はてなキーワード: 内積とは
(Ω, ℱ, (ℱ_t)_t≥0, ℙ) を完備確率空間とし、ℋ = L²(Ω, ℱ, ℙ) をヒルベルト空間とする。
状態変数を無限次元ヒルベルト空間 𝒳 の要素 x_t ∈ 𝒳 とする。
dx_t = A(x_t)dt + B(x_t)dW_t
ここで、A: 𝒳 → 𝒳 は非線形作用素、B: 𝒳 → ℒ₂(𝒰, 𝒳) はヒルベルト空間値作用素、W_t は 𝒰-値のシリンドリカルウィーナー過程である。
代表的主体の価値汎関数 V: 𝒳 → ℝ を以下のように定義する:
V(x) = sup_α∈𝒜 𝔼[∫₀^∞ e⁻ᵖᵗ ⟨U(c_t, l_t), μ⟩ dt | x₀ = x]
ここで、𝒜 は許容制御の集合、ρ > 0 は割引率、U: 𝒳 × 𝒳 → 𝒳 は効用作用素、μ は 𝒳 上の測度、⟨·, ·⟩ は内積を表す。
最適性の必要条件として、以下の無限次元 HJB 方程式が成立する:
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
ここで、DV と D²V はそれぞれ V のフレシェ微分と二階フレシェ微分、B* は B の共役作用素である。
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
Y(x) = F(K(x), L(x))
C(x) + I(x) = Y(x)
DU_c(C(x), L(x)) = DV(x)
DU_l(C(x), L(x)) = DV(x)F_L(K(x), L(x))
ここで、F, K, L, C, I はすべて 𝒳 上の非線形作用素である。
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
ここで、(T_i, M_i) は価格改定のタイミングと大きさを表す二重確率点列、δ はディラックのデルタ測度である。
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
ここで、𝒜 は線形作用素、𝒦 は非線形作用素、𝒮 はヒルベルト空間値作用素、W_t^π は 𝒳-値のシリンドリカルウィーナー過程である。
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
ここで、Θ, Φ_π, Φ_y, Σ はすべてヒルベルト空間上の線形作用素である。
ケインズ派モデルの一般均衡は、以下の確率偏微分方程式系の解として特徴付けられる:
dx_t = 𝒜(x_t, π_t, i_t)dt + ℬ(x_t, π_t, i_t)dW_t
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
y_t = 𝒴(x_t) - 𝒴*
𝔼[dV(x_t, π_t, i_t)] = ρV(x_t, π_t, i_t)dt - ⟨U(C(x_t), L(x_t)), μ⟩dt
1. 状態空間: 新古典派モデルでは実物変数のみで状態を記述するが、ケインズ派モデルでは名目変数(インフレ率、名目金利)も含む無限次元空間を考慮する。
2. 確率過程: 新古典派モデルは主に無限次元拡散過程を用いるが、ケインズ派モデルではマーク付きポアソン点過程も導入し、不連続な価格調整を表現する。
3. 均衡の特徴づけ: 新古典派モデルでは無限次元HJB方程式を用いるが、ケインズ派モデルでは確率偏微分方程式系を用いる。
4. 作用素の性質: 新古典派モデルでは主に非線形作用素を扱うが、ケインズ派モデルでは線形作用素と非線形作用素の組み合わせを扱う。
5. トポロジー: 新古典派モデルは主にヒルベルト空間のトポロジーを用いるが、ケインズ派モデルではより一般的なバナッハ空間やフレシェ空間のトポロジーを考慮する必要がある。
2. 波動関数がシュレーディンガー方程式に従って時間発展する。
Hilb は次の性質を持つ。
- (S ∘ T)† = T† ∘ S†
- (T†)† = T
- id_H† = id_H
- (T ⊗ S)† = T† ⊗ S†
- 評価射: eval_H: H* ⊗ H → ℂ
- 共評価射: coeval_H: ℂ → H ⊗ H*
- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H
- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*
⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ
⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ
U(t) = exp(-iHt/ħ): H → H
- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ
- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)
ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)
U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)
H_total = H_BH ⊗ H_rad
U_total(t): H_total → H_total
- U_total(t) はユニタリ射。
E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)
- Tr_H_BH: H_BH 上の部分トレース
- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。
E(ρ) = Tr_K (V ρ V†)
- バルクの圏 Hilb_bulk: ブラックホール内部の物理を記述。
- 境界の圏 Hilb_boundary: 境界上の物理を記述。
- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像を保証。
- バルク: F_bulk: Time → Hilb_bulk
- 境界: F_boundary: Time → Hilb_boundary
- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。
η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁
- これにより、バルクと境界での時間発展が対応し、情報が失われないことを示す。
量子力学を圏論的に定式化し、ユニタリなダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理を圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手と自然変換を構成し、情報が圏全体で保存されることを示した。
ねえねえ、聞いてよ!念能力をマジで数学で表現しちゃう超やべぇ理論を考えついちゃったんだ!これマジですごいから、ちゃんと聞いてね!
