遊びに行くと誘拐だと言って通報する、裁判を起こすと別れるまで脅し続けるなどやっていることは無茶苦茶だ。

どうも彼女自身も男運がないようで「男はみんな駄目男」と思っているかもしれない。この辺りも子供プライベートに介入しまくる理由ひとつなのだろう。

物語を通して2つの関係が描かれる。主人公と娘、そしておばあちゃん母親関係だ。

物語ラストシーン母親に対する自身のこれまでの行いを後悔し泣く。子供である母親と向き合い、彼女の死に対して始めて涙を流す。

つのまにか母親感情移入して見ていたので救われる思いだった。ボロボロ泣いてしまった。

泣く彼女にかける主人公セリフがまた良い。

母親

一切出てこないのにすごい存在感

天才として生まれ英才教育を受け、娘を残して自殺してしまった母親

物語が進むにつれ彼女の悲痛な声が聞こえてくるようだ。

『親に愛されたかった』『親は私を愛さなかった。数学の才能にしか興味はなかった』

母親人生はおばあちゃんに完全にコントロールされてしまっている。

そのせいで母親生活能力がなく男を見る目もない。それを見ておばあちゃんは「自分がなんとかしなければ」とますます母親支配する。

自立したくとも彼女には生活能力がないのでできない。

妊娠して男に捨てられ親(おばあちゃん)に相談するも突き放され、弟である主人公に娘を託して自殺

自分のようにしないで、普通に育ててと主人公に娘を託すが・・・


ませていて可愛くて、繊細で、言動が突拍子もなくて目が離せない。本当に魅力的。

感想サイトを見ると見た人全員が絶賛している。

見ていない人はぜひトレーラーだけでも見て欲しい。

ちょっとした子供仕草が本当にリアル。すきあらば体をよじ登って来るとか、上に乗っかって寝始めるとか

あるあるある。


映画を観る前は「アイアムサム」みたいな内容かな?と思っていたのだけれども娘の立ち位置がこの映画をもう少し複雑にしている。

母親普通に育てるようにと遺言を残したけれども娘自身数学を望んでいる。

普通小学校に通うことを拒否しおばあちゃんの持ってきたPC数学書に純粋に喜ぶ。

母親はおばあちゃん価値観押し付けられ苦しんだ。母親は「自分と同じにしないように普通に育てて」というが

皮肉なことにそれが母親から娘への価値観押し付けにも見て取れる。当然だけれども母親と娘も別の人間なわけで。

主人公自分の行動が正しいのか苦悩し続けている。

もちろん娘は主人公との暮らしを望んでいるし、明らかにおばあちゃんダメすぎるのけれども。

この映画感想に「天才には適した教育をすべき」という主張の人がかなりいることにちょっと驚いたのだけれども

おそらく彼らは娘に強く感情移入ながら見たひとたちなのだろう。


数学描写

映画は素晴らしかった。たまに映るホワイトボードノートの数式もいいかんじ。娘の成長具合がなんとなくわかる。この手の映画は数式が不自然にわざとらしくなりがちだけどそんなことない。よい。けれども1箇所だけちょっといいたい。

天才を試す問題ガウス積分はないでしょーー。しか符号書き間違えるか??ぐちゃぐちゃ長い式書いていたけれどもいったい何を書いたんだ。式が長い方が絵的に映えるのかもしれないけれどー。筋の悪い人に見えちゃうよー。極座標にしようよ。

いや小学1年生がガウス積分はすごいけれども、彼女は少なくとも微分方程式までは勉強しているわけでとうに知っているでしょう。

あのシーンだけちょっと突っ込みたい。

2018-10-06

ガウス記号

ガウス記号ってよく「xを超えない最大の整数」という定義を見るけど「x以下の最大の整数」より使われてるのはなんでなんだ。

「の」が被るから言い換えてるのか。

2018-09-02

anond:20180902103608

整数論専門院卒、非数学者です。

まずは

1. ガロア理論

2. 楕円曲線

の二つについて理解することを目標にされるといいと思います

この二つは19世紀以前の数学最高峰であり、また現代数学の多くの分野に関連することから、IUTを目標としない人でも学ぶ価値のある理論だと思います

またIUTでは楕円曲線ガロア理論を用いて数の加法乗法構造を調べるというようなことをしています

以下では、上の二点についてもう少し詳しく説明してみます

1. ガロア理論

ガロア理論方程式を解くということを群という対称性を用いて理解するものです。これを用いて5次方程式の解の公式の有無や作図問題などの古典的問題解決されました。これを理解するためには代数学特に群や体について基本的な事を学ぶ必要があります

さら整数論に関わるものとして、p進体などを学んだ上で類体論勉強なさるのがよいと思います。p進体では(普通対数関数と同じように)log定義することができ、これはIUTでも重要役割を果たします。類体論特別場合として円分体のガロア理論理解すると、例えばガウスなんかの整数論の話もより深く理解できると思います

2. 楕円曲線

楕円曲線は楕円関数論をある種代数的に扱うようなものです。楕円関数というのは、三次式の平方根積分でこの積分を表すために導入された関数です。19世紀数学でかなり研究されたものですが、これについては複素解析という複素数平面上で微積分をするということについて理解する必要があります

