はてなキーワード: AXとは
40-43インチ 4K 液晶モニター https://kakaku.com/pc/lcd-monitor/itemlist.aspx?pdf_Spec101=20&pdf_Spec301=40-43&pdf_so=p1
最安値 フィリップス 438P1/11 [42.51インチ ブラック]
¥49,800 税込み
ディーライズ
43V型AX-MSK43
税込32,780円
TCL 43V型4K対応液晶 チューナーレススマートテレビ e angle select 43V型4K 43P63E
¥49,800(税込)
JAPANNEXT JN-VT5001UHDR [50インチ]
¥53,976(税込み)
イートレンド
(全19店舗)
50V型AX-MSK50
税込38,280円
TCL 50V型4K対応液晶 チューナーレススマートテレビ e angle select 50V型4K 50P63E
¥59,800(税込)
あと一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか
軽い気持ちで相関って書いたら突っかかられて面倒になってきたな
コメントでの記法に準拠するけど、ここで相関の強さという語は普通想定されると思われる相関係数の大小を指していると想定する
まず回帰の確率モデルがxを確率的に扱わないというのは単に解きやすいから初等的にはそういう仮定を置くというだけであって、一連の変数誤差モデルなどx側にも誤差の入る確率モデルは普通に使われている
あとこういう統計推論の文脈で用いられる「分散」という語は確率変数の分散ではなく標本分散なので、背後に何の確率モデルを仮定するかどうか関係なく形式的に計算される xが広がれば標本分散は大きくなるので分散と無関係という説明も意味が分からない
一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか
もともとの文脈では分散の話をしていなかったし、(あなたが持ち出した)分散という語を使って議論するのが正しいわけではないと思うが、単に相関係数は分散でスケーリングをかけているので(あなたのいうところの)分散も考慮している、という程度の意味で書いた。そもそも回帰係数と相関係数は別の概念でしょう
分散は単にスケーリングとしてしか作用しないから、おそらくあなたの言いたかったことは分散ではなく分布を考慮できるかどうかではないかと思うが、共分散部分が分布の影響をきちんと考慮してくれている。
あと相関の強さについても度合は何も言及していなかったのに、突っかかりたいだけでしょうあなたは
一部で「有意義オリオン」と呼ばれていた、PC-6001用にASCII社から発売されていた8ビットの擬似3D宇宙空間シューティングゲーム。
たしか32KBしかないメモリ空間で、4MHzクロックの8ビットCPUなのに、ちょっと感動的なくらい「臨場感」があってハマったんだよねーw
操作マニュアル的な冊子に、わりと詳しいプログラムロジックの解説が載ってたり、月刊ASCII誌で解説記事があったりしたと思うが、それ読んでプログラミングを志した感じかw
当時、IT業界とは関係ない方面の大学に通ってたけど、卒業後に某F社系列のソフトウェア会社に就職して、まんまとPC向けソフトの部署に配属になり、仕事で作るソフトは全然ゲーム関連じゃなかったけど、休み時間とか業務のヒマな時期を見繕って、会社のPCで密かにオリオンそっくりのゲームを作って一人で遊んだww
いまオレが使ってるパソコン、当時の100万倍の32GBのメモリ積んでて、1000倍近い(というかコア数・スレッド数も勘定に入れたら4000倍近い)3.6GHzクロックのCPUだけど、あの有意義オリオンより有意義なソフトなんて一個も走らせてないなw
増田はKの絵柄模倣(主観)を「諸悪の根源」としているが、前後関係がおかしい。
正しい順番は
①が騒動の発端なのはA氏のDMとツイートに明確に示されており、 A自身の言葉による主張なのでKの作為や主観が入る余地もない。
まさか「 Aははじめから絵柄模倣の問題と考えており、本当はトレパクではないとわかっていた。なのにあえてトレパク疑惑をかけた」
とでも言いたいんですか? 私はそうは思いませんが。
③トレパク疑惑が白認定された後から、争点をスライドするように取り沙汰されるようになったのが④絵柄模倣行為(絵柄パク)。
この増田も騙され増田も、さも「初めから絵柄模倣が主問題だった」かのように話しているが大嘘。誰がどう見てもトレパクが本来の争点だった。
それをよくもここまで論点ずらして、殺人だの大仰な妄言でミスリードして、どっちが嘘と侮辱だよ。
ところで、「ZUKIも汗もこなつさんを攻撃するメリットなんてなかった」
https://twitter.com/monetaraisan/status/1441764498314960896/photo/1
だから累進性が働くのは年収4千万までで、1億あたりをピークに下がるグラフになる。
とした場合、所得と手取りの関係は y =x - ax と書ける。
累進課税の場合税率は所得に比例するので 税率a=bx と表す事ができ、 y=x - bx^2 となる訳だが
x-x^2のグラフ https://ja.wolframalpha.com/input/?i=x-x%5E2%E3%81%AE%E3%82%B0%E3%83%A9%E3%83%95
を見ればわかるように、所得(x)が多すぎると手取り(y)が減ってしまうどころかマイナスにすらなってしまう。