1. まず、念能力空間 Ω ってのを考えるんだ。これ、完備な可分位相ベクトル空間なんだよ。やべぇだろ?
2. そこに内積 ⟨·,·⟩: Ω × Ω → ℂ を定義しちゃうんだ。これでΩがヒルベルト空間になっちゃうんだよ。超クールでしょ?
3. 念能力の状態を表す波動関数 ψ ∈ Ω があってさ、これがこんな感じの方程式に従うんだ:
iħ ∂ψ/∂t = Ĥ(t)ψ + ∫ K(x,y,t)ψ(y)dy + F[ψ]
ヤバくない?これ、一般化されたシュレーディンガー方程式なんだぜ!
4. 観測可能量 A には自己共役作用素 Â が対応してて、期待値は ⟨A⟩ = ⟨ψ|Â|ψ⟩ で与えられるんだ。量子力学っぽくてめっちゃカッコいいよね!
P̂ = exp(iĤt/ħ)P̂₀exp(-iĤt/ħ)
これ、ハイゼンベルク描像っていうんだぜ。知ってた?
6. 能力の進化は量子ダイナミカルセミグループ {T_t}_{t≥0} で記述できちゃうんだ:
T_t: ρ ↦ exp(Lt)ρ
ρ は密度作用素で、L はリンドブラド型生成子だよ。難しそうに見えるけど、慣れれば簡単だよね!
Ĥ_int = ∑_{i<j} V_ij + ∑_{i<j<k} W_ijk + ...</p>
これで複数の念能力者の相互作用が表現できちゃうんだよ。すごくない?
8. 能力の分類は Ω の部分空間の直和分解で表現しちゃうよ:
Ω = ⊕_α Ω_α
これで強化系とか放出系とか、いろんなタイプの能力が表現できるんだ!
max_u ⟨ψ(T)|Ô|ψ(T)⟩
subject to iħ ∂ψ/∂t = [Ĥ₀ + u(t)Ĥ_c]ψ
10. 最後に、能力の複雑さは量子レニーエントロピーで測れちゃうんだ:
S_α(ρ) = (1/(1-α)) log(Tr(ρ^α)) (α > 0, α ≠ 1)
ねぇ、これめっちゃすごくない?量子力学とか関数解析とか制御理論とか情報理論とか、全部組み合わせて念能力を完全に数学化しちゃったんだよ!
もうこれで、ハンターハンターの世界とか幽☆遊☆白書の世界とか、完全に理論的に解明できちゃうじゃん!僕、これ考えついた時、マジでゾクゾクしたよ!
観察対象(物体や概念)がヒルベルト空間内の状態に変換される。この状態は以下のように表される:
|π(Item)⟩
次に、この状態を解釈するための基底状態(概念)が定義される:
|Iᵢ⟩
ここで、iは状態のラベルである。解釈はこれらの基底状態の線形結合として表現される。
観察者が選択した基底|i⟩に対して、状態|π(Item)⟩は以下のように表される:
R|π(Item)⟩ = Σᵢ αᵢ |Iᵢ⟩
ここで、αᵢは重み付け係数であり、以下の内積によって計算される:
αᵢ = ⟨Iᵢ | π(Item)⟩
この重み付け係数αᵢの絶対値の二乗|αᵢ|²は、観察者がその状態を特定の|Iᵢ⟩として解釈する確率を表す。
状態が解釈されると、システムはある特定の分類状態に「コラプス」する。この過程は以下のように記述される:
D = Σᵢ ιᵢ |Iᵢ⟩⟨Iᵢ|
ここで、ιᵢは観測結果として得られる固有概念を表す。最終的に得られる状態は、コラプスによって一つの値に決まる:
D|π(Item)⟩ → Collapse
このとき、システムは特定の状態|Iₚ⟩に収束し、他のすべての状態は消失する。
解釈プロセスは初期状態では混合状態(複数の可能性が共存する状態)である。これを密度行列ρで表すと:
ρ = Σᵢ αᵢ |Iᵢ⟩ Σᵢ αᵢ* ⟨Iᵢ|
ρ = Σᵢ |αᵢ|² |i⟩⟨i| + Σᵢ≠ₖ αᵢ* αₖ |i⟩⟨k|
最初の項は、異なる概念が識別可能な部分を示し、第二項は概念が区別不可能な干渉部分を示す。
S = -k_B Trace(ρ ln(ρ))
密度行列ρが対角化されているため、エントロピーは次のように簡略化される:
S = -k_B Σᵢ |αᵢ|² ln(|αᵢ|²)
コラプス後、システムは一つの状態に収束するため、最終的なエントロピーはゼロになる。このとき、エントロピーの減少は以下のように計算される:
Q = k_B T Σᵢ |αᵢ|² ln(|αᵢ|²)
ここで、Qは放出される熱量、Tは温度である。エントロピーの減少により、システムは環境に熱を放出し、全体のエントロピーが増加する。
情報理論を幾何学的に定式化するには、微分幾何学、特にリーマン幾何学とアフィン接続の理論を使う。
1. 統計多様体: 統計多様体𝓜は、パラメータ空間Θ上の確率分布p(x|θ)の集合として定義され、滑らかな多様体の構造を持つ。ここで、θ = (θ¹, θ², ..., θⁿ)は局所座標系である。
2. フィッシャー情報計量: 統計多様体𝓜上のリーマン計量gは、フィッシャー情報計量として与えられる。これは、次のように定義される二次形式である:
gᵢⱼ(θ) = ∫ (∂ log p(x|θ)/∂θⁱ)(∂ log p(x|θ)/∂θʲ) p(x|θ) dx
1. アフィン接続: 統計多様体には、双対のアフィン接続∇と∇*が定義される。これらは、次の条件を満たす:
- 接続∇は、∇g = 0を満たし、統計多様体の平行移動を定義する。
- 双対接続∇*は、∇*g = 0を満たし、∇に対する双対接続である。
