「AX」を含む日記 RSS

はてなキーワード: AXとは

2022-09-09

anond:20220909224423

あと一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか

一般線形モデルに決まってんだろ。マジ頼むよほんと。

anond:20220909220849

軽い気持ちで相関って書いたら突っかかられて面倒になってきたな

コメントでの記法準拠するけど、ここで相関の強さという語は普通想定されると思われる相関係数の大小を指していると想定する

まず回帰確率モデルがxを確率的に扱わないというのは単に解きやすいから初等的にはそういう仮定を置くというだけであって、一連の変数誤差モデルなどx側にも誤差の入る確率モデル普通に使われている

あとこういう統計推論の文脈で用いられる「分散」という語は確率変数分散ではなく標本分散なので、背後に何の確率モデル仮定するかどうか関係なく形式的計算される xが広がれば標本分散は大きくなるので分散無関係という説明意味が分からない

一応指摘しておくとわざわざ回帰の式にφを使っているのは何か意味があるんだろうか?y=ax+εとせずわざわざφとか使っている時点で非線形関数を考えているのかと思うが、例えばφ(x)=x^2などとすればσ=0でも相関がとても小さくなる例が作れる 急にカーネル法の話でも始めるつもりだろうか

もともとの文脈では分散の話をしていなかったし、(あなたが持ち出した)分散という語を使って議論するのが正しいわけではないと思うが、単に相関係数分散でスケーリングをかけているので(あなたのいうところの)分散考慮している、という程度の意味で書いた。そもそも回帰係数と相関係数は別の概念でしょう

分散は単にスケーリングとしてしか作用しないから、おそらくあなたの言いたかたことは分散ではなく分布考慮できるかどうかではないかと思うが、共分散部分が分布の影響をきちんと考慮してくれている。

あと相関の強さについても度合は何も言及していなかったのに、突っかかりたいだけでしょうあなた

他人に向かってバカさらしちゃったなとか嘲る前に、その程度の知識マウントを取ろうとするのをやめたほうがいいと思う

すぐ専門用語を持ってきて煙に巻こうとするのはよくないしきちんと勉強している人からは本当に滑稽に見えるよ

2022-07-08

AX-5 オリオン/クェスト anond:20220708135130

一部で「有意義オリオン」と呼ばれていた、PC-6001用にASCIIから発売されていた8ビットの擬似3D宇宙空間シューティングゲーム

しか32KBしかないメモリ空間で、4MHzクロックの8ビットCPUなのに、ちょっと感動的なくらい「臨場感」があってハマったんだよねーw

操作マニュアル的な冊子に、わりと詳しいプログラムロジック解説が載ってたり、月刊ASCII誌で解説記事があったりしたと思うが、それ読んでプログラミングを志した感じかw

当時、IT業界とは関係ない方面大学に通ってたけど、卒業後に某F社系列ソフトウェア会社就職して、まんまとPC向けソフト部署に配属になり、仕事で作るソフト全然ゲーム関連じゃなかったけど、休み時間とか業務のヒマな時期を見繕って、会社PCで密かにオリオンそっくりゲームを作って一人で遊んだww

いまオレが使ってるパソコン、当時の100万倍の32GBのメモリ積んでて、1000倍近い(というかコア数・スレッド数も勘定に入れたら4000倍近い)3.6GHzクロックCPUだけど、あの有意義オリオンより有意義ソフトなんて一個も走らせてないなw

2022-05-19

anond:20220517125829

増田はKの絵柄模倣(主観)を「諸悪の根源」としているが、前後関係おかしい。

正しい順番は

AXが重ならない検証でトレパク疑惑をかける。

②Kがトレパク疑惑否定。模写練習はしていたと明かす

世論がトレパク疑惑否定

④K批判の矛先がトレパクではなく絵柄模倣に変わる

 

諸悪の根源、という言葉意味はわかっていますか?

①が騒動の発端なのはA氏のDMツイートに明確に示されており、 A自身言葉による主張なのでKの作為主観が入る余地もない。

まさか「 Aははじめから絵柄模倣問題と考えており、本当はトレパクではないとわかっていた。なのにあえてトレパク疑惑をかけた」

とでも言いたいんですか? 私はそうは思いませんが。

 

③トレパク疑惑が白認定された後から、争点をスライドするように取り沙汰されるようになったのが④絵柄模倣行為(絵柄パク)。

この増田も騙され増田も、さも「初めから絵柄模倣が主問題だった」かのように話しているが大嘘。誰がどう見てもトレパクが本来の争点だった。

それをよくもここまで論点ずらして、殺人だの大仰な妄言ミスリードして、どっちが嘘と侮辱だよ。

 

ところで、「ZUKIも汗もこなつさんを攻撃するメリットなんてなかった」

メリットがないからやってない。どこかで見た表現ですね。

Kへの中傷の内容が似かよっていることといい、何らかの“共通認識”または“主導的立場人物”が存在したりするのかな?

