「リー代数」を含む日記 RSS

はてなキーワード: リー代数とは

2023-09-22

[] 民主主義

今日オブザーバブル状態関係リー代数ポアソンブラケット、などを学びました。

ところで、最近このような論法を見つけました。

「○○を超えるものを作ったことがないくせに○○を批判するなど愚か」

私はこういう民主主義否定する論法が好きではないのです。

公共サービス改善点があれば、誰でもそれについて指摘できた方が良いでしょう。

○○に入るのが"Twitter"であるならば「反ユダヤ主義投稿拡散するようなFor you機能改善すべき」と言えたほうが良いのです。

なぜ特定のものを作れる能力で張り合う必要があるのでしょうか (例: これを作る能力がないくせに批判するな、等)

本質を見れば、物事をみんなの力で改善していこうという話なのです。

民主主義否定する論法は、自分立場を守るために他人発言無視したり、軽視したりするものです。

それは公正でなく、建設的でなく、社会の発展にとって有害です。

私たちは皆、自分が使うものや関わるものに対して責任を持つべきだと思います

2023-09-21

[] 積読の消化

量子力学理解しようとして、Faddevの本と、Takhtajanの本を買ったことがありますが、積読になっていました。

個人的懸念を表明すると、量子力学を学ぶことは神への冒涜なのか否かということで、これは単に個人的宗教観問題です。

しかし、おそらく神は、私たちに知ってもらいたい事柄だけにアクセス許可するよう設計しているはずです。

それを信じて、積読を消化していくことにしました。

どちらも数学マニア量子力学を学ぶために書かれた本ですが、やりがいがありそうなTakhtajanの方をやろうと思います

エドワード・フレンケル教授の「Love and Math」ではSO(3)について書かれていましたが、それについての解説も書かれているようです。

 

追記: Takhtajanをちょっと読んだのですが、リー代数理解済みとして話が進んでいたので、学生向けのFaddevの本からやっぱりやります

2019-02-14

一定以上の数学物理理解できない

30代のオッサンなんだけど、

一念発起して、昨年の4月から数学物理勉強している。

  

いわゆる、大学院入試レベル数学やら物理やらというのは、マアマアできる。

いわゆる、イプシロンデルタだの、一様収束だの、解析力学だの、熱力学だの。

そういうのは、一応理解できる。そのレベルまでは、割とサックリ行って、3か月くらいだった。

  

しかし、そっから先がキツイ

関数解析多様体リー代数物理で言えば、シュレディンガー方程式ソリトン。こういうやつらだ。

マジで薄皮を剥くようなレベルしか理解が進まない。

  

1900年前後物理数学、このあたりで一気にレベルが上がる。アインシュタインあたりね。ネーター定理とかの保存量とかが出てくるあたりがヤバイポアソンカッコがヤバイ数学物理抽象度を上げて一気に交じりだす。

  

1960年前後数学となると、そっから更に難易度が上がる。レーザーとかが出来たせい(レーザーの光は量子力学理屈からできた)で、実験系と理論系が相互に影響あたえあってるのがあるらしい(ちなみに、大抵の場合実験系が圧勝らしい)。

実験系の話も、ギリギリ分かる程度だけど、理論系は鬼のように難しい。

  

ヤバイだろ。現代の人たちってどのレベルにいるんだろ。数学は流石にそんなにゴリゴリ進まないと思うけど(数学の年表みると、数年間隔は保っている)。理論物理はヤバそう。なんたって、実験系の物理レベルがいまだに毎年レベルが上がり続けている。レンズとか光(レーザー改善とか)とかがレベルアップし続けているから、新しい観測ドンドンまれている(ノーベル物理学賞は光系の実験系やMRI系の波動への授与がかなり多い)。

  

いわゆる数学で食っている人も、「数学小説と違うから、1日1ページでも理解できたらいい」とかそういう感じらしい。

どんだけ頭よくても、「記述意味が分からない」時というのはあるらしい。

  