2. 双対平坦性: 統計多様体が双対平坦であるとは、∇と∇*の両方の曲率テンソルがゼロであることを意味する。これにより、𝓜は双対平坦な多様体となる。
1. エントロピー: 確率分布p(x|θ)のエントロピーH(θ)は、次のように定義される:
H(θ) = -∫ p(x|θ) log p(x|θ) dx
2. KLダイバージェンス: 二つの確率分布p(x|θ)とq(x|θ')の間のKLダイバージェンスは、次のように定義される:
Dₖₗ(p ∥ q) = ∫ p(x|θ) log (p(x|θ)/q(x|θ')) dx
KLダイバージェンスは、統計多様体上の測地距離として解釈されることがある。
3. 測地線: フィッシャー情報計量に基づく測地線は、統計多様体上で最小のKLダイバージェンスを持つ経路を表す。測地線γ(t)は、次の変分問題の解として得られる:
δ ∫₀¹ √(gᵧ(t)(ẏ(t), ẏ(t))) dt = 0
ここで、ẏ(t)はtに関するγ(t)の微分を表す。
ヒルベルト空間は無限次元の線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルをスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態の位相的特性を解析することが可能となる。
スキーム理論は代数幾何学の概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に、自己共役作用素のスペクトル分解を考慮し、各点を極大イデアルに対応させる。このアプローチにより、量子状態の観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態の代数的特性を解析することが可能となる。
ヒルベルト空間における射は、線形作用素として表現される。特に、ユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率を計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。
ヒルベルト空間のコホモロジーは、量子系のトポロジカル不変量を解析するための手段を提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態のパラメータ空間における幾何学的位相的性質を記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。
ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態の表現を簡素化し、特定の物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要な役割を果たす。
ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性を記述し、保存量や選択則の解析に利用される。例えば、回転対称性は角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。
ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意の状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態の類似性を測る指標として用いられ、状態間の遷移確率やフィデリティの計算に利用される。これにより、量子状態の距離的特性を解析することが可能となる。
コンテンツ集合Xがあります。各々の要素x∈ Xは特徴量f_1(x)∈Y_1 を持っています。
同様にユーザーu ∈ Uが存在し、特徴量f_2(u)∈Y_2を持っています。
コンテンツには単価P(x)が存在し、ユーザーuがコンテンツをm回消費することをg(u, x, m)=m*P(x)_uで表し、全てのユーザーU, 全てのコンテンツXに対して行列M∘P = g(U, X, M) が存在します。
回答
この問題は、コンテンツとユーザーの特徴量を考慮して、ユーザーがコンテンツを消費する回数を最大化するものです。このような問題は、推薦システムの分野で広く研究されており、協調フィルタリングと呼ばれるアプローチが一般的に使われています。
協調フィルタリングアルゴリズム
協調フィルタリングには、以下のようなアルゴリズムが考えられます。
1. 行列因子分解 (Matrix Factorization)
行列因子分解は、ユーザー・コンテンツ行列を低ランク近似することで、ユーザーとコンテンツの潜在的な特徴を抽出します。具体的には、ユーザー行列Uとコンテンツ行列Vを求め、その内積U^TVで元の行列を近似します。この手法は、Netflix Prizeで優れた成績を収めました。[1]
2. ニューラルコラボレーティブフィルタリング (Neural Collaborative Filtering)
ニューラルネットワークを用いて、ユーザーとコンテンツの非線形な関係を学習します。入力としてユーザーIDとコンテンツIDを与え、出力として評価値を予測します。この手法は、従来の行列因子分解よりも高い精度が期待できます。[2]