自力でこんな思考結論に行き着く人間複数いるなんて信じたくないので、本気で教えてほしいんですけど。

2021-11-02

スマホの買い替えを検討してるんだが

誰か下記スペックを満たしてて、安いスマホ知ってたら教えてほしい。出来ればAndroidだとありがたい。

・5G対応ミリ波にも対応してたらありがたい)

Wi-Fi6(ax対応

2021-09-26

累進課税機能していないように見える理由

https://twitter.com/monetaraisan/status/1441764498314960896/photo/1

まずは↑のグラフについての解説

理由簡単で、

から累進性が働くのは年収4千万までで、1億あたりをピークに下がるグラフになる。

 

税率が45%で頭打ち理由

所得=x、手取り=y、税率=a (0≦a≦1)

とした場合所得手取り関係は y =x - ax と書ける。

累進課税場合税率は所得に比例するので 税率a=bx と表す事ができ、 y=x - bx^2 となる訳だが

x-x^2のグラフ https://ja.wolframalpha.com/input/?i=x-x%5E2%E3%81%AE%E3%82%B0%E3%83%A9%E3%83%95

を見ればわかるように、所得(x)が多すぎると手取り(y)が減ってしまうどころかマイナスにすらなってしまう。

このような不条理を起こさないようにするためには、税率の上限を50%とする必要がある。

それをふまえて住民税(+10%)と控除を考慮した結果が45%なのである

※ちなみに超富裕層所得税20%を下回るのはこの控除のせい。

2021-09-07

暗記数学が正しい Part. 2

https://anond.hatelabo.jp/20210907184611 の続き

実践

たとえば、以下のような問題を考えます演習問題に限らず、教科書の本文や、解答の一文一文も「証明問題」だと捉えてこのような態度で読み解く必要があります

問題

a, bを実数とする。xの方程式

x2 - 2a|x| - b = 0

実数解の個数を求めよ。ただし、|x|はxの絶対値を表す。

それほど典型的問題ではありません。少なくとも、何か簡単公式があって2aやbなどを代入すれば答えが出てくる、というものではありません。

この問題を解くには、左辺の式が何を意味しているのか理解していなければいけません。これは、何か上手いやり方があって機械的に解ける場合でもそうです。

左辺を絶対値定義に従って計算すれば、

  • x≧0のとき、x2 - 2ax - b(= f≧0(x)とおく)
  • x<0のとき、x2 + 2ax - b

とxの二次式になるので、既に知られた方法で解の個数を求めることができます。ただし、たとえば方程式f≧0(x) = 0の解は、x≧0を満たすものだけを数えることに注意が必要です。したがって、単に判別式符号を調べるだけでなく、二次関数f≧0(x)のx≧0の範囲での増減を調べる必要があります。x<0の場合も同様です。

結局、この問題を解くには

ということができる必要があります特に前者を理解していないのは、問題文の式が何を意味しているのか分かっていないということですから、解法を覚えるとか言う以前の問題です。当然、これらが分からなければ調べたり他人に聞く必要があります。その際は、定義の数式を形式的に覚えたり当て嵌めたりするだけではなく、具体例を通じて、その意味理解する必要があります絶対値記号|x|であれば、xが正の数ならどうなるのか、負の数ならどうなるのか、y = |ax + b|や、y = |ax2 + bx + c|のグラフの概形はどうなるのか、等。

もし二次関数を調べた際に平方完成が分からなければ、それも調べる必要があります。平方完成を調べて文字式の展開で分からないところがあれば、それも調べる必要がありますそもそも二次方程式を解く際になぜ(一次方程式では必要無かった)平方完成をするのか。そういった問題が解ける理屈(あるいは類似問題と同じやり方では解けない理屈)を理解している必要があります

また、自分問題を解いて、たとえば場合分けの仕方が解答と異なるならば、それらが本当に同値なのかをきちんと確かめ必要があります最初のうちは計算ミスをして符号などが逆になることもあるでしょうが、それもどこで間違えたのかをきちんと確かめ必要があります

そういうことをすべて完璧にこなして初めて、この問題理解したと言えるのです。

解答例1

以下、解答例を載せます匿名ダイアリーなので文字のみですが、実際は図を付けた方が良いでしょう。

f(x) = x2 - 2a|x| - bとおくと、

  • x≧0のときf(x) = x2 - 2ax - b = (x - a)2 - (a2 + b)
  • x<0のときf(x) = x2 + 2ax - b = (x + a)2 - (a2 + b)。

f(x) = 0の実数解の個数は、y = f(x)グラフと、y = 0のグラフの交点の数であるから、これを求める。

  • f≧0(x) = (x - a)2 - (a2 + b)
  • f<0(x) = (x + a)2 - (a2 + b)

