はてなキーワード: 演習問題とは
学部受験如きに地頭なんているか。「7日間で総復習」みたいな薄い参考書を2週間で全教科終わらせたらあとは記述式の問題集解きまくれ。知識は問題解きながらその都度入れろ。夏休みとか春休みは14時間毎日やれ。
東京大学文科一類に受かったら迷わず司法試験予備校に入ろう。仮に落ちて一橋や共通ミスって早慶になっても浪人せず司法試験予備校に入ろう。MARCH以下や駅弁ならもう一年チャレンジしよう。
予備校はどこでも良いが、基本7科目の基礎講義の映像を2ヶ月以内に見終えて、残りの時間は論文試験の演習問題に使おう。
本郷へ行ったら法学部の偉い教授や、助手になりそうな優秀な先輩同期とか仲良くしておこう。
在学中に予備試験、司法試験に合格して卒業しよう。余裕があったら一年休学して留学しても良いかも。
在学中に合格できたら司法修習まで時間があるので、課題が提示されるまでは論文試験の模範論文や上位論文を読もう。修習地は地方を選ぼう。
志望は迷わずPにしよう。
任官したらどこに配属されても一生懸命働こう。公判に配属されても法務省や捜査部にお手伝いとして呼ばれたら休日だろうが迷わず出陣!地検の次席には常に法制局志望であることを匂わせつつ、与えられた仕事を確実に真面目にこなそう。上司が白と言ったら黒いものも白!逆も然り!
留学や他国の司法省に研修に行くチャンスがあったら迷わず志願しよう。
内閣法制局に配属されたら、与党(おそらくまだ自民党)の要望通りに憲法や法律を解釈しよう。委員会の学者たちは黙らせよう。この時法学部で偉い教授たちと仲良くしておいたことが生きる。
共謀罪のような成立不可能と言われていたものも解釈次第では成立させられるし、成功すれば大出世だ!仕事で関わる議員さんには国政進出の意志をそれとなく伝えよう。
ようやく自民党の推薦までこじつけた。東大一橋や早慶といった学歴、在学中予備試験合格や国費留学が活きてくるのは実はここからだ。検事になるだけなら中央大学でも良いし、法科大学院を出て概ね30歳までに司法試験に受かれば良い。今は任官不人気だし。しかし、選挙に当選するにはそれだけじゃ足りない。幸い日本の有権者は馬鹿なので、それなりの学歴や職歴、「東大、ハーバード、検事、法務官僚」という文字を見れば勝手に有り難がってくれる。後は選挙区の自民党の頑張り次第だ。田舎であればあるほど有利だね。マニフェストは大物議員に賛同しておけば良い。誰もそこまで見てないから。
おめでとう。
例えば電子工学なんて、もう高度なことって書かれてないのね。
ユニバーサル基板とArduino使うくらいのは書かれているけど、iPhoneの基板設計に使われているのは書かれてない。
電子工作の雑誌もあるけど、きちんとした書籍がないから、個人の経験則で問題なかったくらいの内容になっていたり、説明省いてたりする。
ソフトエンジニア的にはパタヘネでいいけど、ハード設計には足りてない。
こっちは衰退するべくして衰退したんだなというのがわかる。
大学で研究している人もそもそも居ないが、ある時点での論文を整理して書籍としてまとめる、ということすらできなくなっている。
書籍に関しては国も補助もしにくいような気がしていて、どうしようもなくなってるのかな。
https://anond.hatelabo.jp/20210907184611 の続き
たとえば、以下のような問題を考えます。演習問題に限らず、教科書の本文や、解答の一文一文も「証明問題」だと捉えてこのような態度で読み解く必要があります。
x2 - 2a|x| - b = 0
それほど典型的な問題ではありません。少なくとも、何か簡単な公式があって2aやbなどを代入すれば答えが出てくる、というものではありません。
この問題を解くには、左辺の式が何を意味しているのか理解していなければいけません。これは、何か上手いやり方があって機械的に解ける場合でもそうです。
とxの二次式になるので、既に知られた方法で解の個数を求めることができます。ただし、たとえば方程式f≧0(x) = 0の解は、x≧0を満たすものだけを数えることに注意が必要です。したがって、単に判別式の符号を調べるだけでなく、二次関数f≧0(x)のx≧0の範囲での増減を調べる必要があります。x<0の場合も同様です。
結局、この問題を解くには
ということができる必要があります。特に前者を理解していないのは、問題文の式が何を意味しているのか分かっていないということですから、解法を覚えるとか言う以前の問題です。当然、これらが分からなければ調べたり他人に聞く必要があります。その際は、定義の数式を形式的に覚えたり当て嵌めたりするだけではなく、具体例を通じて、その意味を理解する必要があります。絶対値記号|x|であれば、xが正の数ならどうなるのか、負の数ならどうなるのか、y = |ax + b|や、y = |ax2 + bx + c|のグラフの概形はどうなるのか、等。
もし二次関数を調べた際に平方完成が分からなければ、それも調べる必要があります。平方完成を調べて文字式の展開で分からないところがあれば、それも調べる必要があります。そもそも、二次方程式を解く際になぜ(一次方程式では必要無かった)平方完成をするのか。そういった問題が解ける理屈(あるいは類似の問題と同じやり方では解けない理屈)を理解している必要があります。
また、自分で問題を解いて、たとえば場合分けの仕方が解答と異なるならば、それらが本当に同値なのかをきちんと確かめる必要があります。最初のうちは計算ミスをして符号などが逆になることもあるでしょうが、それもどこで間違えたのかをきちんと確かめる必要があります。