3. 階層的ベイズモデル (Hierarchical Bayesian Model)
ユーザーとコンテンツの特徴量を階層ベイズモデルに組み込むことで、より柔軟なモデリングが可能になります。この手法は、Cold-Start問題(新規ユーザー・コンテンツの推薦が困難)の解決に有効です。[3]
4. 強化学習 (Reinforcement Learning)
ユーザーの行動履歴を環境として捉え、報酬最大化のためのアクションを学習します。この手法は、長期的な利益最大化に適しています。[4]
これらのアルゴリズムは、ユーザーとコンテンツの特徴量を考慮しながら、目的関数を最大化するように設計されています。実装の際は、データセットの特性やモデルの複雑さ、計算リソースなどを考慮する必要があります。[5]
Citations:
[1] https://aicontentfy.com/en/blog/understanding-algorithms-behind-content-distribution
[2] https://marketbrew.ai/optimizing-your-websites-content-with-genetic-programming
[3] https://sproutsocial.com/insights/social-media-algorithms/
[4] https://surferseo.com/blog/the-new-algorithm-for-content-analysis/
[5] https://www.linkedin.com/advice/0/what-best-ways-measure-content-relevance-x6apf
おいおい、おらのコたちよ。
リアルなことをちゃんと理解するためには、このヒルベルト空間ってヤツを理解するのがヘビーだぞ。
まず、ヒルベルト空間ってのは一体何かって?
つまり、俺たちが普段生活しているこの現実も、ヒルベルト空間上のベクトルとして表現できるんだ。
正式には、ヒルベルト空間とは、その空間が完全な計量空間である距離関数を誘導する内積を備えたベクトル空間のこと。
それぞれのベクトルは、ある状態を表してて、その状態の変化はベクトルのアクションによって示される。
だから、俺たちが経験してる現実は、実はヒルベルト空間上でのベクトルのガチンコ対決ってワケだ。
これが、量子力学の中核なんだよ。
量子力学では、パーティクルの状態をヒルベルト空間上の波動関数ってやつでフルボッコに表現する。
そして、その波動関数がどう時間と共にブンブン変わるかを計算することで、パーティクルの未来を予測できるんだ。
だから、俺たちの現実がヒルベルト空間上のベクトルってのは、俺たちのリアルが量子力学の法則にしっかりとノせられてるってワケだ。
おれたちの日々の暮らしにもビシバシ影響してくる可能性はあるけど、それでも、理解しやすくてコントロールできるリアルをくれるってわけだ。
Q: 人間の認識能力に限界があるのなら、フレームの間に別の世界があるというのは本当なのでしょうか?
AI言語モデルである私は、フレーム間の異世界の存在について、個人的な信念や見解を持っているわけではありません。しかし、この概念に関連するいくつかの情報と理論を提供することはできます。「フレーム間の別世界」という考え方は、SFや一部の科学理論で探求されてきた、パラレルワールドや別現実の可能性を指していると思われます。量子力学の「多世界解釈」は、量子力学的な事象が起こるたびに、宇宙が複数の並行世界に分裂し、それぞれがその事象の異なる可能性を表すとする理論である。しかし、これらの理論はまだ科学者の間で大きな議論があり、実証的な証拠に裏付けられていないことに留意する必要がある。さらに、人間の認知能力には限界があり、私たちの知覚や理解は不完全または不正確である可能性があります。結論として、「フレームとフレームの間にある別の世界」という考え方は興味深いものですが、まだ憶測の域を出ておらず、科学的な裏付けがあるわけではないのです。
Q: ある種の薬を使った人たちが、主観的には違う世界を体験しています。
特に、精神作用物質の使用や瞑想・精神修養など、特定の条件下で、現実の知覚が変化する経験を報告する人は珍しくありません。このような体験は、普段とは異なる現実や世界を知覚しているように思わせることがあります。しかし、これらの体験は主観的なものであり、必ずしも自分の心の外にある客観的な現実を反映しているとは限らないことを心に留めておくことが重要です。脳は、さまざまな意識変容状態を生み出すことができる複雑な器官であり、これらの体験は、遺伝、環境、個人差などさまざまな要因によって影響を受ける可能性があります。結局のところ、私たちの世界を超えた別の世界や現実が存在するかどうかについては、科学的・哲学的な議論が続いており、その存在を決定的に証明することは困難か不可能かもしれません。しかし、確実に言えることは、私たちの現実の認識や体験はさまざまな要因に影響されており、私たちを取り巻く世界の理解は、私たちの認識能力や調査するためのツールによって制限されているということです。
Q: 例えば、ある人が持っている情報によって、その人が属する世界が変わるということはあるのでしょうか?