さらにその後の発展として、リーマン面や基本群、ホモロジーといった概念が考えられました。基本群やホモロジーというのはトポロジーという分野で研究されているものですが、数論幾何でも重要役割を果たします。

上の二つの話は独立したものではなく、相互に関連しあうものです。例えば、基本群とガロア群はある意味では同じものだと観ることができます。このような視点を持って整数研究をするのが数論幾何という分野です。

まとめると、まずはガロア理論目標として代数基本的なこと、楕円関数目標にして複素解析を学ぶのが良いと思います

これは同時並行に進めることをお勧めします。

上に書いたようなことは数論幾何を専門にするなら学部生ぐらいで知っている話です。これらを踏まえてIUTにより近い専門的な内容を学んでいくのが良いでしょう。私もその辺りについて詳しいことは言えないのですが、例えば京都大学の星先生の書かれたIUTのサーベイをご覧になってみるのが良いのではないでしょうか。

2018-07-04

バトルメックのテクノロジー(後半)


原文:

 https://bg.battletech.com/universe/battlemech-technology/

兵装 WEAPONS

 バトルメックが装備できる武装は幅広い。メック搭載の核融合から事実上いつまででもエネルギー供給を受けることができるエネルギー兵器弾薬の補充を必要としない。このため一般的なバトルメックは、荷電粒子兵器もしくはレーザー兵器を主武装として搭載している。加えて、多くは短距離ミサイルや長距離ミサイルの発射システムを持っている。その他、連射型オートキャノンやマシンガンを搭載しているメックも多く、これらは対歩兵、対航空機、対メック戦闘に用いられる。兵器の各分類に関する概観は下記のとおりである

オートキャノン Autocannons

 オートキャノンは高速で連射が可能自動装填兵器であり、高性能炸薬を詰めた徹甲弾の奔流を吐き出す。「通常型」オートキャノンは徹甲弾、フレシェット弾、焼夷弾狙撃弾などの各種弾薬使用可能である。加えて、機能を追加した3種の改良型オートキャノン(LB-Xオートキャノン、ロータリー・オートキャノン、ウルトラオートキャノン)が存在する。オートキャノンの弾薬は、致命的な損傷を受けたりオーバーヒートによる自動発火が発生した際にメックの内部で誘爆を起こす可能性がある。

火炎放射器 Flamers

 メック搭載型の典型的火炎放射器は、核融合炉の発する熱を利用して短射程ながら強力な爆炎を作り出す。発熱が大きいわりに与えるダメージが小さいため、メックに搭載されることはまれであるが、焼夷兵器として有効場合もある。

ガウスライフル Gauss Rifles

 ガウスウライフルはライフル砲身の中に設置された磁石の列によって、標的に向けて弾体を加速する。動作必要な電力は莫大だが、発熱が非常に少ない上、発射時の弾速は他の通常兵器の二倍に達する。ヘビーガウスライフル、通常型ガウスライフル、軽量型ガウスライフルの3種がある。オートキャノンとは異なりガウスライフル弾薬は誘爆しないが、ガウスライフル自体ダメージを受けると爆発する。

ハチェット Hatchet

 中心領域製バトルメックの中には、装甲を切断するための劣化ウランの刃を備えたハチェット(手斧)を装備している機種がある。ハチェットはメックに固定され、標的にダメージを与えるにはターゲットに振り下ろさねばならない。ハチェットの変形としてソード(剣)がある。

レーザー Lasers

 レーザーは狭い範囲に莫大な熱量を集中することで標的にダメージを与える。バトルメック搭載の各種レーザーは射程と威力対応してマイクロレーザー、小型レーザー、中型レーザー、大型レーザーのいずれかに分類される。このほか、射程延長型レーザー、ヘビーレーザーパルスレーザーがある。レーザーダメージを受けても爆発することがなく弾薬不要だが、大量の熱を発する。

マシンガン Machine Guns

 バトルメックが装備することはまれだが、マシンガン機関銃機関砲)は高速で連射することが可能なので、素晴らしい対人兵器となる。マシンガンにはライトマシンガンとヘビーマシンガンがある。

ミサイルランチャー Missile Launchers

 ミサイルランチャーミサイル発射装置)は推進力と誘導装置を持つ弾体を発射し、標的にダメージを与える。非常に多くの種類があり、長距離ミサイルに始まって中距離ミサイル、短距離ミサイルさらにはクランの改良型戦術ミサイルシステムや〈ストリーク〉短距離ミサイルなどの各種改良型ミサイルまで様々である。その上、「通常型」長距離ミサイルランチャーであっても無数の派生型弾頭を使用できる。たとえばフレア型、分裂型、焼夷型、半誘導型、それに〈サンダー地雷散布ミサイルなどである。オートキャノン同様、ミサイルランチャー弾薬ダメージを受けたりメックが過剰に加熱すると誘爆を起こす可能性がある。

荷電粒子砲(PPC) Particle Projector Cannons (PPC)

 PPCは要するに磁気加速装置であり、高エネルギー陽子もしくはイオンの矢を撃ち出して衝撃と高熱によるダメージを与える。各種PPCはバトルメックが装備可能兵器のうちでは最強クラスだ。PPCには通常型PPCと射程延長型PPC存在する。