そういうことをすべて完璧にこなして初めて、この問題を理解したと言えるのです。
以下、解答例を載せます。匿名ダイアリーなので文字のみですが、実際は図を付けた方が良いでしょう。
f(x) = x2 - 2a|x| - bとおくと、
f(x) = 0の実数解の個数は、y = f(x)のグラフと、y = 0のグラフの交点の数であるから、これを求める。
とおく。y = f≧0(x)のグラフは、(a, -(a2 + b))を頂点とする下に凸な放物線で、y軸との交点は-bである。一方、y = f<0(x)のグラフは、(-a, -(a2 + b))を頂点とする、下に凸な放物線で、y軸との交点は-bである。
したがって、y = f(x)のグラフは、y = f≧0(x)のグラフのx≧0の部分を、y軸に関して対称に折り返した形をしている。
f(x)は、x = ±aで最小値-(a2 + b)を取る。したがって、y = f(x)のグラフとy = 0のグラフの交点の数は、
f(x)は、x = 0で最小値-bを取る。したがって、y = f(x)のグラフとy = 0の交点の数は
以上、(1-1)〜(1-5), (2-1)〜(2-3)がf(x) = 0の実数解の個数である。
上の解答例ではy = f(x)のグラフの位置関係を用いましたが、もちろん、f≧0(x) = 0、f<0(x) = 0の解を実際に求めても解けます。
この場合は、それぞれの解がx≧0、x<0を満たすかどうかを確かめる必要があります。そして、それぞれの場合でf≧0(x) = 0のx≧0を満たす解の個数とf<0(x) = 0のx<0を満たす解の個数を足したものが答えになります(x≧0とx<0に共通部分は無いので、これらを同時に満たすことはありません)。
f≧0(x) = 0の解は、
x = a ± √(a2 + b)
である。同様に、f<0(x) = 0の解は
x = -a ± √(a2 + b)
である。
とおくと、ra(b)はa2 + b≧0の範囲で定義される。また、ra(b)はbに関して単調増加であり、ra(0) = |a|である。つまり、f≧0(x) = 0およびf<0(x) = 0の2つの解が同じ符号を持つか否かは、b = 0を境界にして分かれる。
したがって、a2 + b≧0のとき、f≧0(x) = 0の解は
同様に、f<0(x) = 0の解は、a2 + b≧0のとき、
また、D < 0の場合は、f≧0(x) = 0、f<0(x) = 0ともに実数解を持たない。
以上をまとめると、f(x) = 0の解の個数は、以下のようになる。
(1-1) a2 + b<0のとき、0個
(1-2) a2 + b = 0のとき、2個(③と⑥でD = 0場合)
(1-3) a2 + b>0かつb<0のとき、4個(③と⑥でD>0の場合)
(2-2) b = 0のとき、1個(②と⑤で D = 0の場合)
何度も書いているように、たとえばx2 - 2ax - b = (x - a)2 - (a2 + b)などの式変形の意味が分からないのであれば、二次関数の復習をする必要があります。解答文中に出てきた「単調増加」などの用語も分からなければ調べる必要があります。
上記の場合分けが(a, b)のすべての組を網羅しているのか、と言ったことも注意する必要があります。
解答例2の①〜⑥の場合分けは、y = f≧0(x)およびy = f<0(x) のグラフとy軸との交点を考えています。これの符号と軸の位置で、どの範囲にy = 0の解が存在するかが決まります。たとえば、下に凸な放物線がy軸と負の値で交わるならば、x軸とは必ず正負両方の値で交わらなければいけません。逆に、y軸と正の値で交わるならば、x軸とは交わらない(D<0)か、放物線の軸がある方で2回交わります(D = 0の場合は1回)。解答例2ではra(b) = √(a2 + b)という関数を用意しましたが、このy軸との交点と軸に関する条件を代わりに説明しても良いです。このように、数式や条件が図形のどのような性質に対応するのかを考えることも数学の勉強では重要です。
また、「二次関数f(x)が下に凸で最小値が0以下であれば、f(x) = 0は実数解を持つ」ということを認めています。これは明らかに思えるでしょうが、極限を習った後であれば
実数値関数fが区間[a, b]で連続であれば、f(a)とf(b)の間の任意の実数γに対して、γ = f(c)となる実数c∈[a, b]が存在する。
という「中間値の定理」を暗に使っていることを見抜けなければいけません。このような定理が出てきたら、Part1でも述べたように、具体的な関数でどうなっているのか(たとえばf(x) = x2 - 2に対して、f(a) = 0となる実数aが存在することなど)、仮定を緩めたら反例があるのか(たとえばfの定義域が有理数ならどうか、連続でなければどうか)などを確認する癖をつけましょう。
y = x2 - 2a|x| - bのグラフとy = 0のグラフの交点を考える代わりに、y = x2 - 2a|x|のグラフとy = bのグラフの交点を考えても良いです。これは、本問と同値な方程式
x2 - 2a|x| = b
を考えていることに相当します。記述量はそれほど変わらないでしょうが、こちらの方が見通しは良いかも知れません。
仮に本問と異なり、aが定数の場合、たとえばa = 1であれば