このような不条理を起こさないようにするためには、税率の上限を50%とする必要がある。
https://anond.hatelabo.jp/20210907184611 の続き
たとえば、以下のような問題を考えます。演習問題に限らず、教科書の本文や、解答の一文一文も「証明問題」だと捉えてこのような態度で読み解く必要があります。
x2 - 2a|x| - b = 0
それほど典型的な問題ではありません。少なくとも、何か簡単な公式があって2aやbなどを代入すれば答えが出てくる、というものではありません。
この問題を解くには、左辺の式が何を意味しているのか理解していなければいけません。これは、何か上手いやり方があって機械的に解ける場合でもそうです。
とxの二次式になるので、既に知られた方法で解の個数を求めることができます。ただし、たとえば方程式f≧0(x) = 0の解は、x≧0を満たすものだけを数えることに注意が必要です。したがって、単に判別式の符号を調べるだけでなく、二次関数f≧0(x)のx≧0の範囲での増減を調べる必要があります。x<0の場合も同様です。
結局、この問題を解くには
ということができる必要があります。特に前者を理解していないのは、問題文の式が何を意味しているのか分かっていないということですから、解法を覚えるとか言う以前の問題です。当然、これらが分からなければ調べたり他人に聞く必要があります。その際は、定義の数式を形式的に覚えたり当て嵌めたりするだけではなく、具体例を通じて、その意味を理解する必要があります。絶対値記号|x|であれば、xが正の数ならどうなるのか、負の数ならどうなるのか、y = |ax + b|や、y = |ax2 + bx + c|のグラフの概形はどうなるのか、等。
もし二次関数を調べた際に平方完成が分からなければ、それも調べる必要があります。平方完成を調べて文字式の展開で分からないところがあれば、それも調べる必要があります。そもそも、二次方程式を解く際になぜ(一次方程式では必要無かった)平方完成をするのか。そういった問題が解ける理屈(あるいは類似の問題と同じやり方では解けない理屈)を理解している必要があります。
また、自分で問題を解いて、たとえば場合分けの仕方が解答と異なるならば、それらが本当に同値なのかをきちんと確かめる必要があります。最初のうちは計算ミスをして符号などが逆になることもあるでしょうが、それもどこで間違えたのかをきちんと確かめる必要があります。
そういうことをすべて完璧にこなして初めて、この問題を理解したと言えるのです。
以下、解答例を載せます。匿名ダイアリーなので文字のみですが、実際は図を付けた方が良いでしょう。
f(x) = x2 - 2a|x| - bとおくと、
f(x) = 0の実数解の個数は、y = f(x)のグラフと、y = 0のグラフの交点の数であるから、これを求める。
とおく。y = f≧0(x)のグラフは、(a, -(a2 + b))を頂点とする下に凸な放物線で、y軸との交点は-bである。一方、y = f<0(x)のグラフは、(-a, -(a2 + b))を頂点とする、下に凸な放物線で、y軸との交点は-bである。
したがって、y = f(x)のグラフは、y = f≧0(x)のグラフのx≧0の部分を、y軸に関して対称に折り返した形をしている。
f(x)は、x = ±aで最小値-(a2 + b)を取る。したがって、y = f(x)のグラフとy = 0のグラフの交点の数は、
f(x)は、x = 0で最小値-bを取る。したがって、y = f(x)のグラフとy = 0の交点の数は
以上、(1-1)〜(1-5), (2-1)〜(2-3)がf(x) = 0の実数解の個数である。
上の解答例ではy = f(x)のグラフの位置関係を用いましたが、もちろん、f≧0(x) = 0、f<0(x) = 0の解を実際に求めても解けます。
この場合は、それぞれの解がx≧0、x<0を満たすかどうかを確かめる必要があります。そして、それぞれの場合でf≧0(x) = 0のx≧0を満たす解の個数とf<0(x) = 0のx<0を満たす解の個数を足したものが答えになります(x≧0とx<0に共通部分は無いので、これらを同時に満たすことはありません)。
f≧0(x) = 0の解は、
x = a ± √(a2 + b)
である。同様に、f<0(x) = 0の解は
x = -a ± √(a2 + b)
である。
とおくと、ra(b)はa2 + b≧0の範囲で定義される。また、ra(b)はbに関して単調増加であり、ra(0) = |a|である。つまり、f≧0(x) = 0およびf<0(x) = 0の2つの解が同じ符号を持つか否かは、b = 0を境界にして分かれる。
したがって、a2 + b≧0のとき、f≧0(x) = 0の解は
同様に、f<0(x) = 0の解は、a2 + b≧0のとき、
また、D < 0の場合は、f≧0(x) = 0、f<0(x) = 0ともに実数解を持たない。
以上をまとめると、f(x) = 0の解の個数は、以下のようになる。
(1-1) a2 + b<0のとき、0個
(1-2) a2 + b = 0のとき、2個(③と⑥でD = 0場合)
(1-3) a2 + b>0かつb<0のとき、4個(③と⑥でD>0の場合)
(2-2) b = 0のとき、1個(②と⑤で D = 0の場合)