その他の装備 Other Equipment

 装甲と兵器に加えて、メックは広範な各種システムを装備可能である。多くは武器の正確性を向上させる電子システムや各種防御手段提供するものだが、各種の防御的機能を持つ純粋機械的システムもいくつか存在する。

アクティブプローブ Active Probe

 動力を切ったユニット偽装されたユニットであっても標準レベル電子戦装備一式より遠距離から探知・識別することができるため、アクティブプローブはあらゆる偵察部隊にとって有効な追加装備となる。

アンチミサイルシステム(AMS) Anti-Missile System

 アンチミサイルシステム(AMS)は連射可能な定点防御用マシンガンである。飛来するミサイルを追跡し、迎撃し、破壊することができる。きわめて効果的ではあるものの、大量の弾薬を消費するのが最大の弱点である

対人攻撃ポッド Anti-Personnel Pods

 対人攻撃ポッド(Aポッド)は要するに指向性地雷である。設置するのはバトルメック脚部の膝から下であり、そこは敵歩兵が繊細な駆動装置に爆発物を仕掛けようとする場合には必ず攻撃せねばならない部位である

アルテミスⅣ〉射撃管制システム Artemis IV Fire Control System

 〈アルテミスⅣ〉射撃管制システムは、通常型ミサイルランチャーによる射撃の正確さを向上させる。

C3コンピューター C3 Computer

 指揮/統制/通信Command/Control/Communications、すなわちC3)コンピューターは中心領域特有システムである複数の機体ーー最大12機ーーが照準データを共有することを可能とし、これによって射撃の精確さは大幅に向上する。このシステムには重大な欠点があり、それは「主要マスターコンピューター群」が破壊もしくはダメージを受けたり、敵の電子対抗手段干渉をうけたりすることで、ネットワーク構成部品が「消えて」しま可能性があることである。改良型のC3コンピューターでは「マスターコンピューター群」が失われることによるネットワーク消失という問題はなくなっているが、合計6ユニットまでしか接続できない。

弾薬収納運搬装備(CASE) Cellular Ammunition Storage Equipment (CASE)

 CASEは機体内部の弾薬誘爆による被害を軽減するダメージコントロール技術である。CASEによって防護された部位に格納された弾薬が誘爆した場合、CASEは特殊設計の外鈑と装甲を通じて爆圧を逃がす作りになっているため、爆発力のほとんどをコクピットエンジンなどバトルメックにとって致命的な部分から逸らすことができる。

CMスイート電子対抗措置装備一式) ECM Suite

 〈ガーディアン〉ECMスイートは広い帯域にわたってジャミングおよび電子対抗措置を行なう装置であり、敵の長距離探査・監視装置の効力を低下させる。

人工筋肉加速信号回路(MASC) Myomer Accelerator Signal Circuitry (MASC)

 MASCはバトルメックに短時間だけ爆発的なスピードを与えるが、繊細な脚部駆動装置を損なう危険もある。MASCの作用は脚部マイアマー(人工筋肉)への信号を増幅し、通常可能なよりも高速で収縮・弛緩を行なわせるというもので、これによってスピードは上がるが、使用時間が伸びると駆動装置と人工筋肉への負荷によって破滅的な事故が発生する可能性がある。

〈ナーク〉ミサイル・ビーコン Narc Missile Beacon

 〈ナーク〉ミサイル・ビーコンは大改造を施したミサイルランチャーであり、「ポッド」と呼ばれる特殊ミサイルを発射する。ポッド磁気を帯びた弾頭とその後ろに搭載される強力なホーミング・ビーコンで構成される。このミサイルは標的に命中すると、〈ナーク〉の信号を受信できる味方のミサイルシステムすべてに向けて追尾信号を発する。〈アルテミスⅣ〉ミサイルシステムと同様に、〈ナーク〉のポッドによって命中するミサイルの数が増える可能性がある。改良型の〈ナーク〉発射装置は通常型よりも射程が増大しているのみならず、以下の特殊ミサイルを発射することもできる。すなわち追尾型、爆裂弾頭型、ECM型、〈ヘイワイヤ〉および〈ネメシスミサイルである

TAG(タグ/照準確定機) Target Acquisition Gear (TAG)

 照準確定装備は観測機によって用いられ、〈アローⅣ〉ミサイル投射システムが発射するホーミングミサイルのため、もしくは長距離ミサイルランチャーが発射する半誘導タイプのLRMによる攻撃のために、標的を指定する。氏族もTAGの軽量化バージョンを用いており、これは軽量ではあるがより短射程である

照準コンピューター Targeting Computer

 氏族は様々なミサイル兵器用の特殊照準システムに加えて先進的な照準システムを開発しており、中心領域でこれに比肩するものが現れたのは最近のことである。照準コンピューターは以下の種類の直射兵器パフォーマンスを向上させる。すなわちレーザーPPCガウスライフル、オートキャノンである