y = x2 - 2|x|
のグラフは変数に依りませんから、y = bとの交点を考えるのは容易です。
実際、y = x2 - 2|x|のグラフは、頂点が(1, -1)、y軸との交点が0の、下に凸な放物線のx≧0の部分をy軸に関して対称に折り返した形です。
したがって、この場合は
です。
以上のことは、問題を解く際だけに行うのではなく、教科書本文、問題文、解答例の一文一文を「証明問題」だと思って常に意識する必要があります。
存在があまり知られていないのだが、各教科書には教科書準拠のガイド本(俗に言う「虎の巻」)というものがある。
別に特別な書籍というわけではなく、教科書を販売する書店であれば必ず置いてあり、手に入れるのはさほど困難ではない。
私は、この「虎の巻」で大きく成績を伸ばすことができたので、そのメリットを紹介したい。メリットは4つある。
(教師も是非薦めるべきだと思うのだが、授業の重要性が相対的に薄れるからなのか、特定会社への利益誘導になるからなのか、薦める人は非常に少ない。
それでも、高校で数学の教師がその存在を教えてくれた。1年生の時点から「虎の巻」の効果を十分に感じることができ、成績も大きく伸びた。その教師には本当に感謝している。)
1つ目は、「教科書ガイド」たる本来の意味でのメリットではあるが、教科書を良く理解できるようになることだ。
それも「虎の巻」はオールインワンに構成されているので、理解にかかる手間も少なくて済む。例えば、英語や古典なら新出単語の説明も記載されているので、辞書を引く手間が省ける。
何より、「教科書準拠」という属性は、問題集として最強である。なぜなら、他の問題集を購入しても、「授業」という生解説は付いてこないのだから。
それに、教科書の理解は成績に直結するので、勉強する側のモチベーションも格段に上がる。これが、問題集の中でも「虎の巻」だけが、途中で挫折することの少ない理由である。
部活や風邪など、授業を1回休んだだけで、その内容に付いていけなくなる科目は多いが、そのリスクが緩和できる。誰かにノートを取ってもらう必要も無い。
「虎の巻」には、教科書の流れ、演習問題の解答、解く際のポイントが全て書いてある。授業を休んだとしても、「虎の巻」を読めば、授業で行う内容は概ね理解できるだろう。
もちろん、「虎の巻」だけで勉強できると思ってはいない。しかし、解答を保有することは非常に強い。
解答があれば、自分がわからない部分は、この解答の「どこ」なのかが具体化できる。具体化できたなら、その部分を指し示しながら、学校なり塾なりで質問することができるわけだ。
テスト前にノートをキレイにまとめ直すのは無駄だとよく言われるが、ノートは「車輪の再生産」であり、作成すること自体がそもそもの無駄である。
「虎の巻」には、問題の解答や授業の流れが書いてあるのだ。ノートは真っ白な冊子に書くのではなく、「虎の巻」にマーキングし、差分に当たる分だけ書き込めばいい。
数学の理解につまずくのは、その多くがノートを取るのに手一杯で、教師の話す強調ポイントを聞き取ることができないからだという。
白紙からノートを構成するのに比べたら、そんなリスクは格段に減るだろう。それに、ノートを全て取りきれなかったということも無くなるだろう。
(逆に言うと、このあたりが一部の教師から、「虎の巻」が邪道だと言われる理由である。教師が教えた内容を、素直に一からノートに起こす学生が真面目に見えるようなのである。)
そして、個人的には一番重要だと思う4つ目のメリットは、予習主体の学習ができるということである。
「虎の巻」には、解答やポイントが書いてあるのだ。授業に先行してそのポイントを読み、実際に問題を解くことで、先に書いた通り、自分のわからない部分を具体化できる。
すると、極端な話、授業はそこだけ聞けば良いことになる。よって、予習することによって授業中に暇が生まれてくる。
そして、その暇を更に予習に充てるのだ。英語なら先の単元の和訳をしたり、数学なら先の単元の問題を解いたり。授業の進度に十分先着したら、学校から配布されたワークブックを解くのだ。
すると、テスト勉強期間には一通りワークブックまで解き終わっており、テスト勉強は、ワークブックの間違いとまとめの問題を再度解くだけ。
その余裕は、綿密にノートをまとめ直す復習ではなく、「虎の巻」によって手軽となった予習によって生まれるのである。
予習によって授業中に暇が生まれ、その時間をさらに予習に充てることで、モタモタした授業をテスト勉強へと繋げる正のスパイラル。そうすれば、予習において自分で問題を解く機会も増え、受験対策にも直結する。
以上のように、授業を休みがちの学生にも、授業をまともに聞かずさっさと先行したい学生にも、「虎の巻」はうってつけなのである。
なんで初学者にドットインストールとprogate薦める奴はいてもpaizaラーニング薦める奴いないんだろうか。
ドットインストールはノートパソコンだとやりにくいし、喋りが早すぎてついていけないし、
progateは動作が正しくてもコード間違ってると先に進まないしでストレスだったんだが、
paizaラーニングは動画の説明もわかりやすくてprogateと違って動作正しければokだし演習問題もあるから理解度測れるし個人的に一番良かった。
プログラミング覚えて作りたいもの無い人間にとってスキルチェックの問題はすごい有難かったし、先にpaizaラーニングやっとけば後悔したが、お前ら何でprogate推しなの?
paizaが雑なSierDISしてて気に食わないから?
