「熱力学」を含む日記 RSS

はてなキーワード: 熱力学とは

2020-09-07

anond:20200905233020

いや、本当にボルツマン定数を1.380649×10^-23J/K とすると、ぴったりと水の沸点が373.15度になるの、すごいと思う。

しかも水の三重点かいう古い定義は使わなくて済むので、熱力学情報科学エントロピー概念統計力学にも応用できる。

2020-08-12

高温おしっこ排熱の可能

暑さのあまりおしっこを高温にして熱を捨てれば体を冷却できるのではないかと考えた

温泉に生息するアーキア遺伝子を導入し、膀胱尿道を80℃に耐えるタンパク質コーティングするものとする

熱力学に逆らって、おしっこに熱を集める方法は考えないものとする

体重を50kg、80℃にするおしっこ20g、体温を36℃とすると、放尿後の体温をXとして

50*1000*36+20*36=50*1000*X+20*80だから

X=35.9824℃となった

高温おしっこを出すことで体温を約0.02℃下げることができる!

普段頭を使わないので知恵熱出た

この生き方は駄目です

2020-07-31

anond:20200731115358

なんで魔法があるのに熱力学に頼らないといけないんだよ……

2020-06-01

力学幻想

古典力学は、スケールの小さい領域では量子論破壊され

速度や重力の大きい領域では相対論破壊され

そのどちらでもない領域で辛うじて整合性を保っているだけ

しか高校で習うような力学ほとんどが物の大きさを無視した「質点」の力学であって

そこからモーメントを考えると剛体の力学に行きつくが

これも物体の粘性や弾性、ひずみや変形を無視するため現実に即してはおらず

それらも考慮に入れた連続力学はいまだ完成していない

さら現実物体は様々な他の物体相互作用を及ぼし合いながら運動しているが

理論力学においては質点が3つ相互作用するとともうまともに計算できなくなるという問題も抱えており

究極的にはそれを原子分子適用しようと考えると到底考えられる領域ではないため

その辺は流体力学やら熱力学やらでなんとか捉えようとしているがあくまで近似に過ぎないのも確か

結局力学というのは中心に人間の解明できないもしくは原理はわかっていても計算しきれない「真実力学」があって

それを人間理解できるように枠取られた様々な典型的領域に落とし込んで関係ない部分を無視した近似を

古典力学量子力学相対論力学連続力学流体力学熱力学としてなんとかやってきたのだ

時代が進めばこれらのいくつかは統合される(実際され始めている)だろうが、最後には全てがくっついて

真実力学」になるという幻想本質的不可能であろう

2020-04-15

[] 情報という概念が何らかの概念の近似であるという可能

https://anond.hatelabo.jp/20070905170808

13 年前に書かれた増田エントリーです。

観念的な問い. 古典力学量子力学の近似ととらえるように、

情報科学における情報という概念情報を包括するようなさらに高次な概念の近似としてとらえることが可能か。

ただし、ここで書いているのは量子情報のことではなくて、情報のものの高次な概念があるのではないか

いただいたコメントまとめ:

 情報の高次元=量子情報でいいのではないか

 認知によってその場が変化することで、情報が発生する。

 同様に、情報理論は近似であって、実はなんらかの極限状況だと、エントロピー性質とかがおかしくなるとか。

  • 情報がなにかの近似ではないのかと言われて、直感的におもいうかぶこと:

 シュレーディンガー波動方程式というものがある。原子の周りを電子が飛び回ってる単純なモデルがあって、それを特定するのは確率しかないみたいな。

 でも、時間をとめることができればそれがどこにあるかは特定できる。この場合は「時間で切り取っている」というケース。

 問. 現実をある面で切り取ったもの情報か。

 久保亮五先生の『統計力学』の最初のところにはお金を分配するだけの簡単金融経済モデルが出てくる。

 気体の「体積」「1分子あたりの熱エネルギー」「モル数」はそれぞれ違う次元の数。

 ディスク上の情報構造物の「占有領域」「最低/平均ブロックサイズ」「圧縮した場合バイト数を表現するのに必要レジスタ幅」はまったく意味が違うのに、いずれもバイト数で表される。