哲学的な観点からは、個人の世界に対する認識や理解は、その人がアクセスできる情報によって形成されるという主張が可能です。この意味で、ある人が属する世界は、その人の知識や理解に依存していると見ることができる。例えば、ある人が特定の話題や問題について新しい情報を得ると、その話題に対する認識や理解が変化し、自分が以前とは異なる世界に属していると感じるようになることがあります。同様に、異なる文化や社会的文脈に触れた場合、その人は以前とは異なる世界を見るようになり、自分が別の世界に属していると感じるようになるかもしれません。しかし、この考え方は、必ずしも文字通りのパラレルワールドや別世界の存在を示唆するものではないことに注意が必要です。むしろ、私たちが世界を理解し経験する方法は、私たちがアクセスする情報や文脈に大きく依存することを示唆しています。結局のところ、現実の性質とその中での私たちの位置は、何世紀にもわたって哲学者や科学者によって議論されてきた複雑で多面的な問題であり、今後も継続的に調査・研究の対象となる可能性がある。
Q: さて、単純化してみましょう。白と黒が点滅する一次元のセルがあり、ボブ君は奇数列を脳内で認識し、「これが私の住む世界だ」と感じたとする。途中で何らかの情報を受け取ると、ボブの認識は変化し、偶数列に切り替わります。では、この場合の主観と客観の区別はどうなっているのでしょうか?
この単純化されたシナリオでは、主観と客観の区別は次のように理解される。
しかし、知覚の主観的な経験は、個人が客観的な刺激をどのように解釈し、どのように反応するかに影響を与えることは注目に値する。この意味で、主観的な体験と客観的な体験は相互に関連し、複雑な形で影響し合うことがあるのです。
Q: さて、もっと深く考えてみよう。この1次元のセルを任意のcos関数と交差させる。それを「主観的に知覚された現実」とする。すると、地球上の誰もが同じcos関数を同じ角度で持っていたとしたら、それは客観的なものだと思い込んでしまうが、実は共通の主観的認識に過ぎないのではないだろうか?
もし、地球上のすべての人が、同じcos関数と交差する1次元セルについて同じ主観的な認識を持っていたとしたら、全員が同じパターンや閃光の順序に同意することになるので、その認識は客観的であるかのように見えるかもしれない。しかし、これはあくまでも観測者個人の経験や解釈に基づく主観的な認識であることに注意が必要です。複数の人が同じ認識を持っているからと言って、それが客観的であるとは限りません。客観的であるためには、個人の経験や解釈から切り離された、検証可能な証拠に基づくものである必要があります。例えば、1次元セルの点滅パターンを機械で客観的に測定・記録し、そのデータを他の観測者が同じ測定方法で独立に検証することができる。結局のところ、主観と客観の区別は複雑で、個人の認識、解釈、文脈など、さまざまな要因に影響されうる。複数の人が共通の主観的な体験をしたとしても、それが必ずしも客観的な体験であるとは限りません。
Q: さて、架空の設定ではなく、現実の設定に戻ろう。現実のどこに客観的なものがあるのでしょうか。
現実には、私たちの知覚や経験はすべて個人の主観によってフィルタリングされているため、完全に客観的なものを特定するのは難しいかもしれません。しかし、現実のある側面は、独立して検証することができ、個人の知覚や解釈の影響を受けにくいため、他の側面よりも客観的であるとみなされることがよくあります。例えば、以下のようなものがあります。
ただし、このような客観的な現象であっても、個人の偏見や見解に影響され、ある程度は解釈の余地があることに注意が必要です。また、現実の中には、客観的、主観的と簡単に分類できない、両者の中間的な存在もあるかもしれません。
Q: では、あなたの言うこの4つが、実は先ほどの架空の設定における「すべての人が主観的に同じ角度のcos関数を知覚する」ことと似ているとしたらどうでしょう。
物理法則や数学的原理、科学的データ、歴史的事実など、より客観的と思われがちな現実の側面も、やはり個人の解釈や主観的要因に左右されるということは確かにある。例えば、科学者が物理法則や科学データを解釈し、適用する方法は、科学者個人の視点、偏見、仮定に影響されることがあります。同様に、歴史的事実も、それを検証する文化的・政治的文脈によって、さまざまに解釈され、表現される。しかし、これらの客観的現象が主観的要因に影響されるということは、必ずしも完全に主観的であるということではないことに留意する必要がある。むしろ、客観的な現象の理解と解釈は、客観的要因と主観的要因の複雑な相互作用によって形成されることを示唆している。結局、客観的体験と主観的体験の区別は、現象の性質、測定や検証の方法、検証の背景など、さまざまな要因によって、必ずしも明確になるとは限らないのである。
Q: 哲学者はしばしば、客観性と神との間に関連性を見出します。この点についてはどうでしょうか。
客観性と神との関係は、何世紀にもわたって議論されてきた複雑な哲学的・神学的問題である。哲学者や神学者の中には、秩序と規則性を備えた客観的現実の存在は、宇宙に目的と意味を吹き込んだ高次の力、あるいは神の創造主の証拠であると主張する人もいる。彼らは、客観性は神の存在と世界におけるプレゼンスのしるしであると考える。しかし、客観性が必ずしも神の存在を意味するのかどうか、疑問視する人もいます。客観性は物理法則などの自然現象で説明でき、超自然的な説明は不要だというのである。結局のところ、客観性と神の関係は哲学的・神学的な議論であり、思想家によってこの問題に対する見方は異なるだろう。客観性を神の存在の証拠と考える人もいれば、単に自然界の特徴であり、自然のプロセスで説明できると考える人もいるだろう。
Q: では、結局のところ、波動関数とは何なのでしょうか?