マセマの数学系の本を読んだことがある。東大の工学部の院試を受けてみて受かったことがある。
生物系の研究でも数学っぽい概念が絶対確立されてそうな雰囲気なものが多いので、数学を理解したいなーと思っていた。
2カ月くらい前に受験を決意。
<実際の結果>
カナリ過去問から出ると思った。逆に言えば、過去問で解答を作成できるかどうかが勝負。
基礎科目(大学1,2年レベル)と専門(代数、幾何、解析、その他の数学科特有の分野)に分かれるが。
基礎科目すら危うかった。専門は全く勝負にならなかった。
<基礎科目のお勉強>
基礎科目の方は、割とマセマと『演習大学院入試』で何とかなると感じた。もちろん、過去問の答えを全て作成できることが前提だけど。
追加で、『イプシロンデルタ完全攻略』、『線形代数30講』(固有値と固有空間問題対策)でやったくらい。
時間があれば、もっと実際に手を動かして計算練習などすれば、点数は満点近くまで伸びると感じた。
一方で、集合論や幾何学を捨てていたので、京都大学の受験ではかなりビハインドを引いてしまったし、東大でも逃げ科目を作れなかったのが少し痛かった。
100時間ほどで過去問まで対策できた。初学の分野が少なかった(複素関数、εδ、微分方程式の級数解放、線形代数の空間論が初学)ので、割となんとかなった。
<専門のお勉強>
代数学は『代数学1,2(雪江)』、『群・環・体 入門』、『代数学演習』、『大学院への代数学演習』と「物理のかぎしっぽ」で対策したのだが。
100時間も勉強時間を取れなかったので、ガロア拡大の計算と、イデアルの簡単な奴しか抑えられなかった。しかも、本番で出てきたのは、明らかに知らない概念だった。もちろん、問題分の意味は何とか理解できたが、恐らくは『アティマク』や『ハーツホーン』や整数論系の概念を知らないと厳しい問題だった。
過去問を見てもできないなーと思っていたが、試験場で他の人たちが、洋書やハーツホーンや零点定理やシェバレーと言った、全く知らない概念を話していたので、勉強する分野を完全にミスったと思った。
ネットでググっても、雪江代数で受かってるっぽい感じだったから、雪江代数だけで行けると思ったけど、勘違いだったみたい。
無念。
<感想>
結果的にはゼンゼン駄目だったけど、数学科の人たちの雰囲気や、レベルを肌で理解できてよかった。
時間が更にあるなら、
数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます。
微積分なら杉浦「解析入門」がおすすめ。線形代数なら佐武「線型代数学」か斎藤「線形代数の世界」がおすすめです。
Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村「可換環論」を買うといいかも。
Serre「A Course in Arithmetic」とか、斎藤・黒川・加藤「数論」の6章あたりまでとか。
これらは数学科学部3〜4年のカリキュラムに含まれる基本的な知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要があるかというと、買った本の各章の内容について、証明の内容も含め、何も見ずにだいたい説明できるぐらい読んでください。あともちろん演習問題は全部解いてください。詳しい数学の勉強の方法は東京大学河東先生のこのページを参考にしてください。
http://www.ms.u-tokyo.ac.jp/~yasuyuki/sem.htm
ここまで勉強なさると、宇宙際タイヒミュラー理論を学ぶハードルがどれだけか、少しイメージが湧くようになると思います。もっと勉強したいと思ったら、また増田に来てください。期待しております。
実際に理系の大学教員をやっているが、研究を攻撃するのはやめてくれ。理由は簡単で、教員の差ではなく、「日本の大学は授業に金を出さない」これに尽きるんだよ。
向こうの大学は1つの授業で10人とか20人とか大学院生のTAを雇えるようになっていて、授業の採点も彼らが思いっきり手伝ってくれる。
採点をTAに任せられるから、授業の中で重要と思うことを教員がガンガン演習問題にして出して成績にも反映させられる。
日本の大学もTAはつけられるが、1つの授業で多くて3人。そして成績評価はTAができないことになっているので、成績評価につながらない前提の小テストの採点ぐらいしかTAに任せられない。
だから演習問題を出せば出すほど教員の採点業務が増えるので、できる限り演習もテストもしたくない。
最先端の講義であればあるほど、日本の大学は「非常勤講師」を外部から呼んで外注するけど、その場合はもう金額が90分x15回の講義で10万とか決まっていて、TAなんて全然つけられない。
要するに、授業に金出さないのが悪いんだよ。
https://anond.hatelabo.jp/20180307150402
諦めるのが早すぎる。高い目標の下方修正はいつでもできるが、京大をまた目指しはじめても低い目標を上方修正するのはきついぞ。