こんな事あるのかな。かなりビックリしている。

悔しい。

2018-10-10

物理科 素粒子分野の業績事情

人文系の文献の取り扱いとか業績についてちょっとだけ - dlitの殴り書き

こちらの記事賛同したので続いてみます

かに異分野の事情をお互いにわかっていたほうがみんな幸せになりますよね。パーマネントや学振採用とか。

はじめに

素粒子分野は大きく分けて

に分かれています。これらの間には超えられない壁がありまして全てをまとめるのはちょっと難しいのですがなんとか書いてみます

間違いを見つけたら教えてください。

論文事情

素粒子論文は全て英語で書かれます国内雑誌としてはPTEP(旧PTP)がありますこちらも英文です。当然どれも査読があります

業績リスト論文査読なし)には国際会議研究会の proceeding を載せたりします。

素粒子分野には論文投稿前に arXiv に載せる慣習があります

これは投稿前に業界の人たちに意見をもらい論文修正するためです。accept 後に査読済みの論文差し替えます

arXiv に載っているのは基本的投稿前/査読中/査読済み の論文及び国際会議の proceeding です。

素粒子査読をしないというのは誤解です。

論文雑誌とIF

特に素晴らしい研究Physical Review Letters (Phys. Rev. Lett) に投稿されます。IF8.839 です。

Nature や Science に投稿することはまずありません。

IFの基準業界によりかなり異なるでしょう。

おそらくは  [ 業界の人数 ] x [ 1年間に発表する論文数 ] に依存するはずです。まあ人数の少ない分野は引用数も少なくなるでしょうね。

同じ素粒子業界でもその専門ごとにかなり違うはずですが、とりあえず Inspires によると以下のように分類されています

# of citations
Renowned papers 500+
Famous papers 250-499
Very well-known papers 100-249
Well-known papers 50-99
Known papers 10-49
Less known papers 1-9
Unknown papers 0

自分確認したい人は Inspires で fin a s Masukawa などと打ってみてください。

業界事情

素粒子実験論文を出せない

素粒子実験特にエネルギー方面ではなかなか論文が出せないことがあります

理由簡単実験計画から結果が出るまで多数の歳月がかかるからです。

例えばLHC計画からヒッグス発見まで20年弱かかりました。論文の著者数は5000人を超えました。

このような事情なので「博士課程単位取得満期退学後に研究を続けて論文を出すと同時に博士を得る」というような方がたまにいらっしゃいます

博士号をもっていない素粒子実験の人に出会っても決してバカにしてはいけません。

彼らは博士号取得と同時にノーベル賞を得る人たちなのです。

素粒子理論学生論文を出せない

素粒子理論研究に入る前の勉強量が膨大です。

まず 場の量子論超対称性理論群論リー代数 あたりは三分野共通勉強すると思います

加えてそれぞれの分野の専門的教科書、例えば弦理論なら String Theory (Polchinski) 格子なら Lattice Gauge Theories (Rothe) など。

分野によっては位相幾何学微分幾何学勉強しなければなりません。共形場理論もですね。

この辺りでようやく基礎ができてきましてこのあと30年分くらいの論文を読みます

研究に入るまでの勉強時間がかかるので修論レビューになることが多いです。

当然学振は出せない・・はずだったのですが最近どうも事情が変わってきたようです。

学生の方が学振(DC1)に固執して勉強も途中に研究を始めてしまう、勉強途中のM1研究できることなんてたかが知れているので

必然的にあまり重要ではない研究に貴重な時間を費やしてしまう、というような話をぼちぼち聞くようになりました。

学振についての考え方は人によるとは思うのですが、ちょっと危うい傾向だなと私は思うことがあります

そこでちょっとお願いなのですが

学振研究者の登竜門!取れなかったらやめよう!」などとblogに書いて煽るのをやめていただけないでしょうか?