 これは情報科学根底にあるトラブルの原因ですが、いまは統計力学情報理論の間に安易な橋渡しができないことだけを意識するように。

 ただ、気体でも極端に自由度の低い系(絶対零度近くとか、強い磁場の下にあるとか)では体積は圧力にも温度にも比例しない。

 それと似たような話として、自由度の低い情報構造物情報理論適用外。

 個々のビットの間の関係恣意的であって、あまり統計的扱いに向かない。

 問. 古典力学の前提で、粒子間の引力も斥力も無視するとボルマン統計量子力学ならボーズ統計フェルミ統計に従うという話があるが、

 すべてのアプリケーションが書き出すビット列にそういう統計を考えることは可能か。

 アプリケーション各論を展開できるほど柔軟で包括的数学を使えば、情報構造物ミクロ理論は好き勝手に展開できる。ただし、それはアルゴリズムの単なる記述ではないのか。

当方が二十代の頃になんとなく発した問いにリアクションいただいたこととを、大変ありがたく思います

未だにこの辺の答えは出ていません。 あまりこういう問い立てや考えることをしなくなってきたのもあります

識者の方々におかれましては、何かコメントいただければと存じます

2020-02-12

東京大学前期教養総合科目感想

適当感想を述べる。ただの主観なので履修に悩んでいる人はシラバスと逆評定を読め。L系列については書かない。

A系

記号論理学Ⅰ(理科生)

「¬A ∧ (A ∨ B) ⇒ B」みたいな命題証明を、ある規則に従って行ったりする。理科生的には数学の根源を掘っているみたいで楽しい

B系

C系列

現代経済理論

全13回の授業で毎回違う教員がいろいろ話をしてくれる。各回ごとにレポート課題が出るが、最終的に提出するのは1つだった。単位関係あるのは実質1回だけなので、結構気楽に聞くことができて癒しになる。普通講義は毎回理解を求められるが、この授業は理解できなければその回のレポート課題を選ばなければよいだけなので。

D系列

認知脳科学

人間認知機能と脳機能関係をやる。説明の都合なのか話題の9割が視覚特に錯視)についてだった。脱線が激しすぎて全体的に何を言いたいのかいまいちわからない。ノートスライド教科書を見比べまくってなんとかしたが面倒すぎた。良い勉強方法最後までわからない。

環境物質科学

学際の香りがする。主に扱うのは二酸化炭素オゾンホールプラスチックダイオキシン。「地球温室効果がなかったら気温は-15℃」というのはよく聞くと思うが、その根拠エネルギー収支の計算から示したりする。意外と覚えることは多い(フロン番号の命名規則とか)。

E系列

有機反応化学

印象がない。新しいことを学んだ気がしない。とにかく簡単だった。

基礎化学

天下り的にいろんな化学が降ってくるが、具体的な理論づけは全くやらないので結局暗記ゲーと化した。基礎化学で扱う内容は、後々その他の化学系の科目で詳しく扱うので正直取る意味がなかったと思う。

化学平衡と反応速度

熱力学の更なる応用みたいな感じ。ルシャトリエの原理とかの証明をしたり、酵素の阻害剤がどう働くのかをやる。学ぶところが多くて楽しい結構難易度は高い。

F系列

解析学基礎

なにもわからん

アルゴリズム入門

Pythonやってれば楽勝。Python実用みたいな感じ。アルゴリズム力よりコーディング力が付く。

計算プログラミング

アルゴリズム入門よりアルゴリズム寄り。ダイクストラ法とかやる。毎回課題が出るので面倒さは結構ある。アルゴリズム好きな人楽しいと思う。

2020-02-10

anond:20200209170643

ICE効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。

エンジン (ICE: internal combustion engine) 効率

追記: 過小評価していたので熱効率を上げました)

原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)

=20%-35%程度

効率向上の限界

一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。

エンジンの素材は金属なので、良くても数百度かにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。

エンジンアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。

(ちなみに、燃焼温度を上げると今度はNOxなどの問題顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンドエンジン開発はいろいろなトレードオフなのだ。)

ディーゼルエンジン効率比較的高く、CO2排出ガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。

で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチトルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVT滑るし、CVTルードは温まるまで粘度が高くてロスになる(ダイハツCVTサーモコントローラーとかで頑張ってるけど)。

エンジン効率への批判について

エンジンの熱効率50%に達したという記事JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジン実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。