年間1-2人だけ京大に行く公立高校に通い、高校1年の4-12月に個別指導の英語だけを週2時間/高校3年の9月-本番まで河合塾の京大数学と京大英語コースを受講、最後の冬休みは河合塾の京大演習コースも受けた。それ以外は独学。結果京大法学部に現役合格した。学校に特進コースはなかったし、クラスは文系と理系の二分のみ。部活には休まず通い(運動系だったが大会は存在していなかった)、高校3年の夏休みとか1日2時間くらいしか勉強してなかった(結果死んだので河合塾行き)。その際のノウハウを共有するから参考にしろ。
学校の定期試験は無視しろ。残り2年間で京大の学力に到達することだけを考えろ。定期試験で点数がとれようととれまいと京大の受験には関係ないし、学校はお前の受験結果に責任を持たない。また、センターはともかく二次試験は完璧を目指すな。京大に入りたいなら合格ラインに達してさえいればいい、たしかせいぜい6割くらいだ。
今の段階で京大受験に必要なセンター科目・二次試験科目を絞れ。そして今後2年間の勉強計画を立てろ。ただし総合的な勉強量は考えておこう。センターで日本史・二次試験で世界史を受験する方針を高校2年で立てた結果2年以降の世界史を完全独学でやり(2-3年は日本史の授業だった)、地獄を見た。普通なら世界史・地理か日本史・地理を選ぶ。このあたりは独学の悪い所で、適宜誰かに相談して方針が変じゃないかどうかを確かめるのは大事。
京大に受かるためには数学に限らずそれ以外の勉強が不可欠。京大を目指していたなら過去問くらいは開いたことがあるだろうが、京大の二次試験は異質だ。ほぼほぼ全ての回答が記述式。これで面食らう人間が多いが、実際のところあれはセンター試験を選択肢なしで解くだけな問題も多い。センター試験の数学がたまに突飛な回答をするのを思い出せ。センター試験レベルの知識が習得できれば、京大の問題は実のところ解けてしまう(勿論一定以上の応用力は必要だが)。とにかく基礎を固めろ。突飛な英単語やドマイナーな歴史知識は不要。
基礎的な勉強は学校で買わされた教科書・文法書・参考書を利用すればいいが、京大レベルだと不足する。今すぐ2ちゃんねる(今では5ちゃんねる)の大学受験板に飛び、各科目の総合スレを開け。そこには10年以上前から構築された知のノウハウがつめこまれている。具体的には各スレのテンプレにある参考書一覧のことだ。俺が受験生だった10年前と比べると今のインターネットはクソまとめアフィリエイトサイトで溢れてしまってるが、あそこに書かれている参考書一覧は今でも変わらず良書だけを選んでいる。各科目、高校3年の夏くらいまでにそこに書かれた京大レベルの参考書を数冊、2周~3周解いている状態を考えろ。それを目指して、どの参考書をいつまでに解いていればいいかを逆算してみてくれ。ギチギチに詰め込む必要はない、むしろゆったり考えろ。あくまで、手持ちの範囲・出来る範囲でスケジュールを組め。
勉強量だが、俺の場合は高校2年の段階から大体1日2-3時間を毎日やっていた。朝起きて1時間、部活が終わって帰宅し、風呂に入って寝る前に1-2時間。試験前はもう少し勉強量を増やした記憶がある。これを基本毎日やること。どこまでやるかじゃなく何分やるかを意識しろ。だが飽きたときはやらなくていい。俺は何度か小説にはまって(ラノベだと戯言とか禁書とかイリヤ、文学方面だと村上春樹や夏目漱石)、後で書いてる散歩だけしかやらない時期が何度もあった。毎日2時間くらいネットサーフィンしていた気もする。ただ高校3年の秋以降は4-5時間に跳ね上がったかもしれない。流石に焦った。
忘れずにやってほしいのが、毎日の各科目ごとの勉強量をメモしておくこと。今すぐ新しいノートを開き、1行目に京大の受験に必要な科目を全て列挙しろ。現代文、古文、数学1、数学A、数学2、数学C、日本史、世界史、生物、英語、英単語etc...そして2行目から、毎日どの科目を自主的に何分勉強したか書いていけ。これをやっておくだけでもモチベーション維持が随分違う。「あの科目しばらくやってないな」というのも一目でわかるから万遍なく勉強ができる。
個人的におすすめなのが、朝か夜に必ず1時間散歩して単語帳or一問一答を声に出して解くことだ。運動しながら勉強をすることで脳が活性化して記憶に定着するとかいう理屈があるらしいが真偽は不明。ただ、散歩することで運動にもなるし、つまらない暗記ものをやるときに家で寝てしまわないという利点がある。勉強の気分転換にもなる。ただ夜にやるときは安全と、女性の場合は治安等に気をつけてくれ、責任は持てない。俺は一度だけ国道沿いの深さ1.5mの側溝に落ちた。
勉強の基本は繰り返しだ。 ただし、漫然と繰り返すな。問題文の頭に○や×、△などで解けたかどうかをチェックしておけ。2周目以降、一度でも正解した問題は飛ばせ。でも解いてからしばらく時間(1ヶ月~半年)が経ったら念のためもう一度解け。たとえば1周目に間違えて2周目に正解したら「×○」、1周目に正解して2周目・3周目は解かなかったが4周目にケアレスミスで間違えたら「○ - - △」みたいな感じに書いていけ。
とにかく「その問題で何回間違えたのか」が視覚的にわかるようにしろ。そうやってチェックをつけていると、「参考書を開いたら、どの問題がミスりやすく、どの問題が得意なのか」、要は復習時の要チェックポイントが一発でわかる。こうしておくと、最終的には数学1A全ての復習が1時間で終わるようになる。
おそらく学校でチャート式を買わされてるだろう。買ってないなら買え。一年間でとにかくそれで勉強を繰り返せ。
