はてなキーワード: ボルツマン定数とは
ブラックホール情報パラドックスは、量子場の理論と一般相対性理論の整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。
量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:
|ψ(t)⟩ = U(t)|ψ(0)⟩
ここで、U(t) は以下の性質を満たす:
U†(t)U(t) = U(t)U†(t) = I
これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。
ブラックホールの形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:
rₛ = 2GM/c²
ここで、G は重力定数、M はブラックホールの質量、c は光速。
ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:
T_H = ℏc³/(8πGMk_B)
ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:
|ψᵢ⟩⟨ψᵢ| → ρ_f
ホログラフィー原理は、(d+1) 次元の重力理論が d 次元の場の理論と等価であることを示唆する。ブラックホールのエントロピー S は:
S = A/(4Gℏ)
ここで、A は事象の地平面の面積。これは、情報が事象の地平面上に符号化されていることを示唆する。
AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:
ds² = (L²/z²)(-dt² + d𝐱² + dz²)
CFT の相関関数は、AdS 空間内のフェインマン図に対応する。例えば、2点相関関数は:
ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。
量子エンタングルメントは、ブラックホール情報パラドックスの解決に重要な役割を果たす可能性がある。2粒子系のエンタングルした状態は:
|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)
ER=EPR 仮説は、量子エンタングルメント(EPR)とアインシュタイン・ローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。
超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワークを提供している。
ホログラフィー原理、AdS/CFT対応、量子エンタングルメントなどの概念は、このパラドックスの解決に向けた重要な手がかりとなっている。
今後の研究では、量子重力の完全な理論を構築することが必要。特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要な課題となるだろう。
観察対象(物体や概念)がヒルベルト空間内の状態に変換される。この状態は以下のように表される:
|π(Item)⟩
次に、この状態を解釈するための基底状態(概念)が定義される:
|Iᵢ⟩
ここで、iは状態のラベルである。解釈はこれらの基底状態の線形結合として表現される。
観察者が選択した基底|i⟩に対して、状態|π(Item)⟩は以下のように表される:
R|π(Item)⟩ = Σᵢ αᵢ |Iᵢ⟩
ここで、αᵢは重み付け係数であり、以下の内積によって計算される:
αᵢ = ⟨Iᵢ | π(Item)⟩
この重み付け係数αᵢの絶対値の二乗|αᵢ|²は、観察者がその状態を特定の|Iᵢ⟩として解釈する確率を表す。
状態が解釈されると、システムはある特定の分類状態に「コラプス」する。この過程は以下のように記述される:
D = Σᵢ ιᵢ |Iᵢ⟩⟨Iᵢ|
ここで、ιᵢは観測結果として得られる固有概念を表す。最終的に得られる状態は、コラプスによって一つの値に決まる:
D|π(Item)⟩ → Collapse
このとき、システムは特定の状態|Iₚ⟩に収束し、他のすべての状態は消失する。
解釈プロセスは初期状態では混合状態(複数の可能性が共存する状態)である。これを密度行列ρで表すと:
ρ = Σᵢ αᵢ |Iᵢ⟩ Σᵢ αᵢ* ⟨Iᵢ|
ρ = Σᵢ |αᵢ|² |i⟩⟨i| + Σᵢ≠ₖ αᵢ* αₖ |i⟩⟨k|
最初の項は、異なる概念が識別可能な部分を示し、第二項は概念が区別不可能な干渉部分を示す。
S = -k_B Trace(ρ ln(ρ))
密度行列ρが対角化されているため、エントロピーは次のように簡略化される:
S = -k_B Σᵢ |αᵢ|² ln(|αᵢ|²)
コラプス後、システムは一つの状態に収束するため、最終的なエントロピーはゼロになる。このとき、エントロピーの減少は以下のように計算される:
Q = k_B T Σᵢ |αᵢ|² ln(|αᵢ|²)
ここで、Qは放出される熱量、Tは温度である。エントロピーの減少により、システムは環境に熱を放出し、全体のエントロピーが増加する。
「エントロピー」という概念がよくわかりません。 - Mond
https://mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy
https://b.hatena.ne.jp/entry/s/mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy
「エントロピー」は名前自体は比較的よく知られているものの、「何を意味しているのか今一つ分からない」という人の多い概念である。その理由の一つは、きちんと理解するためには一定レベルの数学的概念(特に、微積分と対数)の理解が必要とされるからであろう。これらを避けて説明しようとしても、「結局何を言いたいのかすっきりしない」という印象になってしまいやすい。
「エントロピー」を理解し難いものにしているもう一つの理由は、「エントロピー」という概念が生まれた歴史的経緯だと思われる。
エントロピーが提唱された時代は、物質を構成する「原子」や「分子」の存在がまだ十分に立証されておらず、それらの存在を疑う物理学者も少なくなかった。エントロピーの提唱者クラウジウスは、「原子や分子の存在を前提しなくても支障がないように」熱力学の理論を構築し、現象の可逆性と不可逆性の考察から「エントロピー」という量を発見し、非常に巧妙な手法で定義づけたのである。
その手法は実にエレガントで、筆者はクラウジウスの天才性を感じずにはいられない。だが、その反面、熱力学における「エントロピー」概念は簡単にイメージしづらい、初学者には敷居の高いものとなってしまったのだ。
その後、ボルツマンが分子の存在を前提とした(よりイメージしやすい)形で「エントロピー」を表現し直したのだが、分子の存在を認めない物理学者達との間で論争となった。その論争は、アインシュタインがブラウン運動の理論を確立して、分子の実在が立証されるまで続いたのである。
現代では、原子や分子の存在を疑う人はまず居ないため、ボルツマンによる表現を心置きなく「エントロピーの定義」として採用することができる。それは次のようなものである。
例えば、容積が変わらない箱に入れられた、何らかの物質を考えて欲しい。
箱の中の物質の「体積」や「圧力」「物質量」などは具体的に測定することができる。また、箱の中の物質の「全エネルギー」は測定は難しいが、ある決まった値をとっているものと考えることができる。
ここに、全く同じ箱をもう一つ用意し、全く同じ物質を同じ量入れて、圧力や全エネルギーも等しい状態にするとしよう。このとき、二つの箱の「巨視的状態」は同じである。では、内部の状態は「完全に」同じだろうか?
そうではあるまい。箱の中の物質の構成分子の、それぞれの位置や運動状態は完全に同じにはならない。これらの「分子の状態」は刻一刻と変化し、膨大なパターンをとりうるだろう。
このような分子レベルの位置や運動状態のことを「微視的状態」と呼ぶ。
「微視的状態」のパターンの個数(場合の数)はあまりに多いので、普通に数えたのでは数値として表現するのも難しい。そこで「対数」を用いる。
例えば、巨視的状態Aがとりうる微視的状態の数を1000通り、巨視的状態Bがとりうる微視的状態の数を10000通りとする。このとき、Aの「パターンの多さ」を3、Bの「パターンの多さ」を4、というように、桁数をとったものを考えるのである。
この考え方には、単に「とてつもなく大きな数を表現するための便宜的手法」という以上の意味がある。
先の例では、AとBを合わせた微視的状態の数は1000×10000=10000000通りであるが、「パターンの多さ」は7となり、両者それぞれの「パターンの多さ」の和になるのである。
「微視的状態のパターンの個数」をΩ通りとしたとき、エントロピーSは次のように表現できる。
S = k*logΩ
(ただし、kはボルツマン定数と呼ばれる定数であり、対数logは常用対数ではなく自然対数を用いる。)
この「エントロピー」は、同じ巨視的状態に対して同じ数値をとるものであるから、「体積」や「圧力」などと同じく「状態量」の一つである。
このような「目に見えない状態量」を考えることに、どのような意味があるのだろうか?
その疑問に答えるには、エントロピーとエネルギーの関係について考える必要がある。
再び箱に入った物質を考えよう。この箱に熱を加え、箱内の物質のエネルギーを増加させると、エントロピーはどうなるだろうか?
まず、総エネルギーが増加することにより、各分子に対する「エネルギーの分配パターン」が増える。さらに、個々の分子の平均エネルギーが増えた分、可能な運動パターンも増える。このため、エネルギーが増えるとエントロピーは増加すると考えていいだろう。
では、エントロピーの「上がり方」はどうか?