とおく。y = f≧0(x)のグラフは、(a, -(a2 + b))を頂点とする下に凸な放物線で、y軸との交点は-bである。一方、y = f<0(x)のグラフは、(-a, -(a2 + b))を頂点とする、下に凸な放物線で、y軸との交点は-bである

したがって、y = f(x)グラフは、y = f≧0(x)のグラフのx≧0の部分を、y軸に関して対称に折り返した形をしている。

(1) a>0のとき

f(x)は、x = ±aで最小値-(a2 + b)を取る。したがって、y = f(x)グラフとy = 0のグラフの交点の数は、

  • (1-1) a2 + b<0のとき、0個
  • (1-2) a2 + b = 0のとき、2個(頂点で接する)
  • (1-3) a2 + b>0かつb<0のとき、4個
  • (1-4) b = 0のとき(a>0より、このときba2 + b>0)、3個(x = 0で2つの放物線と同時に交わる)
  • (1-5) b>0のとき(このときa2 + b>0)、2個。

(2) a≦0のとき

f(x)は、x = 0で最小値-bを取る。したがって、y = f(x)グラフとy = 0の交点の数は



以上、(1-1)〜(1-5), (2-1)〜(2-3)がf(x) = 0の実数解の個数である

解答例2

上の解答例ではy = f(x)グラフ位置関係を用いましたが、もちろん、f≧0(x) = 0、f<0(x) = 0の解を実際に求めても解けます

この場合は、それぞれの解がx≧0、x<0を満たすかどうかを確かめ必要があります。そして、それぞれの場合でf≧0(x) = 0のx≧0を満たす解の個数とf<0(x) = 0のx<0を満たす解の個数を足したものが答えになります(x≧0とx<0に共通部分は無いので、これらを同時に満たすことはありません)。

(f≧0(x)、f<0(x)の定義まで解答例1と共通

f≧0(x) = 0の解は、

x = a ± √(a2 + b)

である。同様に、f<0(x) = 0の解は

x = -a ± √(a2 + b)

である

  • D = a2 + b
  • ra(b) = √D = √(a2 + b)

とおくと、ra(b)はa2 + b≧0の範囲定義される。また、ra(b)はbに関して単調増加であり、ra(0) = |a|である。つまり、f≧0(x) = 0およびf<0(x) = 0の2つの解が同じ符号を持つか否かは、b = 0を境界にして分かれる。

したがって、a2 + b≧0のとき、f≧0(x) = 0の解は

  • ① b>0ならば、1つの解はaと同じ符号になり、もう一方は逆の符号になる(a2≧0なので、このときD ≠ 0)
  • ② b = 0ならば、1つの解はaと同じ符号になり、もう一方は0になる(D = 0ならx = 0を重解に持つ)
  • ③ b<0ならば、2つの解はaと同じ符号になる(D = 0なら、x = aを重解に持つ)

同様に、f<0(x) = 0の解は、a2 + b≧0のとき

  • ④ b>0ならば、1つの解は-aと同じ符号になり、もう一方は逆の符号になる(このときD ≠ 0)
  • ⑤ b = 0ならば、1つの解は-aと同じ符号になり、もう一方は0になる(D = 0ならx = 0を重解に持つ)
  • ⑥ b<0ならば、2つの解は-aと同じ符号になる(D = 0なら、x = aを重解に持つ)

また、D < 0の場合は、f≧0(x) = 0、f<0(x) = 0ともに実数解を持たない。

以上をまとめると、f(x) = 0の解の個数は、以下のようになる。

(1) a>0のとき

このとき、a>0、-a<0であるから

(1-1) a2 + b<0のとき、0個

(1-2) a2 + b = 0のとき、2個(③と⑥でD = 0場合

(1-3) a2 + b>0かつb<0のとき、4個(③と⑥でD>0の場合

(1-4) b = 0のとき、3個(②と⑤でD>0の場合

(1-5) b>0のとき、2個(①と④の場合

(2) a≦0の場合

このとき、a≦0、-a≧0であるから

(2-1) b<0のとき、0個(③と⑥の場合

(2-2) b = 0のとき、1個(②と⑤で D = 0の場合

(2-3) b>0のとき、2個(①と④の場合

補足

何度も書いているように、たとえばx2 - 2ax - b = (x - a)2 - (a2 + b)などの式変形の意味が分からないのであれば、二次関数の復習をする必要があります。解答文中に出てきた「単調増加」などの用語も分からなければ調べる必要があります