勉強方法の基本は写経だ。例文に書いてるやり方でひたすら問題を解く。まずは例題の回答方法を一字一句写経しろ。そして同じ解法で一字一句同じ書き方で解け。数学が苦手なやつによくありがちだが、解答で途中の解法をすっ飛ばすのはNGだ。理由は以下の3つだ。①理屈を何度も書いて覚える必要があること②採点者にとって「すっ飛ばしている部分を回答者が理解しているかどうか」がわからないので×にせざるを得ないこと③京大数学の記述問題は「計算を間違えていても、理屈があっていれば部分点をくれる」ということがままあること。
京大数学を解いたことがあるなら2完とか3完とかいった言葉を聞いたことがあるだろう。あれは全5問のうち3問は全部解答できたという意味であり、つまりは多くの受験者が5問のうち2-3問しか完答できていない(完答できなくても点数は獲得している)ということだ。数学は論理でできている。故に京大数学が重要視しているのは解法の論理を理解しているかどうかという点だ。
だから、とりあえずわからない問題は悩む前に解答例を見てやはり写経しろ。お前の頭で考えるな、答え(=解法の論理)は先達が既に考えてくれる。言っちゃ悪いが高校数学レベルの問題なんてチャートに書いてることがすべてだ、俺は黄色チャートで乗り切った。
もしどうしてもわからない単元がある場合は、このサイトのpdfに載ってる当該単元に関わる章を全部読め。当該サイトは、「1+1がどうして2になるのか」という説明からはじまった高校数学に関する説明を全部やりきる『高校数学+α』というすごい本の全文をpdfとして配布している。最初から通読しようとするのはきついので無理しなくていいが、わからないことがあればこの本を読めば絶対にわかる。
英語は現段階であれば文法書を何周もしておくこと。細かいことは言わん。何周もしろ。あと、英単語帳は今から3ヶ月で一旦全部暗記しろ。高校3年にもなって英単語帳を一からやるのは馬鹿らしすぎるしリソースの無駄遣いだ。1日1時間やれば3ヶ月でどうにかなる。
英単語をはじめて覚えるときに絶対忘れちゃいけないのは「1日でも時間を空けるな」ってことだ。毎日やれ。英単語帳はどれでもいい、どうせ全部覚えるんだから変わらん。覚え方だが、とにかく音読しろ。「accept」という単語があるなら「アクセプト受け取るアクセプト受け取るアクセプト受け取るアクセプト受け取るアクセプト受け取る……」と5回〜10回音読して次の単語に行け。黙読は絶対にやるな、音読して単語の意味を音としてインプット・アウトプットすることに意味がある。ページ単位で考えずに時間で考えろ、10分で一度音読できる範囲まで音読しろ。次の10分で同じ範囲をもう一度最初からやりなおせ。次の20分では新しい範囲で同じことをやれ。最後の20分で全部おさらいしろ。1セット1時間を目処にするといいだろう。これで1日100単語はインプットできるはずだ。勿論翌日には半分以上忘れるしすぐに思い出せない。それが当たり前なので気にするな。大事なのは復習だ。翌日は一度読んだところを20分かけて再度音読しろ。絶対だ。1日後というのが重要で、詳細は忘却曲線でググれ。残りの40分は新しい範囲に時間を費やせ。これを毎日やれば3ヶ月で1冊丸暗記できる。忘れたら忘れたで構わん、再度読み直せ。1週間スパンくらいで全体を再度復習するといいとは思うが、その日に覚えたことを翌日復習するというのを徹底するなら復習頻度は気分でよしなにやれ。
京大英語の恐ろしいところは、主要な問題が英文和訳と日本語英訳だけというところだ。文法の基礎(センターで満点を狙える程度)をがっつり固めるのは当たり前として、それ以外に和訳英訳の練習が必要だ。和訳で絶対におさえておくべきなのが伊藤和夫『英文解釈教室』。今からでいいので買って少しずつ、それこそ3日に1問・1問解くのに1時間かけてもいいから触れておくのがいい。解けなくても、やるときは1時間やれ。解説は精読しろ。
それ以外では、学校での課題・夏休みでの宿題で長文演習問題が出てきたら、全文を和訳するといい。「受験に関係ない宿題をこなす」が「京大英語の演習をおこなう」に変化する。
英訳は逐語訳ではなく意訳の力が求められるのでかなり難しい。そこでサンプルとしておすすめしたいのが『英文対照 天声人語』。天声人語自体の良し悪しは知らん。俺も普段読んでるわけじゃない。ただ、日本語の意を汲み取って逐語訳ではない英訳を集めてるサンプルケース集としては有用だ。
しかしながら、英訳も和訳も独学には限界がある。なのでここは他人を利用しろ。赤本の過去問でもなんでもいいから、演習を解いたものを大人にチェックしてもらえ。一番いいのは京大英語講座に行くことだが地域的な問題で行けない場合もあろう。英語教師にチェック依頼するとかがベターだ。
現代文は知らん、息抜きに小説たくさん読むとかするといい気がする……とぶん投げるのもよくないのだが、いかんせんこの分野は扱いが難しい。なので俺が楽しかった参考書だけ紹介する。
石原千秋の『大学受験のための小説講義』『教養としての大学受験国語』はすごい。大学に入ってから知ったが、石原千秋は文学理論を日本文学に当てはめることほぼほぼ初めて行った研究者で(大学時代の知り合いに教えてもらった知識なので間違ってたらすまん)、現代における漱石研究の第一人者。この人のテクスト読解はすごく楽しい。趣味になるが『謎とき 村上春樹』も最高。
