「子分」を含む日記 RSS

はてなキーワード: 子分とは

2022-06-10

anond:20220610200153

感情面での充実感と資源がまずあるよね。そんでもって、講和の条件によっては相手事実上服従させられるのもあるだろうね。

まずさ、国土回復運動みたいな機運があるだろうね。

あの辺は一時は占領地だったんだから独立したと言っても、取り返したいという感覚があるのは不思議ではない。

資源という意味で言えば、中世なら征服地の人々は奴隷扱いだっただろうけれど、今はそういう扱いはできないだろうし、難民として逃げるから人的資源でのプラスは無いだろうね。

そもそも征服者にそんなに魅力があったなら、戦争しかけなくても人がやってきていただろうし。

支配していれば資源を取り放題だから、奪った国土資源があればそれは手に入るんじゃないかな。

何かの作物が取れやすいとかそういう気候条件も、奪った土地に付随する資源だと思う。

勝ったら、施政権を認めてやる代わりに子分になれみたいなことは言えるだろうなと思う。

2022-05-21

株とかで金持ちになった人を養うくらい、余裕あるもんなん?

お金は持ってるから養うって言葉が正しいかどうかってのはあるんだけどさ。

社会維持するのに、手を動かす人が一定数いるじゃん。

日本ってそんな余裕あるの?

個人やある組織的には、株やらの乱高下で稼ぐってのはあるんだけどさ。

その金、どこの誰が負担してるのかって気になったんだ。

銀行システム金額入れれば貸出できるけど、利子分を誰がどこで負担するんだって

2022-04-25

anond:20220425144659

子分どもが必至に助命嘆願したからだろう。

それが逆説的に昭和天皇戦争を主導したこと証明しているんだよな。

自分の命を捨ててまで昭和天皇戦争責任回避を望む連中が

天皇命令無視して戦争に向け暴走するなどということがあろうか。

2022-03-26

anond:20220326011757

これだよな

この判例をまっとうに見れば、無届デモやっても排除しちゃいけないってことだよな

自分反社なら、子分たちに無届デモやらせて、排除されたら賠償金せしめるってシノギを思いつくけど

2022-03-18

同じことでも、それに必要コストは人によって違う

ただ会社に行くだけでも、楽に行ける男性と、女性専用車両までわざわざ行って通勤しなきゃいけない女性がいる。

これってそんなにおかしことなんかな?男だってセックスどころか貢いでもらえる男性もいれば、風俗で金払わなきゃセックスできない男もいるわけだ。金持ちの子供は親に大学授業料を出してもらえるけど、貧乏な家の子供は奨学金を借りて、利子分多く払わなきゃいけない。

やっぱさ、同じことするにしても、そのコストは人によって違うのがこの世の中だと思うんだよな。理不尽だけど。今だと、誰でもジュース1本は100円で買えるから、ほかのかかるコストも同じだと思っちゃうけどさ。

会社通勤の話に戻ると、このかかるコストの不平等はいずれ是正されることが望ましいものだけど、やっぱりそれを「今ほしい」なら、嫌々でも割高なコストを支払うしかないんじゃないかな…とは思う。

2022-03-02

アホなのでウクライナ問題が分からない

以下支離滅裂

ウクライナ親欧米ロシア嫌い

ウクライナ内の親ロシア派親ロシア欧米嫌い

親ロシア派ロシア好きです、NATO入りたくない」

ロシア親ロシア派が嫌がっているのにNATOに入ろうとするとは何事だけしからん、『親ロシア派を守る行動』を取ろう」

と言いつつ実際は殴り込みで戦争をしている。一般人大勢殺害している。

そしてウクライナを強引に子分にしよう企み乗っ取ろうとしている…?

あるいはロシアウクライナのものを亡きものにしてロシアの一部にしたがっている…?

過去ウクライナソビエト時代スターリンから圧政大勢の人が餓死したりしたこともありロシアとは縁を切りたがっている?