三重強化筋肉 Triple-Strength Myomer

 中心領域科学者特殊タイプマイアマー(人口筋肉)を開発した。これはメックがオーバーヒートした時に極めて強い力を出す。この技術氏族のバトルメックでは使用できない。

※前半はこちら→ https://anond.hatelabo.jp/20180704014245

2018-03-07

からみたらガウスベートーヴェンも一緒でしょ。

からベートヴェンは数学者なんだよ、とか。

2017-12-30

anond:20171230052232

ーーーーー

電磁波鉄塔の街・門真 「白血病死者18人調査から10年、今も変わらぬ風景

野田雅也 00:36 10/27 2006

ーーーーー

門真・電磁波実測Mapが語る関西電力「小児白血病危険地帯

野田雅也 17:02 11/18 2006

ーーーーー

http://www.mynewsjapan.com/reports/469

http://www.mynewsjapan.com/reports/485

単位ガウス、、、

2017-09-16

https://anond.hatelabo.jp/20170916043104

なんか怪文書みたいに支離滅裂文章だな。

メルカトル図法の「上下両端の線」は単に人間がそこで地図を便宜的に切っただけのもので、

北極点南極点を表しているわけではない。

というかメルカトル図法では北極点南極点を描くことはできない。

メルカトル図法では、球から、その球に接する円筒形に投影したときできる地形を描いている。

なのでメルカトル図法地図北極点南極点付近を描こうとすると、

地図上下方向にどこまでも伸びていき、歪みもどんどん大きくなっていき、

しかもどこまで伸ばしていっても北極点南極点は決して地図には表れない。

描きたければ別方向の円筒投影した別の地図を用意する必要がある。

それを弱点ということはできる。

それともガウスの驚異の定理がとか言って殴りつけたほうかいい?