上記場合けが(a, b)のすべての組を網羅しているのか、と言ったことも注意する必要があります

解答例2の①〜⑥の場合分けは、y = f≧0(x)およびy = f<0(x) のグラフとy軸との交点を考えています。これの符号と軸の位置で、どの範囲にy = 0の解が存在するかが決まります。たとえば、下に凸な放物線がy軸と負の値で交わるならば、x軸とは必ず正負両方の値で交わらなければいけません。逆に、y軸と正の値で交わるならば、x軸とは交わらない(D<0)か、放物線の軸がある方で2回交わります(D = 0の場合は1回)。解答例2ではra(b) = √(a2 + b)という関数を用意しましたが、このy軸との交点と軸に関する条件を代わりに説明しても良いです。このように、数式や条件が図形のどのような性質対応するのかを考えることも数学勉強では重要です。

また、「二次関数f(x)が下に凸で最小値が0以下であれば、f(x) = 0は実数解を持つ」ということを認めています。これは明らかに思えるでしょうが、極限を習った後であれば

実数関数fが区間[a, b]で連続であれば、f(a)とf(b)の間の任意実数γに対して、γ = f(c)となる実数c∈[a, b]が存在する。

という「中間値の定理」を暗に使っていることを見抜けなければいけません。このような定理が出てきたら、Part1でも述べたように、具体的な関数でどうなっているのか(たとえばf(x) = x2 - 2に対して、f(a) = 0となる実数aが存在することなど)、仮定を緩めたら反例があるのか(たとえばfの定義域が有理数ならどうか、連続でなければどうか)などを確認する癖をつけましょう。

y = x2 - 2a|x| - bのグラフとy = 0のグラフの交点を考える代わりに、y = x2 - 2a|x|のグラフとy = bのグラフの交点を考えても良いです。これは、本問と同値方程式

x2 - 2a|x| = b

を考えていることに相当します。記述量はそれほど変わらないでしょうがこちらの方が見通しは良いかも知れません。

仮に本問と異なり、aが定数の場合、たとえばa = 1であれば

y = x2 - 2|x|

グラフ変数に依りませんから、y = bとの交点を考えるのは容易です。

実際、y = x2 - 2|x|のグラフは、頂点が(1, -1)、y軸との交点が0の、下に凸な放物線のx≧0の部分をy軸に関して対称に折り返した形です。

したがって、この場合

です。

まとめ

以上のことは、問題を解く際だけに行うのではなく、教科書本文、問題文、解答例の一文一文を「証明問題」だと思って常に意識する必要があります

2021-01-11

高学歴アスペの私が「共感力」を使いこなすようになった1つのコツ

最近共感力」が話題ですが、私も昔は「共感力」が低くて、(特に女性との)会話がとにかく盛り上がらなくて苦労していたのですが、たった1つのコツを理解したら、この「共感力」というものに対する悩みがなくなったので、共有まで。

https://anond.hatelabo.jp/20210110123006

共感力」というのは、相手感情肯定する「フリ」をすることです

模範例 / 先週実際にあったテレワークでのMTGでの冒頭の会話

参加者A: 「今日寒いですね~」

参加者B: 「いやー、寒かったですよね~」

自分: 「ホント今日寒いですよね~」

解説

この会話ですが、この日は私は暖房付けっぱなしの自宅に家にずっと引きこもってたので、逆に暑かったくらいでした。2人が寒かったと言ったので、とりあえず「同意」と相手言葉の「リピート」をしただけです。

昔はこういった会話1つ1つに、しっかり意味事実を伝えないといけないと思っていたのですが、どうもそうじゃないっぽいんですよね。求められてるのは基本「相手感情肯定」なんですよね。だから重要なのは相槌とか感嘆詞とか、あと「同じ気持ち」ということに喜びを感じる人が多いので、相手が言った言葉リピートするとか。

伊坂幸太郎の「AX」という、恐妻家殺し屋小説があるんですが、これがまさにアスペ男性女性と上手くコミュニケーションとるやり方の参考になるので、小説自体面白いですしオススメです。

https://www.amazon.co.jp/dp/B084SPFNH9/

2020-12-15

田中田中結婚したとするじゃん

仮に新郎田中家をAと置いて、新婦田中家をBと置いたとして、

大体ご両家の両親って母親旧姓を持っていたりするから

新郎家はAa新婦家はBbと置いて、でも会場には両家の親族やご友人方も列席しているわけでしょ

新郎側の列席者はAx新婦側はBxとして、その列席者の中にも田中姓の人が両家にいるとするじゃん

そうすると、(Ax+Bx)=2田中になる可能性もあるわけだよね

でも最初仮定した通りAB/2=田中になるから、2xAB=田村中吉という可能性もあるよね。

それにレアかもしれないけど、ab=ロビンソン福永になる可能性もある。

じゃあBAとした場合中田中田なんだけど、BA/3とした場合中日になることもあり得る。

まり僕が言いたいのは、この場合別姓を選んだらどういう扱いになるの?