日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。

45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。

燃焼温度についての批判

燃焼温度アルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。

しかし、熱力学説明たかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的不可能ということを示したかった。

なので、燃焼温度は限られるという意味

BEV (Battery EV) 効率

原油火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)

=39-45%

効率アップの方法

PHEV, BEV場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。

なお日本火力発電所のSOx/NOx排出海外に比べてもとても少なく、優秀である

発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから

それによって熱機関効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。

で、電気輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電効率も超高圧送電(100万ボルト以上)によって高まっている。

また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。

なお、モーターのトルク特性としてエンジン車のように変速不要のため、クラッチトルコン変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率さらに上昇する。

回生

ちなみに、xEV回生充電もできるために、ブレーキ時に運動エネルギーICEほど熱に変わらない。

(一方ICEエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)

まあxEV回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったときEVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。

ICEだと、エンジンブレーキ積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)

BEV製造時の負荷は?

製造CO2

バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2排出は変わる。つまりグリーンエネルギーを使えば問題なくCO2を減らせると言うこと。

なお id:poko_penマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代バッテリ製造時のCO2データを使っていて、CO2排出過大評価している。最近テスラLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出問題工場や電源構成アップデートしていけば減らせる問題だ。

マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるからバイアスがかかってるのは仕方ないと思うね。私は内燃機関デザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)

リチウム採掘

Li-ion電池10%含まれリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカー座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。

あと、専門外だけど、海水から抽出する技術研究中とか。

コバルト貴金属

xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。

地域によるCO2排出量の差

例えば沖縄石炭火力の比率が高いため、EV効率を持ってしてもCO2排出HVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。

その他xEVとBEVとの比較

HV, PHEV

PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。

燃料電池車 (FCEV)

(追記: anond:20200211034316 に FCEV vs BEV効率比較を書いた)

燃料電池車に関していえば、無用の長物と言える。水素製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素輸送タンクに注入する際の水素圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。

そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。

また燃料電池化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。

ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離重要トラックバスタクシーなどには燃料電池が使われるかもしれない。

効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだからEV充電スタンドよりも法的なめんどくささがあるのも確か。

水素ロータリー

これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。

PHEV, BEVと再エネ

再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。

これは再エネを導入する動機にもなる。職場に着いたらEVCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。

気候

寒さ

BEVは寒さに弱い。リチウムイオン電池特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))

FCEV寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。

一方ICEも、冬になると燃費悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクス悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費悪化するのはICE特有だろう。

暑さ

BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリクーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。

用語

ソース

URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。

一つだけ、EV vs ICE効率について、13分程度で詳説してある動画URLを貼っておく。英語字幕もないが、割と平易なので、見てみてほしい。論文ソース動画の中でよく書かれている。

製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:

https://www.youtube.com/watch?v=6RhtiPefVzM

おまけ&追記

マツダLCAについて

前述のようにマツダEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメント比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラギガファクトリー」のように太陽電池をのせた自社工場場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地ほとんど太陽光で埋まっている)。

また、マツダ研究バッテリ寿命を短く見積りすぎている点で、EVライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリマネジメントシステムBMS)がしっかりとしたEV寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質改善によってサイクル寿命は伸びてきた。

テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。

なぜ水素エンジン効率が悪いか ( id:greenT )

"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと

あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなもの実用存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力ターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。

あーでも、水素エンジンメリットが1つあった。燃料電池(PEFC)は白金必要とするため Permalink | 記事への反応(16) | 01:34

2019-10-26

そもそも質点系の力学まで単純化した系でポテンシャルV(r)は∇×V=0って話と、遠非平衡開放系で定常的な散逸構造のある人体とを比較して

「前者で仕事ゼロなのに後者で疲れるのはおかしい!!」っていってるやつは根本的に熱力学を分かってないとしか

2019-10-19

anond:20191019001508

ワザとツッコミ待ちしてんのか…

そもそも非平衡熱力学統計力学が未解決問題だらけな時点で何個とか決まらんし

それに何でシュレーディンガー方程式からスタートすんだよ場の量子論がより一般的な話なんだから向きが逆だろ

ていうかよく見たら力学おかしい、ラグランジアン存在変分原理のほうが本質的なんだからやっぱり向きが逆だろ

anond:20191019000124

運動の3法則があれば解析力学までは多分いける、熱力学はもうちょい法則いるかな?