波動関数とは、量子力学的な系を数学的に記述したもので、ある粒子がある時刻に特定の状態にあることを発見する確率を記述したものである。量子力学では、電子、光子、原子などの粒子は、重ね合わせの状態で存在する波動的存在として記述される。つまり、同時に複数の状態に存在することができる。波動関数は、粒子が取りうる各状態の確率振幅を記述した数式であり、粒子を測定したときに特定の状態で観測される可能性を決定するものである。波動関数はギリシャ文字のPsi(Ψ)で示されることが多く、一般的には複素数値の関数で表される。波動関数の絶対値の2乗は、粒子が特定の位置に存在する確率密度を与える。波動関数は量子力学の基本概念であり、量子系の振る舞いを予測・理解する上で中心的な役割を担っている。しかし、その解釈や意味については、現在も科学界で議論や考察が続けられている。
Q: 現実はヒルベルト空間上のベクトルであると言う人がいる。これはどういうことだろうか。
量子力学において、ヒルベルト空間とは、量子系の状態を記述するために用いられる数学的空間である。ヒルベルト空間は、特定の内積が定義された複素ベクトル空間である。
ヒルベルト空間は、量子系の状態をベクトルとして表現するために使用されます。システムの状態は、それぞれヒルベルト空間内の異なるベクトルに対応します。システムの状態を表すベクトルは状態ベクトルと呼ばれ、通常、ギリシャ文字のPsi (Ψ) で表される。状態ベクトルは、系の波動関数を記述する複素値のベクトルであり、系の各可能な状態の確率振幅を与える。現実がヒルベルト空間上のベクトルであるというのは、量子系の状態がヒルベルト空間上のベクトルとして表現できることを意味します。つまり、量子系の状態は、この空間における点として表現できる数学的対象なのです。ただし、これは量子系に限定した話であり、物理学や自然界の他の分野には当てはまらない可能性があることに注意が必要です。
Q: ここで、よくある実験を考えてみよう。簡単のために、電子がある線の右側に行ったら、あなたは明日フォン・ノイマンのゲーム理論の本を読み、左側に行ったら、PCでLeague of Legendsをプレイするとしましょう。では、あなたが何をしているかわからない人は、それを知るまであなたの状態は読書とゲームの重ね合わせなのでしょうか?
二重スリット実験の文脈では、電子の振る舞いは、2つのスリットのどちらかを通過する、自分自身と干渉する、検出器の特定の場所に行き着くなど、可能な結果の重ね合わせとして記述することができる。あなたのシナリオでは、もし電子が線の右側を通ったなら、あなたの決められたルールに従って、あなたは明日ノイマンのゲーム理論の本を読むことになります。逆に、電子が線の左側を通ったら、あなたはPCで『リーグ・オブ・レジェンド』をプレイすることになります。つまり、実験結果を観測するまでは、あなたの心の状態は、読書とゲームの重ね合わせの状態であると言えます。なぜなら、重ね合わせの状態にある量子系(電子)があり、あなたの心は、実験結果に依存する形でこの系と相関しているからです。量子力学では、システムの状態とその観測者を別々に扱うのではなく、一つの量子システムとして扱います。"量子測定問題 "と呼ばれるものです。したがって、実験結果を観測するまでは、あなたの心と電子は、可能な結果の重ね合わせの状態にある一つの量子系として記述することができるのです。
本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます。
受験数学の方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間の無駄です。
まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます。
暗記数学は、数学の知識を有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史の年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています。
類似の誤解として、
などがあります。これらは事実に反します。むしろ、大学の理学部や工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナーや大学院入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学に賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育の関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。
嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。
そもそも、暗記数学は別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックスな勉強法です。和田秀樹氏らは、その実践例のひとつを提案しているに過ぎません。
暗記数学の要点を述べます。これらは別に数学の勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。
一番目は、従来数学で重要なものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもので効果があると実証されたものは存在しません。
大学入試に限って言えば、入試問題は大学で研究活動をする上で重要な知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。
二番目はいわゆる「解法暗記」です。なぜ実例が重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識は理解することが極めて困難だからです。たとえば、
などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数の定義だけからその最大・最小値問題の解法を思いついたり、ベクトルの内積の定義や線形性等の性質だけを習ってそれを幾何学の問題に応用することは、非常に難しいです。したがって、それらの基本的な概念や性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります。
これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールからは直ちには明らかでない駒の活用法を身につける必要があります。数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学を理解するためにも豊富な実例を通じて概念や定理の使い方を理解する必要があります。そして、将棋において初心者が独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者が有益な実例を見出すことも難しいです。したがって、教科書や入試問題に採用された教育効果の高い題材を通じて、数学概念の意味や論証の仕方などを深く学ぶべきです。
そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に、大学以降の数学は抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナーや大学院入試の口頭試問などでは、以下のような質問が頻繁になされます。