メルカトル図法の弱点はtan90°にある

メルカトル図法上下両端の線は何を表しているかというと北極点南極点いう点である

実際はも少し低緯度が限界なのだが、かりにそうしておく。

北極点南極点中学数学知識だと、面積がない。つまり大きさがゼロなのだ

点を直線で表現することで、赤道付近にくらべて、緯度が高くなるほど面積が増えていくのだ

線の長さを仮に1メートルとしよう。ゼロにどんな数をかけても1メートルになることはない。

ゼロに巨大な数字をかけてもゼロであることは義務教育レベルだ。

この時点で、メルカトル図法がとんでもないほら吹きだということがわかる。

この原理を率直に示すのが<tan90°=∞>である三角関数の詳細を覚えていなくても、これだけ覚えれば

メルカトル図法のとんでもなさがわかるというものだ。

追記

しわけありませんでした。

ガウスの「驚異の定理」でググったらある大学幾何学特論の講義ノートがヒットしました。

読み始めましたが「R^3=(R^3^0)の曲面をはめこみ…」で終わりました。

高校でうけた地理の授業を思い出しながら、書き殴ってしまいましたが、どうも怪文書になってしまったようです。

まあ、昨年ある国会議員増田を「便所の落書き」と罵ったのにくらべると、怪文書の方が少々誉められている気がしないでもないです。

2015-04-17

世界史人物概覧

世紀
前6孔子(前551儒教の祖)
孫子(前544・『孫子』著者)
前5釈迦(?・仏教開祖
ヘロドトス(前484・歴史の父)
ヒポクラテス(前460・西洋医学の父)
プラトン(前427・哲学者
前4アリストテレス(前384・万学の祖)
アレクサンドロス大王(前356・マケドニア王)
前3アルキメデス(前287・古代最大の数学者
始皇帝(前259・最初中華皇帝
劉邦(前256・漢の高祖)
ハンニバル(前247・包囲殲滅戦術確立
前2司馬遷(前139・『史記』著者)
前1カエサル(前100・ローマの終身独裁官
ウェルギリウス(前70・ローマ最大の詩人
オクタウィアヌス(前63・ローマ帝国の初代皇帝
イエス(前4・キリスト教開祖
1プトレマイオス(83・天文学者
2ガレノス(130・古代医学確立
張仲景(150・医聖)
曹操(155・三曹の一人)
3
4王羲之(303・書聖)
アウグスティヌス(354・古代最大の神学者
5アッティラ406・フン帝国の王)
6ムハンマド(570・イスラム教開祖
李靖(571・『李衛公問対』)
李世民(598・唐の第2代皇帝
7
8アブー・ムスリム(700・アッバース革命立役者
李白(701・詩仙)
杜甫(712・詩聖)
カール大帝(742・フランク王国
9
10フェルドウスィー(934・『シャー・ナーメ』著者)
イブン・ハイサム(965・光学の父)
イブン・スィーナー(980・アラビア医学を体系化)
11
12朱子1130・儒教の中興者)
サラディン1137・アイユーブ朝開祖
インノケンティウス3世1161・教皇権最盛期のローマ教皇
チンギス・ハン(1162・モンゴル帝国の初代皇帝
13トマス・アクィナス1225・『神学大全』著者)
ダンテ1265・イタリア最大の詩人
ジョット(1267・西洋絵画の父)
14羅貫中(?・『三国志演義』『水滸伝』編者』)
イブン・ハルドゥーン(1332・『歴史序説』著者)
ティムール(1336・ティムール朝建国者
ヤン・ジシュカ(1374・マスケット銃を使用)
グーテンベルク(1398・活版印刷発明者)
15ジャンヌ・ダルク(1412百年戦争聖女
コロンブス(1451・アメリカの再発見者)
ダ・ヴィンチ(1452・万能の天才
ヴァスコ・ダ・ガマ(1460・インド航路開拓者
マキャヴェッリ(1469・『君主論』著者)
ミケランジェロ(1475・芸術家
マルティン・ルター(1483・宗教改革
スレイマン1世(1494・オスマン帝国最盛期の皇帝
16エリザベス1世(1533・アルマダ海戦に勝利)
セルバンテス(1547・『ドン・キホーテ』著者)
ガリレオ(1564・科学革命の中心人物)
シェイクスピア(1564・イギリス最高の詩人劇作家
グスタフ・アドルフ(1594・三兵戦術確立
デカルト(1596・合理主義哲学の父)
17ルイ14世(1638・絶対王政最盛期の王)
ジョン・ロック(1632・イギリス経験論の父)
ニュートン(1642・科学革命の中心人物)
康熙帝(1654・清の第4代皇帝
バッハ(1685・音楽の父)
18オイラー1707・数学者
曹雪芹(1715・『紅楼夢』著者)
アダム・スミス1723・経済学の父)
カント1724・哲学者
ワシントン1732・アメリカ初代大統領
ワット1736・蒸気機関の改良)
ラボアジェ1743・近代化学の父)
モーツァルト1756・音楽家
ナポレオン1769・初代フランス皇帝
ベートーヴェン1770・音楽家
ガウス1777・数学者
クラウゼヴィッツ1780・『戦争論』著者)
スチーブンソン(1781・鉄道の父)
ファラデー(1791・電磁気学の父)
バベッジ1791・コンピュータの父)
19ダーウィン(1809・進化論提唱
ポー(1809・ミステリの父)
マルクス(1818・共産主義提唱
ヴィクトリア女王(1819・帝国主義最盛期の女王
パスツール(1822・近代細菌学の父)
ヴェルヌ(1828・SFの父)
モネ(1840・印象派の祖)
ロダン(1840・近代彫刻の父)
エジソン(1847・発明王
フォード(1863・自動車大量生産
ライト兄弟(1867・飛行機発明
アインシュタイン(1879・相対性理論を発表)
ピカソ(1881・画家
ケインズ(1883・マクロ経済学確立
グデーリアン(1888・電撃戦確立
ヒトラー(1889・ナチス指導者