2020-11-26

比例定数がマイナスの比例ってなんて言うんだっけ

いままで、右肩下がりのグラフを頭でイメージして「〇〇と××は反比例だ」とか言ってたけど、よく考えたら反比例は、y = a/x だな。

y = -ax関係を言いたいのに。

逆相関とか言えばいいのかね。

2020-10-06

anond:20201006152006

ヤシカAXと京セラコンタックスAX開発者にも不幸不吉なカメラと謂われた不憫な子やでぇ。。。

ちんぽから生じる得も言われぬ感覚について

私はそれをAXと呼ぶことにした

AX快楽の類ではない

快楽と呼ぶにはあまりにも繊細な感覚である

では不快感覚かと言われればそれも違う

もっと別の方向の感覚なのだ

誤解を恐れずはっきりと言ってしまえば

AX宇宙へ通づる感覚なのである

AXが生じる時

私はちんぽに意識を集中する

目を閉じ心を閉ざし深く深く集中する

周囲から音が消え

他の感覚が消え

AXと私だけになる

私が私を認識する感覚

それがAXと一体化し

私はAXへと至る

私は消失AXが私そのものになる

その瞬間

私は宇宙へと通じたことを理解するのである

2020-08-30

PUSH AX

PUSH BX

MOV スタックレジスタ 値

POP BX

POP AX

よくつかうよね。この処理。

どがーんじゃなくて

すっ て 

 

みてみたいなーライゼンにまけてるIntelさんの ちょっと いいところ

                       ↑

2020-08-13

ジンバブエですら視聴できるのにお前らときたら

赤毛のアン オープニングテーマ:きこえるかしら

Allowed countries

AD - Andorra

AE - United Arab Emirates

AF - Afghanistan

AG - Antigua and Barbuda

AI - Anguilla

AL - Albania

AM - Armenia

AO - Angola

AQ - Antarctica

AR - Argentina

AS - American Samoa

AT - Austria

AU - Australia

AW - Aruba

AX - Åland Islands

AZ - Azerbaijan

BA - Bosnia and Herzegovina

BB - Barbados

BD - Bangladesh

BE - Belgium

BF - Burkina Faso

BG - Bulgaria

BH - Bahrain

BI - Burundi

BJ - Benin

BL - Saint Barthélemy

BM - Bermuda

BN - Brunei Darussalam

BO - Bolivia (Plurinational State of)

BR - Brazil

BS - Bahamas

BT - Bhutan

BV - Bouvet Island

BW - Botswana

BY - Belarus

BZ - Belize

CA - Canada

CC - Cocos (Keeling) Islands

CD - Congo (Democratic Republic of the)

CF - Central African Republic

CG - Republic of the Congo

CH - Switzerland

CI - Côte d'Ivoire

CK - Cook Islands

CL - Chile

CM - Cameroon

CN - China

CO - Colombia

CR - Costa Rica

CU - Cuba

CV - Cabo Verde

CX - Christmas Island

CY - Cyprus

CZ - Czech Republic

DE - Germany

DJ - Djibouti

DM - Dominica

DO - Dominican Republic

DZ - Algeria

EC - Ecuador

EE - Estonia

EG - Egypt

EH - Western Sahara

ER - Eritrea

ES - Spain

ET - Ethiopia

FI - Finland

FJ - Fiji

FK - Falkland Islands (Malvinas)

FM - Micronesia (Federated States of)

FO - Faroe Islands

FR - France

GA - Gabon

GB - United Kingdom of Great Britain and Northern Ireland

GD - Grenada

GE - Georgia (country)

GF - French Guiana

GG - Guernsey

GH - Ghana

GI - Gibraltar

GL - Greenland

GM - Gambia

GN - Guinea

GP - Guadeloupe

GQ - Equatorial Guinea

GR - Greece

GS - South Georgia and the South Sandwich Islands

GT - Guatemala

GU - Guam

GW - Guinea-Bissau

GY - Guyana

HK - Hong Kong

HM - Heard Island and McDonald Islands

HN - Honduras

HR - Croatia

HT - Haiti

HU - Hungary

ID - Indonesia

IE - Republic of Ireland

IL - Israel

IM - Isle of Man

IN - India

IO - British Indian Ocean Territory

IQ - Iraq

IR - Iran (Islamic Republic of)

IS - Iceland

IT - Italy

JE - Jersey

JM - Jamaica

JO - Jordan

KE - Kenya

KG - Kyrgyzstan

KH - Cambodia

KI - Kiribati

KM - Comoros

KN - Saint Kitts and Nevis

KP - North Korea

KR - Korea (Republic of)