評論系だと『MD現代文・小論文』が主要なトピックスを抑えててよい。大澤真幸が「自由の牢獄」について言及していたので俺はミヒャエル・エンデを知った。ただ(内容ではなく出版年月が)少し古いので一度書店で立ち読みしてみるのがいいかも。
古文・漢文は、基本文法・基本単語をマスターするのが前提として、あとは慣れの部分が大きい。漢文には正直そんなに力入れなかったので割愛するが、古文は小学館の古典文学全集シリーズのうち、平安時代あたりのものを1冊でいいので(たとえば源氏物語の1巻だけとか、当該シリーズ26巻の『和泉式部日記/紫式部日記/更級日記/讃岐典侍日記』とか)読み切る。当該全集は各ページ三段組み=原文・訳文・注釈が同時にチェックできるので、原文を読む上で圧倒的に優れている。文法を暗記しようとか、知識をあまさず覚えようとかしなくていい。でも注釈は全部読め。どの原文がどの訳文と対応しているのかを常に確認しろ。そうすることで時代的な知識を知る事ができるし、何より「古典作品を読んだ」という自信がつく。
日本史・世界史だけは例外的で、高校の授業を一字一句もらさず板書すること。どの事件にどんな背景があって、それがどういった結果につながっていったのか、そういった歴史の流れを理解するのは、教科書・参考書で独学するよりも先生の話を聞いた方が圧倒的に楽。豆知識が記憶の定着に役立つ(先生によるかもしれないが)。複雑な範囲(日本史の近代とか)は自作フローチャートを作れ。骨子の流れを覚えたら参考書で補強。本気で独学すると山川出版『詳説 世界史研究』で死ぬ。575ページあった。
それでもなお世界史を独学すると言うなら、世界史は参考書として『タテから見る世界史』『ヨコから見る世界史』を押さえておくとベター。物事を俯瞰して押さえるのが大事。あと論述対策しておくこと。
生物は正直センターレベルだと独学することがない気がするので、やっぱりセンターで80-90を狙って勉強するのがいい。
政治経済は、申し訳ないが大学時代で知識がアップデートされすぎたのでどう勉強したのか覚えていない。すまん。
後半飽きてしまった部分があるので雑な投げ方していたところもあって申し訳ないが、最後に1つだけ。
俺が挫折を味わったのは京大に入ってからだった。六法の講義が何一つわからないのに周りの人間はすらすらと解いていく。60点で可をとるのが関の山だったのに、その横では「80点に届かないから問題解かなかった(ロースクールの受験には学部成績が影響するのでそういうことが往々にしてある)」という会話がなされている。俺は2回生のときに法曹を目指すのを諦めた。
でも、それと同時にもっと楽しい事・面白いことを沢山知る事ができた。政治学からは価値判断と切り離した広い視点を持つことを学んだし、小野教授の政治思想史からは人類史に通底する観念とその変遷の奥深さを知った。プログラミングにはできないことも多いがそれ以上にできることが多いという、応用力の幅広さに助けられた。京都では、自転車を走らせればすぐ史跡や寺社仏閣に行ける生活が待ってるし『四畳半神話大系』が最高に楽しめるようになる。そんな環境で、自分と同じ興味を持った人間と同じ話ができるというのが何よりすばらしかった。大学時代に比べたら、高校時代の記憶なんてほとんどないし、社会人になってから大学以上に楽しい環境にいたこともない(今の環境がだめという話ではないが)。
京大に限ったことではないと思うが、大学は、色んな学問を研究する色んな人間がひしめきあった結果、知的興奮の機会に満ち溢れている場になっている。もし京大に行けなかったとしても、早稲田や慶応等のある程度一流と言われている大学であれば、絶対にそんな魅力を味わうことができるはずだ。
そしてなにより、今度どうやっていくかに関わらず、勉強を楽しんでほしい。英語の長文演習問題はするする読めるようになるとめっちゃくちゃ面白いし、小説や海外ニュースも読めるようになる。源氏物語は第1帖「桐壺」を全部読むだけでもうるっとくる。高校数学を一種の論理パズルと考えたとき、京大数学の演習問題が異常に楽しいというのはやったことがあるならわかってもらえるはずだ。
健闘を祈る。世界は広い。
やたら計算が早くて算数が得意な奴、誰よりも漢字を知っている奴、国と首都を全部言える奴、作文を書くのがとてつもなく上手い奴、喋るのが得意で説得力が物凄い奴、とにかくいろんな子がいた。勉学において突出した何かを持っている子が、私の友達には多くいた。
かく言う私もどちらかといえばそちら側で、特別な何かがあったわけではないが勉強だけはできた。一応。この広いネットの海からすれば井の中の蛙でしかないけれども。
グレたといっても夜露死苦とか書いた短ランを着るようなアレではなくて、教師に反抗したり徹夜でゲームしたり、その程度。
その結果(一概に100%そのせいと言い切るのも危険だけれど)、学年でもトップクラスの学力と能力を誇った彼らは、高校受験の際にいわゆる地区トップ校には行けなかった。では誰がトップ校に行ったのか。
答えは「優等生」だ。
優等生がトップ校に行くこと自体は何も不自然なことではない。問題なのは、幼少期から突出した能力を持っていた子達(変人とも言う)が軒並み途中でドロップアウトしていったことだ。