マクスウェル方程式があれば相対性理論はいけそう

あとはシュレディンガー方程式でどこまで量子力学カバーできるかってくらい?

2019-10-12

[]2019年10月11日金曜日増田

時間記事文字数文字数平均文字数中央値
0012016909140.946
017412311166.451.5
0243393991.629
03864680.866.5
04104131413.144
05112075188.698
062290441.126.5
07273262120.846
0887638873.439
09151885758.733
101471004068.342
112011147457.134
122101549373.830
132641191745.127.5
142581103342.824
151811768397.731
161621036564.031.5
171401148382.028
1811211843105.733
191341003074.940.5
20121889873.545
21123808565.730
22126766060.840.5
2372619886.133
1日280421162475.533

本日の急増単語 ()内の数字単語が含まれ記事

かやく(4), コミュニティサイト(4), グルメサイト(5), rvw(4), QJV(3), FCr(3), ハンマー投げ(3), 台風19号(13), チンポム(6), ソフトドリンク(12), ローマ人(4), 台風(98), ガチャ(56), ジョーカー(9), ガイドライン(8), あけ(7), 受賞(7), ダジャレ(8), アート(11), 燃やし(9), 食料(6), 事象(9), イジメ(11), オープン(9), 店舗(15), 奴隷(29), もつ(8), 例え(16), BL(13), 生物(12), 注文(11), なんや(15), 文脈(12), 回し(12), 教師(11)

頻出トラックバック先 ()内の数字は被トラックバック件数

■いっそ『奴隷』という種族を作ったらよくね? /20191011002400(32), ■見た目で舐められない方法を教えてほしい /20191010203546(17), ■人間齧る玩具って売ってないの /20191010201747(16), ■オープンナマモノをする輩は痴漢同値 /20191010232020(16), ■教員いじめについて /20191010150237(15), ■70歳の父親でも楽しく読めるマンガはないか /20191007173132(12), ■anond20190925231602 /20190925232043(11), ■オタク女が婚活愚痴を書く /20191009151407(11), ■昭和天皇を燃やすやつなんだけど(あとトリ2019の感想) /20191009190719(10), ■主人公が途中で死ぬ話ってある? /20191010100543(9), ■日本シリーズ ←一切野球を表す要素がない /20191010135852(8), ■Twitter適応できなかったオタクの行く末 /20191011160414(8), ■昔ってこんなに台風に対して準備しなかったよな /20191011173943(7), ■食べログとの戦いの記録 /20191011150023(6), ■90年代ギャグ漫画って異常だったよね /20191011155729(6), ■小泉進次郎がハテブをやったときに言いそうな名言 /20191011134047(6), ■食べログ3.8問題の雑な追試 /20191010232227(6), ■江戸時代みたいに気象衛星レーダー流体力学熱力学スパコンがない時代台風は、 /20191011085326(6), ■anond20191010100543 /20191010142654(6), ■芸術作品の展示に補助金出すなって人 /20191011142927(6)

増田合計ブックマーク数 ()内の数字は1日の増減

6682454(4003)

2019-10-06

anond:20191006003952

エントロピーみたいなマクロ系での話(熱力学)と1個ごとの原子核での反応(場の量子論)じゃ適用できる時空間スケール違いすぎるだろ、プランク定数の大きさも知らんのかそれともお前は野球ボールまで量子力学に従う世界からきたんか?