いや書いてもいいのですが主語を書いてください。「情報系では」「生物では」とかね。

理論博士号を取れない

博士号は足の裏のご飯粒」と言われて久しいですが、弦理論では博士号を取るのはまだまだ難しいと思います

まあとったところで「足の裏のご飯粒」なんですけれどもね・・・

追記

放置していてすみませんまさか今頃上がるとは思っていませんでした。

いただいた重要コメントこちらにも転載しておきます

new3 言いたいことはわかるけど、普通は「ヒッグス発見」を博論テーマにせずもうちょっと控え目な研究に留めるものでは?日本でもJ-PARCからSuper-Kにニュートリノ撃てるんだし10年に1本はさすがに少ないと思う。

どうもありがとうございます文章を少し修正いたしました。他にも間違ったところがありましたら教えてください。

niaoz 懐かしい。補足するとストリングやるなら一般相対論ベース重力理論必要/場の理論は確かに簡単じゃないけど楽しい量子力学特殊相対論(電磁気学含む)を修めたらやってみるとよいです。



kirarichang 学振出せないと思われるのは,(学振の)制度不備だよなぁ.

monopole 素粒子理論分野では修士論文書きにくいけどDC1の枠はあるので、採用者は実績によらずほぼランダムだったり有名研究室に偏ったりする。まあ論文なしでも通る可能性あるから学振気合い入れて書け

えっ!!論文なしでも通ることあるのですか!

Ho-oTo 今時の素粒子理論院生DC1用に1本は書いてるイメージが強い。

最近は大変ですよね。指導している方もすごいと思います

kowa 素粒子系は知性の墓場だと感じてる。優秀な人材があまりに何もできなくて、消えている。魅力はわかるが、1/5000のcontributionだかでいいのだろうか

猫も杓子も素粒子目指しすぎですよね。宇宙論も。

2015-01-19

http://anond.hatelabo.jp/20150119214711

おっしじゃあ例外リー代数が5種類しか無いことを示してその次元を全て与えてもらおうか

2014-07-23

http://anond.hatelabo.jp/20140723094934

こういうこと言うプログラマー()に「CGやるからお教えてくれってお前が言うこの3次元回転群のリー代数の式変形だけど見積もりはこれくらいな。俺がこれまで勉強に費やした時間の分も含めてるから」って言ったらブチ切れそう(笑)

2014-01-31

http://anond.hatelabo.jp/20140131102821

きみ数学あんま使ってないんでしょ。

可換性の話をするとき普通は交換子[a,b]=ab-baを導入するが、

それに対するある種の双対として反交換子{a,b}=ab+ba自然に入る。

別に反交換関係{a,b}=0が成り立つものを可換であるとして議論してもいいわけ

そういう発想からすると普通非可換の典型的な例として外積はでてこない。

今の話の本質は非可換性であってベクトルではない。

そもそも ベクター行列も 近いじゃねーか。 行列使わずにどうやってベクトル扱うんだよ。

ちょっと何を言いたいのか理解できない。

別にベクトル行列も単なる代数構造であって本質記法ではなくその上に定義された演算ルールだよ。

リー代数行列の形で書けるけどベクトル(ベクトル空間の元)だよ。

2013-11-20

http://anond.hatelabo.jp/20131120114753

学術的には大問題に決まってるよ。

実数に対してアーベル群の構造を入れて議論するのかそうでないのか、という話なので、それによって全く別物の構造になるよ。

もちろん現実(の物理)を良く説明するのはアーベル群の方だよ。

非可換が重要意味を持つ物理というのもあって、一番有名なのは量子力学の交換関係[x,p]:=xp-px=ih_barというもので、これはリー代数と呼ばれる代数構造対応しているよ。

まり量子力学世界では非可換なリー代数構造物理をよく説明するわけで、ここでは可換な代数構造全然役に立たない。

可換な構造を利用するか、非可換な構造を利用するかは状況によって完全に決まるものであって、文科省だか何だかが自由に決めていいものではないよ。

 
ログイン ユーザー登録
ようこそ ゲスト さん