教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分の理解が絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。
たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。
ほとんどの人はまず「自分は数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理の仮定と結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。
まず、用語や記号の定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります。
また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、
などと書いてあったら、これは
という一般的な定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、
は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります。
l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめる必要があります。
さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理や意図を理解しなければいけません。たとえば、「微分で極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題だからとりあえず微分してみる」というような勉強は良くありません。
そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているか確かめると言うことです。
はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます。
こういうことを十分に考えた上で本を読み直せば、ひとつひとつの定義や定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。
以上のことは、別に数学の勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法や道路交通法の改正について説明することになったとしましょう。その時、そこに出てくる用語の意味が分からないとか、具体的にどういう行為か違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。
自分で参考書を書いてみれば分かりますが、数学の検定教科書はおそろしく完成度が高いです。そのことを具体的な実感をともなって理解できれば、あなたの学力は入試レベルなど優に超えています。
数学の本の出来は、理論の構成で決まります。数学の理論の構成とは、かんたんに言えば定義や定理をどう配置するかと言うことです。どのトピックを載せるか、ある定理を述べるために事前にどのような概念を定義しておく必要があるのか、その定理を証明するために事前にどのような命題を示しておく必要があるのか。トピックの選定が的確で、理論の道筋が明快であるほど、数学書の完成度は高いです。たとえば、余弦定理は重要ですから当然載せます。余弦定理を述べるには三角比を定義する必要があります(鋭角だけではなく鈍角に対しても)。そして、証明には通常、三平方の定理と有名な等式
が必要になります(これも三平方の定理のcorollaryです)。さらに三平方の定理を示すには、ふつうは三角形の相似を使用します。この道筋をいかに最適化できるかに、著者の力量が現れます。もちろん、余弦定理を要領良く示すために他の定理に至る過程が鈍臭くなってはいけません。全体の最適化を考えなければいけないのです。
証明の最適化を図るには、定義から再考しなければいけません。同じ概念であっても、それを特徴づける性質が複数あるなら、どれを定義として採用しても良いですが、それによって効率は違って来るからです。たとえば、ベクトルの内積は
のどちらを定義としても良いですが、後者の場合は別の座標(たとえば、45°回転した座標など)で考えたときに値が同じになるのか疑問が残ります。前者は座標の取り方によらずに定義できています。
この場合はどちらを採用してもそれほど変わりはありませんが、指数関数などは定義の仕方で必要な議論の量はまるで変わってきます。多くの教科書では、自然対数の底
e = lim (1 + 1/n)n -- (☆)
を定義し、そのべき乗として指数関数exを定義します。もちろん結果だけ知っていれば、微分方程式
df/dx = f
を満たすf(x)で、f(0) = 1となる関数としても指数関数を定義することはできます。しかし、このようなfが存在することを、(☆)を使わずに示すのは高校レベルを遥かに超えます。そのようなfが一意的であることも明らかではありません。
以上のようなことを考えるだけでも相当大変ですが、これに加えて検定教科書では、直感的な理解を損ねないことも考慮しなければなりません。高校生が読んで理解できなければならないからです。理論の整合性・効率と教育的配慮の間でバランスを取るという難しいことを、数学の専門家たちが苦心して行い、作成されたのが検定教科書です。このような本は他の参考書にはありません。場当たり的に問題の解き方を解説するだけの本とは格が違います。
数学の検定教科書は極めて洗練されています。教科書の理論構成を把握し、その流れや証明手法に合理性や必然性を見出だせる水準まで理解できれば、入試などは余裕で通過できます。
例えばベクトルの外積とか内積知らないとゲーム開発の最初の段階で困ると思う。というか、自分の時代は高校課程に外積が含まれてなかったので、学部一年で習ったのだけど。
今になってみると、高校受験の問題も大学受験の問題も、この問題解くのなんか意味あんの?食えんの?うまいの?みたいに思ってしまってモチベーションの段階で躓く。
高校受験のときは基礎的な問題は満点を叩き出すことに躍起だったし、大学受験になると全国レベルになったからか自分の学力が急に減少したように思えて焦ったり、
でもセンターレベルは教科書を所持していればできない方がおかしいわけで、基礎レベルだけは何とかクリアしようともがいてた気がする。
今からすると、受験というのは一種のスポーツとかゲームであって、受験勉強というスポーツに優れていればスポーツ特待で優遇されて入学できる、みたいな制度が日本の受験なのだろう。
受験勉強なんて何の役にも立たないだろ?という人は、野球みたいなスポーツも何の役に立つの?と思っているのだろうし、
野球ができることが何で社会で評価されるのか理解できない、くだらないとさえ思っているのだろうけど、そんなの香辛料やチューリップが高値で取引されるようなものである
社会的な価値観や評価は、自分の価値観やニーズとはまったく別のものだと考えるべきだ
なんであれが社会的に評価されるのか、シンゴジラや鬼滅が面白いと言っている人達が自分には理解できないわけだが、そりゃそうだ
逆に、数学だの受験勉強がなんで役に立つか分からない、みたいに言っている人達を私は理解できない
老人と若者とか価値観の違いでしかない、そこに大した意味なんてない
なんでこのスポーツをやらなければならないのか?