2019-07-14

anond:20190714151528

いたことがある。

扇風機で送る風は同じ温度なのになぜ涼しいのか」って名前テレビ特集してたわ。

そういう物理現象がありますってだけで細かい説明はしてなかったけどね。

ガチでやり始めたら熱力学流体力学の両方について基礎を学ばされて、その過程でいくつもの数式がゴチャゴチャ出てくる気はする。

2019-06-08

力学的に暴れる

解析力学的に暴れる

量子力学的に暴れる

熱力学的に暴れる

統計学的に暴れる

流体力学的に暴れる

電磁気学的に暴れる

光学的に暴れる

特殊相対論的に暴れる

一般相対論的に暴れる

天文学的に暴れる

天体物理学的に暴れる

宇宙物理学的に暴れる

宇宙論的に暴れる

音響学的に暴れる

数学的に暴れる

数値解析的に暴れる

計算機科学的に暴れる

化学的に暴れる

物理化学的に暴れる

量子化学的に暴れる

分析化学的に暴れる

生物学的に暴れる

工学的に暴れる

応用物理学的に暴れる

地球科学的に暴れる

地震学的に暴れる

海洋学的に暴れる

気象学的に暴れる

医学的に暴れる

医療物理学的に暴れる

放射線物理学的に暴れる

保健物理学的に暴れる

哲学的に暴れる

自然哲学的に暴れる

心理学的に暴れる

教育学的に暴れる

経済学的に暴れる

量子的に暴れる

量子暗号的に暴れる

2019-04-29

anond:20190429102212

弁論主義理系博士号持ちですらロクに理解してないからしゃーない

君たち法律に詳しい人間選択公理熱力学第2法則の射程を理解できないのと同じやぞ

(何のことかわからない人向け↓)

http://binbocchama.hatenablog.com/entry/2017/02/16/000539

2019-04-28

ヒットポイント

RPGで用いられるヒットポイントは、その言葉の通り、そのユニットを行動不能に追い込むためにどれだけの有効打撃を加えなければならないか、を示すもの。体力や、生命力といった個人属性でもなければ、回避能力、防御力といった能力でもない。定義からして、対戦相手視点が前提とされている。

これを、日本語に訳す際に、体力や生命力と訳してしまうのは、誤訳といってもやむをえない。正しくは、戦闘継続能力とするのが良いだろう。もっというと、有効打撃を受けることで、戦闘継続能力が低下するのは、ケガをするからではない。

ボクシングでいえば、打撃で失神してしまい、倒れてしまったした状態テクニカルノックアウト)がHPゼロであるが、ケガをした場合、倒れてしまった状態とは限らない。

ファンタジー世界でいえば、有効打撃とは、打撃ももちろんだし、刺突、斬撃、射撃といった力学的な攻撃に加え、熱、電撃といった電磁気学熱力学的なエネルギーを用いた攻撃もあげられる。化学的なもの心理的精神的なものや、魔力的・霊的なものだって世界観によっては付け加えることができる。

また、対戦相手から見たヒットポイントという趣旨安易拡張すると誤解すると、間違いが生じることに注意したい。キャラクター個人戦闘継続能力はあっても、捕虜となったり、指揮権が失われたり、作戦意思がなくなった場合には、当然戦闘をすることができない場合があるが、これは対戦相手が「有効打撃により」そのキャラクター戦闘不能に追い込んだからではなく、捕縛したり、指揮能力を停止せしめた結果であるから戦闘継続能力は失われてない。つまりHPが失われたわけではない。阻害要因がなくなれば、戦闘継続できる。能力が失われたと解釈するのは、阻害要因能力喪失混同である

ヒットポイントゼロ状態

ダメージを受け、戦闘継続能力は失われた状態が、HP0となる。


応用例

ヒットポイントが下がると攻撃力が下がらないのか

戦闘継続能力とケガの関係は、上記で論じた通りである戦闘継続能力が低下すると、ケガの場合も多いだろう。それに限らず、打撃を受け足が止まり、視界がぼやけ、という状態になると、攻撃力も失われるのではないかと思われるかもしれない。しかし、このような状態は多くの場合、すでにHPゼロなのであり、攻撃などできていないと解釈すべきだ。逆に負傷したからと言って、攻撃能力が損なわれていない、戦意が旺盛なのであれば、戦闘継続能力は損なわれておらず、当然攻撃健康時と同じ状態でできるとする。

ただ、ヒットポイント上記定義である以上、ケガをして倒れてしまったら、HP0とみてよいのだと思う。

<参考>

http://beoline.nobody.jp/bandterm-ha.html

ヒットポイントの項参照

2019-02-14

一定以上の数学物理理解できない

30代のオッサンなんだけど、

一念発起して、昨年の4月から数学物理勉強している。

  

いわゆる、大学院入試レベル数学やら物理やらというのは、マアマアできる。

いわゆる、イプシロンデルタだの、一様収束だの、解析力学だの、熱力学だの。

そういうのは、一応理解できる。そのレベルまでは、割とサックリ行って、3か月くらいだった。

  

しかし、そっから先がキツイ

関数解析多様体リー代数物理で言えば、シュレディンガー方程式ソリトン。こういうやつらだ。

マジで薄皮を剥くようなレベルしか理解が進まない。

  