アホな自分の単純な頭では「ウクライナ人の多数が親欧米からウクライナ国内から親ロシア派がいなくなればいい」とも思っているが多分事はそんなに単純じゃないんだろう。ただ、どう単純じゃないかは分からない。

ウクライナ内の親ロシア派が占めている地域を「ウクライナじゃない」ことにしたら(新しい国が生まれたり、ロシアの一部になったりする)何やらそれはロシアに屈する事になるらしい。何でもロシアにとっては念願の不凍港が手に入ることで他国にカチコミしやすくなるとかならないとか見聞きしたような気もするけどどうも分からない。

親ロシア派ロシアが好きなんだからウクライナ内の親ロシア派ロシアに追い出してウクライナ親ロシア派がいない国にしたらいいのかとも思ったがそういうことでもないらしい。かといってこれから親欧米でやっていきたいウクライナにしてみたら国内親ロシア派がはびこっているのは嫌だろうなとも思う。

ウクライナNATOに入っていないのでNATO軍隊ロシアを追い払ったりはできない。経済制裁はやっているらしいがそれでもお構いなしにロシアは攻め込んできている。むしろ経済制裁プーチンがなお一層キレているようにも見える。このままだと核兵器を使いかねないところまで来ているらしい。ウクライナが第2の被爆国になるのは嫌だ。軍事力のあるアメリカ中東石油のように金儲けができないと戦わないかウクライナは見殺されてしまうのだろうか?

そういえばプーチンは昔のソビエトに憧れていると聞いたことがある。今回の戦争も昔のソビエトを復活させるための行いなのか?というか本当に昔のソビエトを復活させて良くなるのかも分からないけれど。とはいえ今回の戦争プーチン世界各国からバッシングされて経済制裁も受けている、そんな強引なリーダー国民はついていきたがるのか疑問ではある。となると失脚するのだろうか?もし仮に失脚したら今後どうなるのだろうか、アホの頭ではそこまで回らない。

今回の戦争で一番得をするのは何やら中国らしい。どういう大風桶屋かは分からないけど中国らしい。中国が力をつけてきたら台湾日本侵略をしてくるという考えも見たような気がする。なんとかという政治家馬鹿の一つ覚えのように9条9条連呼していたが力づくの国は言葉だけでどうこうなるもんじゃないというのが今回の戦争で明らかになったようにも思える。日本核兵器を持つ域までいくかどうかまでは分からないけれども少なくとも交渉とか会談でおさまらない恐怖みたいなものを感じた。平和ボケという言葉は使いたくないが結局戦争狂いになるしかないのだろうか。極端なことを言えば右寄りの人に「平和」という単語自体タブーな気さえすることもある。

などと頭の中のものを出してみたけれどアホなのでこれが限界だった。加えて別に強い権力を持っているわけでもないのでこんなことを考えることに何の意味があるんだろうとさえ思えてきた。

とはいえ戦争は早く終わって欲しい。おわり

2022-02-17

anond:20220217133646

そういうことじゃなくて、西欧草刈り場や半植民地子分には絶対にならないぞという意思表示かと。

2022-01-30

anond:20220130070308

いうこと聞かせられる子分いうても

そんなん見つかりませんでした。

言ったら終わる話やんけ。

 

どこも人手不足ですからねー。なんつってw

 

そもそも悪質な奴隷労働紹介したら関係悪くなるし

大事な後輩との関係こじらせてまで紹介するメリットないやん。

anond:20220130055653

無理難題を聞いてくれる都合のいい奴隷くんを探してるんだから、力関係で言うこと聞かせられる子分の子分)を当たるのは順当

自分創造できない奴は、他人をどれだけ動かせるかが実力

2021-12-27

デモンズソウルランク外とかなんの価値もないゴミチャートじゃん

明らかに任天堂スクエニ贔屓だし

この二社がスポンサーステマ番組であることが露呈してるんだよね

どうもオリンピックゲーム音楽使ったあたりから、任天スクエニ電通距離感気持ち悪いほど接近してるな

たまたま見てたけど、爆笑とかケンコバとかウエンツとか伊集院とか、こんな仕事してて恥ずかしくないんか

電通任天堂癒着松本や糸井との関係にも見て取れるように90年代には既にそうなってたが

最近の動向から分かるのは、スクエニ電通子分になったってことだな

金貰って任天堂スクエニ宣伝するマスゴミ

きめえ

こんなダサい仕事してて恥ずかしくないのか?