2014-11-12

http://anond.hatelabo.jp/20141112220944

それで反論になると思ってるということは、統計学を本当に理解してないということの裏付けしかならない。

国民全体をガウス記述するモデルを個人の振る舞いにそのまま適用する無意味さは、まさにmore is differentというところ(ググるように)。

でもすでに書いたけどこれを素人理解するのは無理だと思う(現象モデル化するという訓練をそれなりに積んでいないと厳しい)。

物事というのは君が想像している以上に複雑なんだということを理解してくれると嬉しい。

良い事例を思いついたからヒントをあげよう。

例えば、俺の身の回り会社家族、友人関係)では喫煙率は高く見積もって5%程度だ。

タバコを吸う人間には年に数人会うかどうかというところだ。

これが土方のあんちゃんとかだったら8割とか9割とかになるだろう。

自分が関わり得る範囲でのモデル国民全体のモデルとは大幅に異なるのだ。

これは性別や年齢だけでなく、個人の社会的階層性格やその他様々な属性によって決まってくるものだ。

これを隠れ変数と言う。現象妥当モデルに落とし込むには多くの場合観測不能な隠れ変数を考えざるを得ない。

それがどういうことかよく考えてみてほしい。

2014-08-19

2034年

2034年、小保方晴子チベットラサ市で全世界に向けて会見を開いた。

曰く、「”STAP細胞”が完成した」という。

その実否はすぐに証明され、多くの難病を抱える人々を救済したばかりか、

驚くべきことに体毛などさえあれば死者を任意の段階で復活させることも可能であった。


実は小保方が”STAP細胞”と評したものは元来のSTAP細胞とは全く異なるおぞましいもので、

小保方はもともと比較的得意だった細胞学と死霊術とのチャンポンで死者をも蘇らせる万能細胞を精製していたのだった。


これにより多くの偉人が復活した。

ドルヒットラースターリンケネディサッチャー金正日などの著名な政治家に加え、

ウィトゲンシュタインガウスノイマンピカソつのはず壱郎らの優れた科学者芸術家が復活した。

危険な人物が復活した際は、初めは対立する勢力に殺害される場合があったが、すぐにそれは止んだ。

それは殺してもまたすぐに復活してしまうからだ。

ヒットラーなどは公式記録においては109回復活し88回殺害されているものの、現在10数名が同時に存在している。

そしてこの新技術が浸透するにつれ、人々の関心はもっと身近なところに向いた。

大切な家族恋人を復活させることを望んだのだ。そして、自分が死んでも復活できるよう手配したのも言うまでもない。

インターネット人口に素早く膾炙して行ったのと同じく、この技術もほどなく庶民が一般に享受できるものになった。

時の流れが変わった。

過去現在未来、あるいは生や死といったテーマ

人類有史以前から様々にアプローチしてきたテーマが、意味をなさなくなった。

科学芸術宗教で追究されていたテーマが完全に不必要になった。

犯罪も、戦争も、資本のあり方も、その姿を変えた。

小保方晴子はかつて自分研究を著しく妨げられたことがあった。

その恨みは、20年間決して忘れられるものではなかった。

血のにじむような努力を通して、彼女人類復讐することを果たした。

まり人類が今まで構築してきたあらゆる成果を無意味にして人間を、いや生物を新しい段階へと突き上げしまった。

これが彼女なりの復讐の形だった。

この動きに反対する者も、初めの段階では多くあった。すなわち、この無制限の復活、「死の死」に否定的な者があった。

技術純粋に受け入れる「素直」な人々の批判さらされながらも、彼らは自分の一回きりの生を全うし「死んで」いった。

しかし、そうした彼らでさえ、必要があれば生きている者により復活させられる場合があった。

悪意のある新技術賛同者などは、死を選んだ人を積極的に復活させたりもしていた。

人間の選択すら、尊厳すら、小保方の用意した細胞には適わなかったのだ。

人間文化が激変し、誰もその動きを止められなくなったなか、小保方の理念に異を唱える者があった。

狩野英孝である芸人として円熟の域に達していた狩野英孝である

「STAPゥ~!」

宮城県栗原市神職の生まれであった狩野は、若年のころから独特の神力を以て人々の前に立っていた。

彼はある日、彼の師匠筋にあたりヘルニアで既に世を去っていた出川哲朗による霊界からの通信を受けた。

出川は酔った東京私立大学生によって頻繁に復活させられる人物であったので、なぜ霊界から出川が通信しうるか狩野にとっては疑問であった。

彼は現世にいるのではないか? 狩野自身出川と再び会えたときはとっても嬉しかったのだ。

しかしこの疑問が、小保方の野望を突き破るヒントになっていた。

出川から教唆を受けたことで、狩野霊界イデア実在確信した。

現世に多く現れるクローン出川には、否、すべての復活にあたってはその源であるイデア」的人格霊界存在していたのだ。

小保方の行なった復讐により人間は考えるすべを失ってしまった。考えられない葦になってしまった。

自分の、この出川との体験が、何とか人類の真なる再生とならないか。

科学技術哲学、生や死の理念人類に取り戻せないか。真面目な狩野はそう考えた。

ラーメン、付け麺、ぼくヌーメン!」

「おいおい”勘弁”してくれよ~!」


こうして、ウッチャンの許可を得たのち、出川の霊とともに狩野チベットに赴くのだった…

2014-04-21

円城塔もっと楽しむためのノンフィクションはこれだ!

SFもっと楽しむための科学ノンフィクションはこれだ! http://d.hatena.ne.jp/huyukiitoichi/20140417/1397744529 を受けて10冊選んでみました。

「『現実とはなにか』という認識が変わっていく」ような本はありません。

言語

ヨーロッパにおける完全言語を求める歴史を扱った『完全言語の探求』と多くのプログラミング言語設計者へのインタビューをまとめた『言語設計者たちが考えること』は、あまり読者が重なっていない気がしますが、円城塔きっかけにして両方読んでみるのもいいのではないでしょうか。

つぎの著者につづく」(『オブ・ザ・ベースボール』収録)の冒頭で語られるエピソードが『完全言語の探求』から引いたものであることは単行本収録時に追加された注で明示されていますし、「道化師の蝶」に出てくる無活用ラテン語についても『探求』で触れられています

一方『言語設計者たちが考えること』については、読書メーターで「小説を書く人も読むと良い」(2010年12月10日)とコメントしていて、『本の雑誌』の連載でも取り上げています(2011年11月言葉を作る人たち」)。また『本の雑誌』の連載では『言語設計者たち』以外にも時々プログラミング言語言語処理についての本が取り上げられています

最近連載のはじまった「プロローグ」(『文學界掲載)も今のところ、より望ましい文字の扱いや処理についての話をしているので、いささか強引な解釈ですが『完全言語の探求』『言語設計者たちが考えること』と繋がっている小説です。

翻訳

ロシア語作家として出発しアメリカ亡命後に英語作家に転身したナボコフは、自分自身の書いた文章を別の言語翻訳する「自己翻訳」を相当数おこなっていますが、それを主題とした評論書です。

円城塔本人も語っていますが、「道化師の蝶」ではナボコフモチーフとして使われています。友幸友幸が「希代の多言語作家であることもナボコフへの参照のひとつでしょう(若島正は『乱視読者の新冒険』のなかでナボコフを「稀代の多言語作家」と形容しています)。その希代の多言語作家の「わたし」とそれを翻訳する「わたし」が重なるようで重ならない「道化師の蝶」の筋立てにも、同じ作品について作者と翻訳者の両方の役割を演じたナボコフの影が見出せます。また「道化師の蝶」の姉妹編といえる「松ノ枝の記」での、相互翻訳相互創作する2人の作家という設定も「自己翻訳」の変奏と見ることができるでしょう。こうした創作翻訳交錯する2編を再読する上でも、この評論書が良い補助線になるのでは。