KW - Kuwait

KY - Cayman Islands

KZ - Kazakhstan

LA - Lao People's Democratic Republic

LB - Lebanon

LC - Saint Lucia

LI - Liechtenstein

LK - Sri Lanka

LR - Liberia

LS - Lesotho

LT - Lithuania

LU - Luxembourg

LV - Latvia

LY - Libya

MA - Morocco

MC - Monaco

MD - Moldova (Republic of)

ME - Montenegro

MG - Madagascar

MH - Marshall Islands

MK - Republic of Macedonia

ML - Mali

MM - Myanmar

MN - Mongolia

MO - Macao

MP - Northern Mariana Islands

MQ - Martinique

MR - Mauritania

MS - Montserrat

MT - Malta

MU - Mauritius

MV - Maldives

MW - Malawi

MX - Mexico

MY - Malaysia

MZ - Mozambique

NA - Namibia

NC - New Caledonia

NE - Niger

NF - Norfolk Island

NG - Nigeria

NI - Nicaragua

NL - Netherlands

NO - Norway

NP - Nepal

NR - Nauru

NU - Niue

NZ - New Zealand

OM - Oman

PA - Panama

PE - Peru

PF - French Polynesia

PG - Papua New Guinea

PH - Philippines

PK - Pakistan

PL - Poland

PM - Saint Pierre and Miquelon

PN - Pitcairn

PR - Puerto Rico

PS - State of Palestine

PT - Portugal

PW - Palau

PY - Paraguay

QA - Qatar

RE - Réunion

RO - Romania

RS - Serbia

RU - Russian Federation

RW - Rwanda

SA - Saudi Arabia

SB - Solomon Islands

SC - Seychelles

SD - Sudan

SE - Sweden

SG - Singapore

SH - Saint Helena, Ascension and Tristan da Cunha

SI - Slovenia

SJ - Svalbard and Jan Mayen

SK - Slovakia

SL - Sierra Leone

SM - San Marino

SN - Senegal

SO - Somalia

SR - Suriname

ST - Sao Tome and Principe

SV - El Salvador

SY - Syrian Arab Republic

SZ - Swaziland

TC - Turks and Caicos Islands

TD - Chad

TF - French Southern Territories

TG - Togo

TH - Thailand

TJ - Tajikistan

TK - Tokelau

TL - Timor-Leste

TM - Turkmenistan

TN - Tunisia

TO - Tonga

TR - Turkey

TT - Trinidad and Tobago

TV - Tuvalu

TW - Taiwan

TZ - Tanzania, United Republic of

UA - Ukraine

UG - Uganda

UM - United States Minor Outlying Islands

US - United States of America

UY - Uruguay

UZ - Uzbekistan

VA - Vatican City State

VC - Saint Vincent and the Grenadines

VE - Venezuela (Bolivarian Republic of)

VG - British Virgin Islands

VI - United States Virgin Islands

VN - Viet Nam

VU - Vanuatu

WF - Wallis and Futuna

WS - Samoa

YE - Yemen

YT - Mayotte

ZA - South Africa

ZM - Zambia

ZW - Zimbabwe


Disallowed countries

DK - Denmark

JP - Japan

2020-08-03

コロナ感染カレンダー3Dプロット

4月13日の週から、今週まで東京都データ入れて、matplotlibで3D化してみた。

今週の明日以降のデータは先週値からプラス10で入れてます

これだと減ってる様子は見て取れないけど、東洋経済サイトグラフだと実行再生算数1切ってるんだよね。

感覚とは合わないけど、ここから下がる予定。不思議なもんだ。

下記のコードは好きに使ってくださいな。

GoogleのCode Labとかならすぐに遊べます

---

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

import numpy as np

x = np.array([-1, -2, -3, -4, -5, -6, -7]) # from Mon to Sun

y = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]) # From Apr13 to onward

X, Y = np.meshgrid(x, y)

# Number Data of New Infection Patient

Z = np.array([[ 98,161,127,150,204,185,107], # Apr13

[100,123,125,134,166,107,76], # Apr20

[40,112, 47, 46, 164,159, 90], # Apr27

[87, 57, 37, 23, 39, 36, 22], # May4

[15, 28, 10, 30, 9, 14, 5], # May11

[ 10, 5, 5, 11, 3, 2, 14], # May18

[ 8, 10, 11, 15, 22, 14, 5], # May25

[ 13, 34, 12, 28, 20, 26, 14], # Jul1

[ 13, 12, 18, 22, 25, 24, 47], # Jul8

[ 48, 27, 16, 41, 35, 39, 35], # Jul15

[ 29, 31, 55, 48, 54, 57, 60], # Jul22

[ 58, 54, 67,107,124,130,111], # Jul29

[102,106, 75,224,243,206,206], # Jul6

[119,143,165,286,293,290,188], # Jul13

[168,237,238,366,260,295,239], # Jul20

[131,266,250,367,463,472,292], # Jul27

[282,276,260,377,473,482,302]]) # Aug3 : encliding expectations = prev week number + 10

fig = plt.figure(figsize=(10,8))

ax = Axes3D(fig)

ax.set_xlabel('Day', fontsize=16)

ax.set_ylabel('Week', fontsize=16)