なにも生産してないじゃん

生産性低いんだよ

2021-12-18

今日読み終わった非BL(実質BL?)

『その花の名を知らず――左近の桜――』(長野まゆみ

 『左近の桜』『咲くや、この花』『さくら、うるわし』に続く、左近の桜シリーズ第4作目。

左近の桜』シリーズとは。

 謎の引き寄せ体質というか拾い物体質というか、とにかくやたら異界の住民と関わりあっては「アッーー!」なことになってしまう、左近桜蔵くんが主人公幻想小説シリーズ。初期の頃は「アッーー!」の回数がやたら多かったが、新刊が出る度に「アッーー!」成分は減ってきている。

主な登場人物



『その花の名を知らず』のあらすじ。

 祖父墓参りをするために、霊園行きのバスロータリーで待っていた桜蔵は、鍵を拾ってしまった。交番に鍵を届けようとしたものの、交番では奇妙な女性巡査相手おかしな事を言っていた。ただでさえ引き寄せ体質で拾いもの体質の桜蔵は、また何か厄介なものを拾ってしまったのではないかと怪しむ。

 バスに乗ってみれば、今度は「森」のいわれを語る妙な男がおり、いよいよおかしな事になってきたと思う桜蔵。その時、バス交通事故に遭ってしまう。そして案の定、桜蔵は異界に迷い込んでしまうのだった。



増田感想と、考察のようなもの

 本作は『咲くや、この花』までとはちょっと趣きが違い、まるで番外編のような話。ほとんど過去の話だし。桜蔵の祖父の遺品の一つ〈ざくろ〉という銘の碗、それと対になる〈しろうづ〉、そしていわく付きのお碗〈朱薇(あけび)〉を巡る謎。それに絡んで、柾の生家・白鳥家と、桜蔵の生家・左近家、そして白鳥家の縁戚にあたる白(つくも)家の系譜が明かされるのだが、超ややこしくて訳がわからん。新しく人物名前が出てくる度にメモしておけばよかったなぁ。まるで『百年の孤独』を読んでるみたいだった。

 物語の鍵となるのは「蛇」。互いに絡みあって一本の木のように育ったザクロや、テイカヅラアケビなど蔓性の植物、鏡、月、橋(水府の出入口とされる)など、蛇につながるモチーフがやたら出てくる。

 何で蛇なのか、それが桜蔵にどう関係するのかというのは、何となくわかった。それからイカヅラ定家葛)の別名から、柾と桜蔵の関係性がなんなのか……要は名実共に柾は桜蔵の保護者である、というのはわかったけど……、なんか核心の部分ははぐらかされたままだなぁ。

 白鳥家と左近家の付き合いが今に始まったものではないのはいいとして、しかしそれが分かっても桜蔵の実父の正体とその人と柾の関係性の謎は放置されたままだし。

 うーん、よくわからない。

 そして今回も、相変わらず他人悪夢追体験させられるような読み口であり、更に超絶ややこしい系譜にも惑わされるので、ストーリーにちりばめられた謎を考察するどころじゃない感じ。森博嗣の『スカイ・クロラシリーズと同質の幻想文学調ミステリー。これって謎の深堀はしない方がいい感じのやつ? でも気になってつい何度も読み返しちゃうんだよなぁー。

 植物名前神話伝承伝統文化に関する知識を求められ、しか登場人物が超上流階級の人たちばかりなので、頭が全然ついていかない。読んでいて眩暈がしてしまうが、『左近の桜』シリーズのお陰で私の教養は深まったので、頑張ってググりながら時間を溶かすぞ……。


こんな人におすすめ

2021-12-11

[] そのひゃくよんじゅうさん

クスーッス

 

拙者親方と申すは、ってあれ拙者の親方がやってる商売は何かというと、って意味なんですね

親方がやってんだからここでうるさく言ってる子分商売も自ずと同じような商売になるもんで、最近は偽物が出回ってるから間違えないでくれよな、何なら今からこの外郎って奴を今から飲んで効果の程を見せてやるぜ、ってのが外郎売の言ってることやってることなんすね