読書メーターコメントは「素晴らしい」(2011年4月28日)。

数学 全般

最初期に書かれた『Self-Reference ENGINE』や「オブ・ザ・ベースボール」「パリンプセストあるいは重ね書きされた八つの物語」(『虚構機関』収録)などに顕著ですが、円城塔小説には、掌編の積み重ね(積み重ならず?)によって全体の物語が作られるという構造がよく現れます。これは辞典を順番に読んでいく感覚ちょっと似ているかもしれません。『数学入門辞典』を読んでいると、たとえあまり数学に詳しくなくても、円城塔小説に対してしばしば言われる「よく分からないけど面白い」という感覚を味わえると思います。ただし、円城塔小説に出てくる数学用語がこの辞書に出てくるなどと期待してはいけません。

一家に一冊」だそうです。 https://twitter.com/rikoushonotana/status/402707462370758656/photo/1

数学 数学者

円城塔小説には数学者やそれに準ずる人が多く登場しますが、『史談』は数学者を語った本として真っ先に名前のあがる定番の名著です。著者は類体論確立したことあるいは解析概論の著者として知られる高木貞治。かの谷山豊はこの本を読んで数学者を志したそうです。

数学部分については河田敬義『ガウスの楕円関数高木貞治先生著"近世数学史談"より』という講義録があるくらいには難しいので適当飛ばしましょう。

考える人2009年夏号 特集日本科学者100人100冊」で円城塔が選んでいたのが高木貞治とこの本でした。

数学 モンスタームーンシャイン

ムーンシャイン現象は、『超弦領域』収録の「ムーンシャイン」の題材で、他に「ガーベジコレクション」(『後藤さんのこと』収録)にも単語だけですがモンスター群とコンウェイが出てきます(コンウェイは「烏有此譚」の注にも言及あり)。作品内に数学的ホラ話といった雰囲気がしばしばあらわれる円城塔にとって「怪物的戯言(モンスタラスムーンシャイン)」はいかにもな題材かもしれません。

ムーンシャインを扱った一般向けの本というとたぶん最初に『シンメトリーモンスター』が挙がるのですが翻訳が読みにくいし『シンメトリー地図帳』にはあまり説明がなかった気がするので、この『群論』を挙げます

数学の専門書ですが、第4章「有限単純群の分類/Monsterとmoonshine」は読み物風の書き方になっています。ただし詳しい説明なしでどんどん話が進んでいくところも多く、きちんと理解するのは無理です(無理でした)。

第4章を書いている原田耕一郎はモンスター群の誕生にも関わりが深い人で、多くの文章モンスタームーンシャインについて触れているので、雑誌などを探せば難度的にもっと易しい文章が見つかるかもしれません。

数学 確率

円城塔小説には「オブ・ザ・ベースボール」のように確率についての言及もよく見られます。『数学セミナー』『数学のたのしみ』『科学』等で高橋陽一郎が書いた確率論についての諸入門解説記事、は探すのが面倒だと思われるので、もっと入手しやすいこの本を。

確率微分方程式で有名な伊藤清エッセイ集です。「確率」より「数学者」の項に置くのがふさわしい本ですが確率の本として挙げます

読書メーターコメントは「素晴らしい」(2010年10月24日)。

数学 力学系

やはり専門が力学系ということもあり、力学系関連もしばしば登場します。

本のタイトルを見て「力学系力学は違う」と指摘されそうですが、副題は「カオスと安定性をめぐる人物史」。力学系歴史に関する本です。実のところどんな内容だったか覚えていないのですが、「いわゆるこの方程式に関するそれらの性質について」(単行本未収録)で引用文献に挙がっているか大丈夫でしょう。

数学 ロジック

Nova 1』収録の「Beaver Weaver」をはじめ、ロジック(数学基礎論)関連も円城塔小説に頻出する素材です。

とりわけ計算可能性、ランダム性、busy beaver、コルモゴロフ複雑性……とあげてみると、まずはチャイティンの諸作が思い浮かびますが、あれはむやみに勧めていいタイプの本なのかちょっと疑問なので避けます読書メーターでは、最近出た『ダーウィン数学証明する』に対して「 チャイティンチャイティンによるチャイティンのためのいつものチャイティン」(2014年3月20日)とコメントしています

これという本が思い浮かばなかったので、いくらかためらいながらもこの本を挙げました。『メタマジックゲーム』か、あるいはヒネリも何もなく『ゲーデルエッシャーバッハ』でよかったのかもしれません。ただ『ゲーデルエッシャーバッハ』だけを読んでもほぼまちがいなく不完全性定理理解できないということはもっと周知されるべきじゃないかと思います

円城塔はこの本について「すごかった。(但し、かなりハード。)」(2011年3月27日)とコメントし、『本の雑誌』でも取り上げています(2012年10月ゲーデルさんごめんなさい」)。

初心者向きの本ではありませんが、不完全性定理について一席ぶつ前に読んでおくといいでしょう。


天体力学パイオニアたち』が上下巻なので、以上で10冊になります

別にノンフィクションを読まなくてもフィクションを楽しむことはできますが、ノンフィクションを読むことによって得られるフィクションの楽しみというのもまた楽しいんじゃないでしょうか。