エントロピーは微視的状態パターンの「桁数」(対数をとった値)であるから、エネルギーを継続的に与え続けた場合、エントロピーの増加の仕方はだんだん緩やかになっていくだろうと考えられる。
ここで、多くのエネルギーを与えた「熱い物質A」の入った箱と、少量のエネルギーしか与えていない「冷たい物質B」の入った箱を用意しよう。箱同士を接触させることで熱のやりとりが可能であるものとする。
物質Aには、熱を与えてもエントロピーがさほど増加しない(同様に、熱を奪ってもエントロピーがさほど減少しない)。言いかえると、エントロピーを一定量増加させるのに多くのエネルギーを要する。
物質Bは、熱を与えるとエントロピーが大きく増加する(同様に、熱を奪うとエントロピーが大きく減少する)。つまり、エントロピーを一定量増加させるのに必要なエネルギーが少ない。
箱を接触させたとき、AからBに熱が流入したとしよう。Aのエントロピーは下がり、Bのエントロピーは上がるが、「Aのエントロピー減少分」より「Bのエントロピー増加分」の方が多くなるので、全体のエントロピーは増加するだろう。
もし、逆にBからAに熱が流入したとするとどうか? Aのエントロピーは上がり、Bのエントロピーは下がるが、「Aのエントロピー増加分」より「Bのエントロピー減少分」の方が多いので、全体のエントロピーは減少することになる。
エントロピーが多いとは、微視的状態パターンが多いということである。従って、「AからBに熱が流入した」状態パターンと、「BからAに熱が流入した」状態パターンとでは、前者のパターンの方が圧倒的に多い(エントロピーは微視的状態パターン数の対数なので、エントロピーの数値のわずかな差でも、微視的状態パターン数の違いは何十桁・何百桁にもなる)。これは、前者の方が「起こる確率が圧倒的に高い」ということを意味している。
これが、「熱は熱い物体から冷たい物体に移動する」という現象の、分子論的な理解である。
冷たい物体から熱い物体へ熱が移動する確率は0ではないが、無視できるほど小さいのである。
物体が「熱い」ほど、先程の「エントロピーを一定量増加させるのに必要なエネルギー」が多いといえる。そこで、この量を「絶対温度」Tとして定義する。
エントロピーの定義のときに出て来た「ボルツマン定数」kは、このTの温度目盛が、我々が普段使っているセルシウス温度(℃)の目盛と一致するように定められている。
さて、ここで用いた「エントロピーが減少するような変化は、そうなる確率が非常に低いので現実的にはほぼ起こらない」という論法は、2物体間の熱のやりとりだけでなく、自然界のあらゆる現象に適用することができる。
すなわち、「自然な(自発的な)変化ではエントロピーは常に増加する」と言うことができる。これが「エントロピー増大の法則」である。
ただし、外部との熱のやりとりがある場合は、そこまで含めて考える必要がある。
例えば、冷蔵庫にプリンを入れておくと、プリンの温度は「自然に」下がってエントロピーは減少する。
しかし、冷蔵庫が内部の熱を外部に排出し、さらに冷蔵庫自身も電気エネルギーを熱に変えながら動いているため、冷蔵庫の外の空気のエントロピーは内部の減少分以上に増加しており、そこまで含めた全体のエントロピーは増加しているのである。
最初に、「エントロピーの理解には微積分と対数の理解が必要」であると述べたが、なるべくそうした数学的概念に馴染みがなくても読み進められるようにエントロピーの初歩的な話をまとめてみた。如何だったであろうか。
筆者は熱力学・統計力学の専門家でもなんでもないので、間違ったことを書いている可能性もある。誤りがあればご指摘いただけると幸いである。
クラウジウスによる「原子・分子の存在を前提としない」エントロピーの定義については、筆者よりはるかに優秀な多くの方が解説記事を書かれているが、中でも「EMANの熱力学」https://eman-physics.net/thermo/contents.html が個人的にはおすすめである。興味ある方はご参照いただきたい。