何度も書いているように、たとえばx2 - 2ax - b = (x - a)2 - (a2 + b)などの式変形の意味が分からないのであれば、二次関数の復習をする必要があります。解答文中に出てきた「単調増加」などの用語も分からなければ調べる必要があります。
上記の場合分けが(a, b)のすべての組を網羅しているのか、と言ったことも注意する必要があります。
解答例2の①〜⑥の場合分けは、y = f≧0(x)およびy = f<0(x) のグラフとy軸との交点を考えています。これの符号と軸の位置で、どの範囲にy = 0の解が存在するかが決まります。たとえば、下に凸な放物線がy軸と負の値で交わるならば、x軸とは必ず正負両方の値で交わらなければいけません。逆に、y軸と正の値で交わるならば、x軸とは交わらない(D<0)か、放物線の軸がある方で2回交わります(D = 0の場合は1回)。解答例2ではra(b) = √(a2 + b)という関数を用意しましたが、このy軸との交点と軸に関する条件を代わりに説明しても良いです。このように、数式や条件が図形のどのような性質に対応するのかを考えることも数学の勉強では重要です。
また、「二次関数f(x)が下に凸で最小値が0以下であれば、f(x) = 0は実数解を持つ」ということを認めています。これは明らかに思えるでしょうが、極限を習った後であれば
実数値関数fが区間[a, b]で連続であれば、f(a)とf(b)の間の任意の実数γに対して、γ = f(c)となる実数c∈[a, b]が存在する。
という「中間値の定理」を暗に使っていることを見抜けなければいけません。このような定理が出てきたら、Part1でも述べたように、具体的な関数でどうなっているのか(たとえばf(x) = x2 - 2に対して、f(a) = 0となる実数aが存在することなど)、仮定を緩めたら反例があるのか(たとえばfの定義域が有理数ならどうか、連続でなければどうか)などを確認する癖をつけましょう。
y = x2 - 2a|x| - bのグラフとy = 0のグラフの交点を考える代わりに、y = x2 - 2a|x|のグラフとy = bのグラフの交点を考えても良いです。これは、本問と同値な方程式
x2 - 2a|x| = b
を考えていることに相当します。記述量はそれほど変わらないでしょうが、こちらの方が見通しは良いかも知れません。
仮に本問と異なり、aが定数の場合、たとえばa = 1であれば
y = x2 - 2|x|
のグラフは変数に依りませんから、y = bとの交点を考えるのは容易です。
実際、y = x2 - 2|x|のグラフは、頂点が(1, -1)、y軸との交点が0の、下に凸な放物線のx≧0の部分をy軸に関して対称に折り返した形です。
したがって、この場合は
です。
以上のことは、問題を解く際だけに行うのではなく、教科書本文、問題文、解答例の一文一文を「証明問題」だと思って常に意識する必要があります。
最近「共感力」が話題ですが、私も昔は「共感力」が低くて、(特に女性との)会話がとにかく盛り上がらなくて苦労していたのですが、たった1つのコツを理解したら、この「共感力」というものに対する悩みがなくなったので、共有まで。
https://anond.hatelabo.jp/20210110123006
参加者B: 「いやー、寒かったですよね~」
この会話ですが、この日は私は暖房付けっぱなしの自宅に家にずっと引きこもってたので、逆に暑かったくらいでした。2人が寒かったと言ったので、とりあえず「同意」と相手の言葉の「リピート」をしただけです。
昔はこういった会話1つ1つに、しっかり意味と事実を伝えないといけないと思っていたのですが、どうもそうじゃないっぽいんですよね。求められてるのは基本「相手の感情の肯定」なんですよね。だから重要なのは相槌とか感嘆詞とか、あと「同じ気持ち」ということに喜びを感じる人が多いので、相手が言った言葉をリピートするとか。
伊坂幸太郎の「AX」という、恐妻家の殺し屋の小説があるんですが、これがまさにアスペ男性が女性と上手くコミュニケーションとるやり方の参考になるので、小説自体も面白いですしオススメです。
Allowed countries
AE - United Arab Emirates
AL - Albania
BE - Belgium
BG - Bulgaria
BI - Burundi
BM - Bermuda
BN - Brunei Darussalam
BO - Bolivia (Plurinational State of)
BZ - Belize
CD - Congo (Democratic Republic of the)
CH - Switzerland
CK - Cook Islands
CN - China
CO - Colombia
CR - Costa Rica
CY - Cyprus
CZ - Czech Republic
DE - Germany
DO - Dominican Republic
EE - Estonia
EG - Egypt
FI - Finland
FK - Falkland Islands (Malvinas)
FM - Micronesia (Federated States of)
GB - United Kingdom of Great Britain and Northern Ireland
GG - Guernsey
GH - Ghana
GN - Guinea
GS - South Georgia and the South Sandwich Islands
HK - Hong Kong