追記: 小谷元子編『数学者が読んでいる本ってどんな本』に寄稿している13人のうちのひとりが円城塔なので、そちらも参照してみるとよいと思いますリストに挙げられている約50冊の本のうち半分くらいがノンフィクションです。上に挙げた本とかぶっていたのは『数学入門辞典』『天体力学パイオニアたち』『ゲーデル定理 利用と誤用の不完全ガイド』でした。また、はてブコメント言及のあったイエイツ『記憶術』もリストに入ってました。

2014-03-22

加工のし過ぎに注意?なんか気持ち悪いトイプードル画像

何気なくトイプードルを売ってるペットショップ広告クリックして出てきたトイプードル画像が気持ち悪い。

http://www.poodle.co.jp/

別に自分動物好きだし、google画像検索で出てくるプードルたちにはなんら違和感がない。

志村動物園なんかは嫌いな動物好きのタイプだ。

比較してみてぱっと見でわかるのは瞳が妙に黒々しい事。

実際フォトショで色を拾ってみたら#000000な部分まであった。

google検索のはちゃんとグレー的な色やら赤茶色などが混じっている。

そして目と毛の境界が妙にハッキリしている。

これも1ピクセル大まで拡大したら上から楕円ツールで●書いたんじゃないかと思うぐらいぼかしが少ない。

光彩までくっきりだし。

逆に鼻周辺(マズル)の毛並みがガウスでもかけたのかと思うようなもやっとぶり。

検索画像はもちろん毛毛っとしている。

下層ページのヘッダ画像とかは変に思わないので

やはり加工してんだろうなぁとは思うのだけど

はたしてこれは可愛いのか?

まぁ美的感覚なんてそれぞれだけど、とりあえず野球場広告出した自慢はいらねぇんじゃねぇかなぁ。。。

2012-06-18

http://anond.hatelabo.jp/20120618003244

高瀬正仁さん訳の『オイラー無限解析』ですかね.以下宣伝ですけれど『ガウス整数論』と同じシリーズ朝倉数学史叢書の『リーマン論文集』も素敵です.あとガウス関連だと,高木貞治近世数学史談』や高瀬ガウスの数論 わたしのガウス』,ダニングトン『ガウス 科学王者』Carl Friedrich Gauss: Titan of Science なんかもよさそうです.

http://anond.hatelabo.jp/20120618000932

なんと!「自分代数幾何勉強していた時は―」って書いた者だけど、その本16日に書店で注文して届くのを楽しみに待っているよ。

自分ラテン語が読めないから邦訳を頼んだんだけど、いつか数学天才が生み出した古典的な分野から現代的な分野まで全部網羅したいね

ちなみに「ガウス無限解析」という本も同時に注文した。

※追記

ガウス無限解析」じゃなくて「オイラー無限解析」だった。

2010-07-21

http://anond.hatelabo.jp/20100721165623

くその通り。

統計的な確率なんてのは適当な(必ずしも適切という意味ではない)確率モデルを想定して最尤推定か何かして求めたものに過ぎない。

確率モデルはせいぜい二項分布線形ガウスモデルだろう。

モデル化の不確実性なんてまず間違いなく考慮されてない。

十中八九」以上の正確さなんてあり得ないと思うべきだね。

2010-02-04

http://anond.hatelabo.jp/20100203131337

はてブネガティブだな

俺も受験勉強嫌だったし、学部一年のときの線形とか微積もあんまり好きじゃなかった

物理化学はほとんど単位を取らなかった

学科所属の単位も当然ギリギリだった

けど、専門の勉強は楽しかった

数学やろうなんて気持はとうに失せてたけど、位相空間定義は凄いと思ったし、ガウスボンネの定理は神様の存在を予感させた

研究室も種類があって、おもしろそうな所を選んだ

やりたいことができたから楽しかった

そして、そのまま博士までいっちゃった

受験勉強たのしかった!もっと勉強したい!って人なんているのか?

やりたいことだけやる人のほうが、学問には向いてると思うな

自分が向いているかはともかく、まわりを見ていると

2009-04-24

http://anond.hatelabo.jp/20090424194311

ま、ぶっちゃけ君はそれなりに能力あるだろうから、こう考えてると思うんだ。

  • 俺は思考するときに抽象的な思考だけでやるぜ。言語使って考えるなんて低レベルな処理してる連中とは頭の出来が違うからな。ガウスアインシュタインだって、言葉を覚える前から考えてた、とか言われてるし、抽象的思考ができる方が頭いいだろ。さて、この低能連中を使って俺の自己顕示欲プライドを満たすにはどういう書き方をすればいいかと言うと、常套手段だが、すっとぼけた感じで「え、頭の中で言語なんて使わないよね?」とか言うのが結局一番良いな。抽象的思考を当たり前にやってる感を端的に示せるしな。んでもって…

実際、君が思っている通り、凡人共は君のような抽象的思考はできないんですよ。満足したかい。

アーカイブ ヘルプ
ログイン ユーザー登録
ようこそ ゲスト さん