# OUR ONE LINER ADDED HERE:

ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.8, 1.2, 1, 1]))

ax.plot_wireframe(X, Y, Z)

ax.plot_surface(X, Y, Z, cmap=plt.cm.jet, rstride=1, cstride=1, linewidth=0)

plt.show()

2020-07-21

宇宙宇宙をつなぐ数学 - IUT理論の衝撃」の感想

Amazonレビューなどに書くと過去レビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます

初めに断っておきますが、本稿は別に加藤文元先生人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文査読体制問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想しかありません。

----

加藤文元先生の「宇宙宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、

ほとんど内容がない」

この一言に尽きます数学書としても、一般書としてもです。

本書の内容と構成

本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学理論である、IUT理論宇宙タイミューラー理論)の一般向けの解説書です。

1~3章では、数学研究活動一般説明や、著者と望月教授交流の話をし、それを踏まえて、IUT理論画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています

4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています技術的な詳細には立ち入らず、アイデア象徴する用語フレーズを多用し、それに対する概念的な説明や喩えを与えています

8章がIUT理論解説です。

まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論本質的関係ない」ということです。これについては後述します。

各章の内容

1~3章は、論文受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。

IUT理論が多くの数学者に受け入れられないのは、従来の数学常識を覆す理論から

望月教授が公開された研究集会などを開かないのは、多数の人に概要だけを話しても理解できないから。

などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学コミュニティの中でIUT理論懐疑的人達説明すればいい話であって、一般人に長々と説明するような内容ではないと思いますもっとも、著者が一般大衆も含めほとんどの人がIUT理論懐疑的である認識して本書を書いたのなら話は別ですが。

4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的説明されていません。

正則構造とは、正方形の2辺のように独立に変形できないもの

対称性とは群のことで、回転や鏡映などの操作抽象化したもの

のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。

8章はIUT理論解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、

複数数学舞台対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。

今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要がありますしかし、これ以上は技術的になるので説明できません。

のような調子で話が進みますいくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います

本書の問題

本書の最大の問題点は、「本書の大部分がIUT理論本質的関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。

たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば

素数pに対して、√pは三角関数特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))

4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)

のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論典型的重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論一般論を説明し尽くしているわけではありません。また、類体論一般的な定理証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的現象」は説明できるわけです。

もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。

f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)

このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から

1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)

両辺を積分し、形式的にx = 1を代入すると

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

π/4 = 1 -1/3 + 1/5 - 1/7 + ...

のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば

dy/dx - Ay = B (A, B ∈ ℝ、A≠0)

のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、

Σ((n+1)a_{n+1} - Aa_n) = B

  • a_1 - Aa_0 = B
  • (n+1)a_{n+1} - Aa_n = 0 (n ≧ 1)

よって、

  • a_{n+1} = Aa_n/(n+1) = A^n (B + A a_0)/(n+1)! (n ≧ 0)

a_0 = -B/A + C (Cは任意の定数)とおけば、

  • a_n = C A^n/n! (n ≧ 1)

「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります

上の計算正当化する過程で最も困難な箇所は、このような級数収束するかどうか、または項別に微分積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になりますしかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的現象」を説明することはできるわけです。

一般向けの数学の本に期待されることは、この「典型的現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語注釈しかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的関係のない解説しかないようなものです。

もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。

繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるもの数学的に正しい命題意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうもの区別が付きません。

本書の続編があるなら望むこと

ここまでネガティブなことを書いておいて、何食わぬ顔でTwitter加藤先生ツイートを拝見したり、東工大京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます

まず、私は加藤先生ファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます

まず、上にも書いたような「IUT理論が論ずる典型的現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。

そして、IUT理論既存数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。

論理的な側面は単純です。つまり、IUT理論に用いられる既存重要定理、およびIUT理論から導かれる重要定理を、正式ステートメント証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。

直感的な側面は、既存数学からアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論位相空間における被覆空間理論類似になっているとか、そういう類のものです。

以上です。

加藤文元先生望月新一先生、およびIUT理論研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心から祈り申し上げます

2020-07-05

C++C++ C++インタプリタ

int moin(int argc.char*argv[]){

  std::cout<<"Hello world\n"<<std::flush;

  __asm__("mov ax,0");

}

2020-06-29

anond:20200629153146

どうせほとんどの読者は高校数学さえ理解していないのだから、何を解説したって数学本質的理解は無理なのかもしれない

彼らには、以下はどれも同じに見えている

正の数X, Yに対して、log(XY) = log(X) + log(Y)