実はこれ、学年が上がるごとに変人の成績が下がって優等生の成績が上がっているのだ。少なくとも私の観測範囲では。
これは私の体験談だが、「終わった人から帰っていいよ」タイプの課題が出た際にとにかく早く帰りたくて全力でそれを終わらせて一番に提出した。すると教師は、早すぎる、本当にちゃんとやったのか、と怒った。ちょっと理不尽すぎて書いてて腹が立ってきた。
他にも、演習問題が終わったからと宿題の範囲をやっていたら宿題は家でやるものだと怒られたりもした。一理あるが、ならば演習が終わったらただ黒板を見つめていろとでも言うのだろうか。
……私が怒られすぎなだけな気もしてきたがまあいい、続ける。
こんな感じで、特に小学生時代は「周りと足並みを揃えること」を強要された訳だ。
他の子と違うことをしてはいけない。他の子と同じことをしなければならない。他の子より早く終わってはいけない。他の子より上手く出来てはいけない。最早これは呪詛だ。今でも私から離れない強迫観念。
特に私が小学生の時はまだゆとり教育の時代だったから、競うことは良しとされていなかった。みんな同じが平和だとされていた。みんな同じでなければ平和でない、と言い換えてもいい。
そういった価値観だったから、出る杭は打たれた。突出した能力がある子達は皆そうだった。彼らは頭がよく切れたが、それも教師の癇に障ったのかもしれない。出る杭たちは打たれて打たれて、その多くは折られてしまった。周りに好かれることが得意な優等生たちは折られずに済んだ。その結果が前述した「変人がドロップアウトし優等生がトップ校に行った」ということだ。
私自身も当時は出る杭だった。例に漏れずドロップアウトした。教師や同級生からの同調圧力に耐えられなかった。今でも出る杭になるのが怖くて何も出来ずにいる。
あのまま伸びていたらとんでもなく凄い奴になっていただろうなという子もいた。本当に勿体無い。
どうして出る杭がここまで執拗に打たれなければいけないのか。生徒の能力を平らにならそうとして、折角の能力を削ぎ落としてしまってはいないか。心を折ってしまってはいないか。先生に好かれ、周りの生徒に好かれることがいい生徒の唯一絶対の条件になってはいないか。多少模範から外れていても、秀でた能力をせめて認めてあげることはできないのか。
折れた心は元には戻らない。騙し騙しやってはきたが、義務教育を終えた頃から小学校の後遺症が目立つようになった。何がやばいかって受験がとてつもなく苦しい。出る杭は打たれる、終いには折られると刷り込まれた頭でどうやって受験しろと?
勉強なんか出来なければよかった。
大人が学び直ししようとして探すと見つかるのは、学校で授業受けてることが前提の「10点アップ!」みたいな叩き込み記憶用子供用教材と、大人が学び直し(ごっこ)するための「後で読む」ってタグつけるためにだけ存在するような教材風の自己啓発ポルノみたいなものばっかりで辟易するけどスタディサプリはすごいよスタディサプリはえらい
要は塾講師が授業をやってそのあと確かめテストを受けるという手順が延々と続くアプリだけどこれの偉いところは間違ったら間違ったとちゃんと言ってくれるところ
間違ってたら間違ってると教えてもらえる子どもの特権と、間違っても間違ってないですよと愛想笑いで見過ごされてしまう大人のあいだの正しい階段の上り方を見失って詰んでるみんなはスタディサプリにいこう月額980円、毎月「なんか勉強したほうがいいかなー」ってなんとなく本を買っては読まなくなるクソみたいな私たちには最良の手段
私はこれをするためにiPad Proを買った、馬鹿な買い物だと笑ってくれれば良い 画面の左で授業を受けながら右でノートを取るんだ。動画ごとにPDFが用意されてるからダウンロードするだけ簡単 まるで学校に行ってプリントを貰ったみたいな感じがする
後ろの席まで回ったかー?先生余りましたーってな、そういう、そういう生活が私は送りたかった でも送れなかった どうするか?スタディサプリです
私はスタディサプリは民間の企業がする仕事じゃないと思ってる これは国が買い取って全国民に動画を見る権利が与えられるべきだと思っている
もうそろそろ休憩時間終わるからスタディサプリ見に行くわ、じゃあな
(追記)
教科書を勧めてる人がいるけど、教科書というのは授業をする上で手元に置いておくテキストなので、あれだけでわかるはずがなかったのだよ 参考書も同様 それだけを頼りに勉強しようとするのはあれだよ、用法用量を守れてないんだよ 必ずプロの指示を受けながらテキストはご覧ください テキストだけ読むと、酔う。
教科書には演習問題が載ってないから、じゃあ問題集を別で買って上手いことやろうとするじゃん、そしたらな、習ったことがどこに対応するのかわからなくて詰むんだよ
これ教科書で読んだやつだーって突進していったらもう少しで解けそうなところでわからなくなる。それが自分の練習不足のせいなのか、問題の選び方を間違えたのか分からない。いずれ人は自分の尾を追う犬のようになり、衰弱し死に至る。一方スタディサプリは、講師に理屈を教えてもらって、講師と一緒に例題を解いて、次は一人で解けるかな?ってやってみると、その後の授業で一問ずつを解説してくれる。一人で山登りするのと、ガイドの後ろをついて歩くのは、苦痛のレベルが違う。