本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます。
受験数学の方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間の無駄です。
まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます。
暗記数学は、数学の知識を有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史の年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています。
類似の誤解として、
などがあります。これらは事実に反します。むしろ、大学の理学部や工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナーや大学院入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学に賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育の関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。
嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。
そもそも、暗記数学は別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックスな勉強法です。和田秀樹氏らは、その実践例のひとつを提案しているに過ぎません。
暗記数学の要点を述べます。これらは別に数学の勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。
一番目は、従来数学で重要なものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもので効果があると実証されたものは存在しません。
大学入試に限って言えば、入試問題は大学で研究活動をする上で重要な知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。
二番目はいわゆる「解法暗記」です。なぜ実例が重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識は理解することが極めて困難だからです。たとえば、
などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数の定義だけからその最大・最小値問題の解法を思いついたり、ベクトルの内積の定義や線形性等の性質だけを習ってそれを幾何学の問題に応用することは、非常に難しいです。したがって、それらの基本的な概念や性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります。
これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールからは直ちには明らかでない駒の活用法を身につける必要があります。数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学を理解するためにも豊富な実例を通じて概念や定理の使い方を理解する必要があります。そして、将棋において初心者が独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者が有益な実例を見出すことも難しいです。したがって、教科書や入試問題に採用された教育効果の高い題材を通じて、数学概念の意味や論証の仕方などを深く学ぶべきです。
そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に、大学以降の数学は抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナーや大学院入試の口頭試問などでは、以下のような質問が頻繁になされます。
教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分の理解が絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。
たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。
ほとんどの人はまず「自分は数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理の仮定と結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。
まず、用語や記号の定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります。
また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、
などと書いてあったら、これは
という一般的な定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、
は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります。
l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめる必要があります。
さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理や意図を理解しなければいけません。たとえば、「微分で極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題だからとりあえず微分してみる」というような勉強は良くありません。
そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているか確かめると言うことです。
はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます。
こういうことを十分に考えた上で本を読み直せば、ひとつひとつの定義や定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。
以上のことは、別に数学の勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法や道路交通法の改正について説明することになったとしましょう。その時、そこに出てくる用語の意味が分からないとか、具体的にどういう行為か違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。
https://anond.hatelabo.jp/20210907184611 の続き 実践例 たとえば、以下のような問題を考えます。演習問題に限らず、教科書の本文や、解答の一文一文も「証明問題」だと捉えてこのような態...
anond:20210907184611 https://b.hatena.ne.jp/entry/s/anond.hatelabo.jp/20210831181556