HM - Heard Island and McDonald Islands
HT - Haiti
HU - Hungary
IN - India
IO - British Indian Ocean Territory
IR - Iran (Islamic Republic of)
JE - Jersey
JO - Jordan
KE - Kenya
KI - Kiribati
KW - Kuwait
KZ - Kazakhstan
LA - Lao People's Democratic Republic
LB - Lebanon
LI - Liechtenstein
LK - Sri Lanka
LR - Liberia
LU - Luxembourg
LY - Libya
ME - Montenegro
NO - Norway
NU - Niue
OM - Oman
PE - Peru
PL - Poland
PM - Saint Pierre and Miquelon
QA - Qatar
RE - Réunion
RS - Serbia
RU - Russian Federation
RW - Rwanda
SC - Seychelles
SH - Saint Helena, Ascension and Tristan da Cunha
SK - Slovakia
SO - Somalia
SZ - Swaziland
TF - French Southern Territories
TJ - Tajikistan
TL - Timor-Leste
TN - Tunisia
TO - Tonga
TR - Turkey
TZ - Tanzania, United Republic of
UG - Uganda
UM - United States Minor Outlying Islands
US - United States of America
UY - Uruguay
UZ - Uzbekistan
VC - Saint Vincent and the Grenadines
VE - Venezuela (Bolivarian Republic of)
VI - United States Virgin Islands
VU - Vanuatu
YE - Yemen
ZA - South Africa
ZM - Zambia
ZW - Zimbabwe
4月13日の週から、今週まで東京都のデータ入れて、matplotlibで3D化してみた。
これだと減ってる様子は見て取れないけど、東洋経済のサイトのグラフだと実行再生算数1切ってるんだよね。
下記のコードは好きに使ってくださいな。
---
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
x = np.array([-1, -2, -3, -4, -5, -6, -7]) # from Mon to Sun
y = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]) # From Apr13 to onward
X, Y = np.meshgrid(x, y)
# Number Data of New Infection Patient
Z = np.array([[ 98,161,127,150,204,185,107], # Apr13
[100,123,125,134,166,107,76], # Apr20
[40,112, 47, 46, 164,159, 90], # Apr27
[87, 57, 37, 23, 39, 36, 22], # May4
[15, 28, 10, 30, 9, 14, 5], # May11
[ 10, 5, 5, 11, 3, 2, 14], # May18
[ 8, 10, 11, 15, 22, 14, 5], # May25
[ 13, 34, 12, 28, 20, 26, 14], # Jul1
[ 13, 12, 18, 22, 25, 24, 47], # Jul8
[ 48, 27, 16, 41, 35, 39, 35], # Jul15
[ 29, 31, 55, 48, 54, 57, 60], # Jul22
[ 58, 54, 67,107,124,130,111], # Jul29
[102,106, 75,224,243,206,206], # Jul6
[119,143,165,286,293,290,188], # Jul13
[168,237,238,366,260,295,239], # Jul20
[131,266,250,367,463,472,292], # Jul27
[282,276,260,377,473,482,302]]) # Aug3 : encliding expectations = prev week number + 10
fig = plt.figure(figsize=(10,8))
ax.set_xlabel('Day', fontsize=16)
ax.set_ylabel('Week', fontsize=16)
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.8, 1.2, 1, 1]))
ax.plot_wireframe(X, Y, Z)