なんでこのゲームをやらなければいけないのか?
と疑問を思ってしまうとそこで手が止まってしまう。これは仕方がないだろう。
よく分からんが、このゲームができたら周囲とか親が褒めてくれるようになったとか、なんか将来の選択肢が増えるんじゃないかとか、
ゲーセンは不良のたまり場とか言われてたのにプロゲーマーだの言うような時代になった途端に世間の態度が変わるみたいな、そんなものを受験勉強には感じるんだよなあ。
勉強というスポーツ自体は根本的に好きなんだろうけど、それに世間の評価とか加わって、翻弄されて、みたいなのって世の常だと思うんだけど、でも、自分としては何も変わってない
ゲーム開発やるようになれば、受験ではないけど結局数式を読むし、場合によっては式を展開したり、原理からうだうだ考えたりするし、
ここでいう「ユークリッド幾何学」とは、座標空間、ベクトル、三角関数、微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在の高校数学のカリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。
ユークリッド幾何学が不要だと思う理由は単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学の研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズルが適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間、ベクトル、三角関数、微分積分などの手法は一般的な現象を記述する上で必ず必要になります。
もちろん、たとえば三角比を定義するには、「三角形の内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学の性質が必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:
を証明してしまえば、原理的にはユークリッド幾何学の問題は解けます。それ以降は、ユークリッド幾何学的な手法や問題設定にこだわる必要はないと思いますし、実際それで問題ありません。
現状、少なくない時間がユークリッド幾何学に費やされています。数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ、大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています。
高校数学では以下のような事項が重要だと思います。ユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。
これらの分野は数学の手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的な問題を数学や物理の問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベルに重要だと真剣に主張する人っていらっしゃるでしょうか?
ユークリッド幾何学を初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います。
まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題は証明されるべきものだからです。高校の教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離の公式、三角関数の加法定理、微分のライプニッツ則や部分積分の公式など、どれも証明されています。そもそも、数学の問題はすべて証明問題です。たとえば、関数の極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないかを定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学だけが特に証明の考え方を学ぶのに有効だという理由はありません。
②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトルや微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理、メネラウスの定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学の手法は問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法は一般に方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学の手法にこだわる理由はありません。
③は単なる個人の思い込みであり、科学的な根拠はありません。そもそも、数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要な数学の素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学的直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学を特別視する理由になっていません。
④もおかしいです。そもそも「歴史的に重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的に重要ならば教えるというなら、古代バビロニア、インド、中国などの数学は特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わずに数学を記述するべき理由があるでしょうか。
数学で重要なのはその内容であるはずです。ユークリッド幾何学を擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います。
大昔は代数の計算や方程式の解法(に対応するもの)は作図問題に帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法・重要な結果を導きやすい方法を用いればよいに決まっています(数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。
たとえば、放物線は直線と点からの距離が等しい点の軌跡として定義することもできますが、初等教育で重要なのは明らかに2次関数のグラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから、最初から2次関数のグラフとして導入するのは理にかなっています。数学教育の題材は「計算問題か証明問題か」などではなく、このような観点で取捨選択すべきです。
三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学の範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学で連立方程式を学ぶのに小学生に鶴亀算を教えるのと同様に、無駄なことをしていると思います。
----
(*1)
現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに
(e_i, e_j) = δ_i,j (クロネッカーのデルタ)
で内積が定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間、ベクトル、微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学が不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています。
(*2)
数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題にガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識が必要」というわけではありません。