N元N次一次方程式は、N次正方行列AとN次元の列ベクトルx, bを用いて、Ax=bと書ける。

この方程式が一意的に解けるためには、Aの行列式が可逆であることが必要十分。

二次体の有限次Abel拡大は、1のべき根と、楕円モジュラー函数特殊値と、虚数乗法を持つ楕円曲線の等分点の座標で生成される。

Xを位数q=p^mの有限体F_q上のn次元非特異射影代数多様体、Y=X×_{F_q}(F_qの代数閉包)とすると、

#X(F_q) = ∑[i=0, 2n](-1)^i Tr(F_q, H^i(Y, Q_l))。

ここでF_qはFrobenius写像、H^i(Y, Q_l)はi次l進エタールコホモロジー(l≠p)。

Cをダークマター作用を持つN次元クリスタル、Xをそのアトラクターとすると、XからCへの次元変換Fは、固有なファクター方程式

F = F_1 ⊕ ... ⊕ F_N

を満たす。

仮に全編にわたって無意味なことを書いてもおそらく判別できないだろう。

2020-06-05

Galois拡大って何?

分離的かつ正規代数拡大のことです。

集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。

  1. 任意のa, b, c∈Kに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Kが存在して、任意のa∈Kに対して、a + 0 = 0 + a = a
  3. 任意のa∈Kに対して、ある元-a∈Kが存在して、a + (-a) = (-a) + a = 0
  4. 任意のa, b∈Kに対して、a + b = b + a
  5. 任意のa, b, c∈Kに対して、(ab)c = a(bc)
  6. 任意のa, b, c∈Kに対して、a(b + c) = ab + ac、(a + b)c = ac + bc
  7. ある元1∈Kが存在して、任意のa∈Kに対して、1a = a1 = a
  8. 任意のa∈K\{0}に対して、ある元a^(-1)∈Kが存在して、aa^(-1) = a^(-1)a = 1
  9. 任意のa, b∈Kに対して、ab = ba

体の例
  • 有理数全体の集合Q、実数全体の集合R、複素数全体の集合Cは、通常の和と積について体になる。一方、整数全体の集合Zは体にはならない。
  • 素数pについて、整数をpで割ったあまりの集合Z/pZ := {0, 1, ..., p-1}は、自然な和と積によって体になる。

代数拡大

K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。

C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である

L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。

そのような多項式存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。

代数拡大の例

C/Rは代数拡大である

なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式

X^2 -(z + z*)X + zz* = 0

の解だから

Kを体とする。K上の任意多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで

F(X) = a(X - a1)...(X - an)

と一次の積に分解する。このようなLのうち最小のもの存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である

最後の一文を証明する。

LをFの分解体とする。Lの部分環Vを

K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))

の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるからaiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元ベクトル空間である

Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である

Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである

さて、Lの元でK上のいかなる多項式の根にならないもの存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□

上の証明から特に、KにFの1つの根αを添加した体K(α)は、Kの代数拡大体である。このような拡大を単拡大という。


拡大次数と自己同型群

L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。

M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。

α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。

[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つもの存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。

Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。

任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。


Galois拡大

L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。

Galois拡大の例

L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。

[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。

α∉Kより、K⊕KαはK上2次元ベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。

σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□

C/RはGalois拡大。

Gal(C/R)={id, σ: z→z*}

平方因子のない有理数αに対して、Q(√α)/QはGalois拡大。

Gal(Q(√α)/Q) = {id, σ: 1→1, √α→-√α}。


正規拡大

L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。

L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである

K(α)/Kが正規拡大で、さらにαの最小多項式重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。

nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である


分離拡大

L/Kを有限拡大とする。任意のα∈Lの最小多項式重根を持たないとき、L/Kは分離拡大という。

体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。


Q, R, Cの標数は0である。Z/pZの標数はpである

標数0の体および有限体の代数拡大はすべて分離拡大である

F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。

実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。

Galois拡大であることの言い換え

有限拡大L/KがGalois拡大であるためには、L/Kが分離拡大かつ正規拡大となることが必要十分である


Galois拡大の性質

L/KをGalois拡大、Gal(L/K)をGalois群とする。

K⊂M⊂Lとなる体Mを、L/Kの中間体という。

部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。

逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。

次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。

L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。

  • 部分群H⊂Gal(L/K)に対して、K⊂L^H⊂L
  • 中間体Mに対して、Aut(L/M)⊂Gal(L/K)

さらに、以下の性質を満たす。

  • H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
  • K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
  • 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
  • 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
  • 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。

K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである

この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。

ログイン ユーザー登録
ようこそ ゲスト さん