ax.plot_surface(X, Y, Z, cmap=plt.cm.jet, rstride=1, cstride=1, linewidth=0)
plt.show()
Amazonのレビューなどに書くと過去のレビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます。
初めに断っておきますが、本稿は別に加藤文元先生の人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文の査読体制に問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想でしかありません。
----
加藤文元先生の「宇宙と宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、
「ほとんど内容がない」
本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学の理論である、IUT理論(宇宙際タイヒミューラー理論)の一般向けの解説書です。
1~3章では、数学の研究活動一般の説明や、著者と望月教授の交流の話をし、それを踏まえて、IUT理論が画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています。
4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています。技術的な詳細には立ち入らず、アイデアを象徴する用語やフレーズを多用し、それに対する概念的な説明や喩えを与えています。
まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論と本質的に関係ない」ということです。これについては後述します。
1~3章は、論文が受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。
などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学者コミュニティの中でIUT理論に懐疑的な人達に説明すればいい話であって、一般人に長々と説明するような内容ではないと思います。もっとも、著者が一般大衆も含めほとんどの人がIUT理論に懐疑的であると認識して本書を書いたのなら話は別ですが。
4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的に説明されていません。
のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。
8章はIUT理論の解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、
複数の数学の舞台で対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。
今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要があります。しかし、これ以上は技術的になるので説明できません。
のような調子で話が進みます。いくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学の解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います。
本書の最大の問題点は、「本書の大部分がIUT理論と本質的に関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。
たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば
奇素数pに対して、√pは三角関数の特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))
4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)
のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論の典型的で重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論の一般論を説明し尽くしているわけではありません。また、類体論の一般的な定理の証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論の理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的な現象」は説明できるわけです。
もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能な実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。
f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)
このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から
1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
π/4 = 1 -1/3 + 1/5 - 1/7 + ...
のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば
dy/dx - Ay = B (A, B ∈ ℝ、A≠0)
のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、
よって、
a_0 = -B/A + C (Cは任意の定数)とおけば、
- a_n = C A^n/n! (n ≧ 1)
「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります。
上の計算を正当化する過程で最も困難な箇所は、このような級数が収束するかどうか、または項別に微分や積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になります。しかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的な現象」を説明することはできるわけです。
一般向けの数学の本に期待されることは、この「典型的な現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的な現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語の注釈でしかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的に関係のない解説しかないようなものです。
もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。
繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙と宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるものが数学的に正しい命題・意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうものと区別が付きません。
ここまでネガティブなことを書いておいて、何食わぬ顔でTwitterで加藤先生のツイートを拝見したり、東工大や京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます。
まず、私は加藤先生のファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます。
まず、上にも書いたような「IUT理論が論ずる典型的な現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。
そして、IUT理論と既存の数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。
論理的な側面は単純です。つまり、IUT理論に用いられる既存の重要な定理、およびIUT理論から導かれる重要な定理を、正式なステートメントで証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。
直感的な側面は、既存の数学からのアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論が位相空間における被覆空間の理論の類似になっているとか、そういう類のものです。
以上です。
加藤文元先生、望月新一先生、およびIUT理論の研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心からお祈り申し上げます。
どうせほとんどの読者は高校数学さえ理解していないのだから、何を解説したって数学の本質的な理解は無理なのかもしれない
彼らには、以下はどれも同じに見えている
虚二次体の有限次Abel拡大は、1のべき根と、楕円モジュラー函数の特殊値と、虚数乗法を持つ楕円曲線の等分点の座標で生成される。
Xを位数q=p^mの有限体F_q上のn次元非特異射影代数多様体、Y=X×_{F_q}(F_qの代数閉包)とすると、
#X(F_q) = ∑[i=0, 2n](-1)^i Tr(F_q, H^i(Y, Q_l))。
Cをダークマターの作用を持つN次元クリスタル、Xをそのアトラクターとすると、XからCへの次元変換Fは、固有なファクター方程式
F = F_1 ⊕ ... ⊕ F_N
を満たす。
集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。
K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。
C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である。
L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)が存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。
そのような多項式が存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。
なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式
X^2 -(z + z*)X + zz* = 0
の解だから。
Kを体とする。K上の任意の多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで
と一次の積に分解する。このようなLのうち最小のものが存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である。
LをFの分解体とする。Lの部分環Vを
K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))
の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるから、aiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元のベクトル空間である。
Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像は全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である。
Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである。
さて、Lの元でK上のいかなる多項式の根にならないものが存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□
L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限次代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。
M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。
α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。
[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つものが存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。
Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。
任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。
L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。
L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。
[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。
α∉Kより、K⊕KαはK上2次元のベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。
σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□
C/RはGalois拡大。
L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。
L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである。
K(α)/Kが正規拡大で、さらにαの最小多項式が重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。
nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である。
L/Kを有限拡大とする。任意のα∈Lの最小多項式が重根を持たないとき、L/Kは分離拡大という。
体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。
F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。
実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。
L/KをGalois拡大、Gal(L/K)をGalois群とする。
K⊂M⊂Lとなる体Mを、L/Kの中間体という。
部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。
逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。
次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。
L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。
- H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
- K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
- 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
- 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
- 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。
K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである。
この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。