1900年前後物理数学、このあたりで一気にレベルが上がる。アインシュタインあたりね。ネーター定理とかの保存量とかが出てくるあたりがヤバイポアソンカッコがヤバイ数学物理抽象度を上げて一気に交じりだす。

  

1960年前後数学となると、そっから更に難易度が上がる。レーザーとかが出来たせい(レーザーの光は量子力学理屈からできた)で、実験系と理論系が相互に影響あたえあってるのがあるらしい(ちなみに、大抵の場合実験系が圧勝らしい)。

実験系の話も、ギリギリ分かる程度だけど、理論系は鬼のように難しい。

  

ヤバイだろ。現代の人たちってどのレベルにいるんだろ。数学は流石にそんなにゴリゴリ進まないと思うけど(数学の年表みると、数年間隔は保っている)。理論物理はヤバそう。なんたって、実験系の物理レベルがいまだに毎年レベルが上がり続けている。レンズとか光(レーザー改善とか)とかがレベルアップし続けているから、新しい観測ドンドンまれている(ノーベル物理学賞は光系の実験系やMRI系の波動への授与がかなり多い)。

  

いわゆる数学で食っている人も、「数学小説と違うから、1日1ページでも理解できたらいい」とかそういう感じらしい。

どんだけ頭よくても、「記述意味が分からない」時というのはあるらしい。

  

こんな事あるのかな。かなりビックリしている。

悔しい。

2019-02-12

30歳までに人生を勝てなかった

ノリアキという、歌手がいて。

彼は現在、35歳くらいだ。

もはや歌手活動自体はあまりしていない。

ツイッターなどは更新してるみたいだが、田舎機械学習カフェ?みたいなのでインタビュー最近受けたらしい。

  

自分は30歳。

自分が盛り上がってた一世風靡した人たちを色々に見る。

人間だけじゃない、色々な店が消えて行った。

  

なんだか世間では、「停滞するな、チャレンジだ!」というが。

チャレンジして芽が出たノリアキですら、こんな感じ。

もちろん、凄い成功した人はいるけど。

色々に手をだして、微妙だった、という結論が出た人が多いのではないか

  

30歳という年齢が怖い。

専門職なので、その職業のある程度の世界最先端は知っているつもりだが。

専門外の、子供の時に夢を見た数学物理などはどうか。

恐ろしいくらいに知らない。

30歳までに、隙あらば勉強しているが、やはり大学以上の数学物理は難しい。大学入試くらいは解けるのだけれど、その上の、専門レベルとなると歯が立たない。

それでも、毎日、一つ一つ学んで成長しているが。

知らないこと、マダマダ遠い。

  

奨励会という将棋プロの育成施設は、20代後半までが年齢制限らしい。

将棋とか、自分は初段なんだけど、初段ですら、3年以上かかっている。プロとか及びもつかない。

その中で、20代後半までやっている人と言うと、これはものすごい。

  

将棋という1分野ですら、その高みに絶望する。

数学はいくつも分野があり、物理も、いくつも分野がある。

物理に関しては、熱力学機械系の解析力学などの、普通力学は、普通理解できたが、量子力学実験系との兼ね合いなどが難しい。数学が絡むと異常にキツイ

数学も、解析、代数幾何とどれも半端ない

  

30歳、数学物理は行けるだろうか。ギリギリか。

しかし、30歳ってもう遊んでいる場合じゃない。

自分も、成し遂げられないまま、過去の挑戦に慰められる存在になるんだろうか。

怖い。

2019-02-06

anond:20190206181925

そっちのほうが夢があっていいね

彼らの理屈だと熱力学法則でいつか真っ暗になるみたいだから

2019-01-21

anond:20190121213537

熱力学法則宇宙が最終的に冷えて真っ暗になるの怖くないですか

2019-01-01

anond:20190101220453

ワイもタクシーに乗るたびに

運転手エンジン熱力学とか

ガソリン化学反応とかの話振るけど

まともに答えれる人おらんかったな

2018-11-08

anond:20181108002853

起業しておれを雇え

営業先で相談された内容について熱力学の第二法則に反してるから無理って言ってから何も相談されなくなった人物

ログイン ユーザー登録
ようこそ ゲスト さん