トウチンコウって名前が出るからちょっと恥ずかしいって思っても、なんかバレないように放送禁止用語を入れて呼ぶ遊びをしてるかのようで、現代に通ずるものがあるなぁと思います

実際に効果があると思わないとわざわざ買わないっすもんね。

あの羊羹みたいなういろうもこの苦いお薬飲んだ後のお口直しとして食されたのだとか、はたまたどうだったか

元の礼部外郎であった陳延祐が帰化した時につけた名前、陳外郎が痰切りの薬を紹介して、その口直しに食べた和菓子名前の方がポピュラーになっているとはなかなか奇妙なものだなぁと思います

 

ということで本日は【糖分の摂取量いか】でいきたいと思います

糖分の摂取量いか!糖分の摂取量ヨシ!

 

それでは今日も一日、ご安全に!

2021-12-04

anond:20211204145749

後編

プログラミングを学ぼうと思い立つ

行列VBAなんかじゃ無理っぽいし、なんかプログラミング言語を覚えようと決める。

なんでも、統計やるならRという言語がいいらしい。

最近じゃPythonというのも人気らしい。

とりあえず両方試そうということで、RのためにRとRstudioをインストール

Pythonはanaconda

プログラミングはなんかを製作する目標がないと挫折すると聞いていたので。

深層学習というもの流行ってると聞いて、ちょっと触りを勉強したくなる。

Excelでわかるディープラーニング超入門」

https://www.amazon.co.jp/Excel%E3%81%A7%E3%82%8F%E3%81%8B%E3%82%8B%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E8%B6%85%E5%85%A5%E9%96%80-%E6%B6%8C%E4%BA%95-%E8%89%AF%E5%B9%B8/dp/4774194743/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=Excel+%E6%B7%B1%E5%B1%A4%E5%AD%A6%E7%BF%92&qid=1637482610&s=books&sr=1-1

この本は面白かったので、深層学習目標プログラミングを覚えよう!

後になって、これはとんでもない間違いだったことに気づく。深層学習機械学習の違いも判らないまま、RよりPythonを先に触ることに。

教本にしたのはこちら。

ゼロから作るDeep LearningPythonで学ぶディープラーニング理論実装

https://www.amazon.co.jp/%E3%82%BC%E3%83%AD%E3%81%8B%E3%82%89%E4%BD%9C%E3%82%8BDeep-Learning-%E2%80%95Python%E3%81%A7%E5%AD%A6%E3%81%B6%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%AE%E7%90%86%E8%AB%96%E3%81%A8%E5%AE%9F%E8%A3%85-%E6%96%8E%E8%97%A4-%E5%BA%B7%E6%AF%85/dp/4873117585/ref=pd_lpo_2?pd_rd_i=4873117585&psc=1

途中まではまあなんとか。

微分って便利だな。行列計算できるの便利だなっていうところまでいったが、クラスという概念理解できず、途中からハテナが浮かんで読み進められず。

うん、もうちょっと易しい本を探そうと思って手に取ったのが

「独学プログラマー Python言語の基本から仕事のやり方まで」

https://www.amazon.co.jp/%E7%8B%AC%E5%AD%A6%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9E%E3%83%BC-Python%E8%A8%80%E8%AA%9E%E3%81%AE%E5%9F%BA%E6%9C%AC%E3%81%8B%E3%82%89%E4%BB%95%E4%BA%8B%E3%81%AE%E3%82%84%E3%82%8A%E6%96%B9%E3%81%BE%E3%81%A7-%E3%82%B3%E3%83%BC%E3%83%AA%E3%83%BC%E3%83%BB%E3%82%A2%E3%83%AB%E3%82%BD%E3%83%95/dp/4822292274/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&crid=1T6BBXYJ16G6T&keywords=%E7%8B%AC%E7%BF%92%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9E%E3%83%BC&qid=1637483073&s=books&sprefix=%E7%8B%AC%E7%BF%92%2Cstripbooks%2C279&sr=1-1

なんとか読了。自信をつける。

しかし、Gitとかbashの章はさっぱり。

実は、いまだにコマンドプロンプトとパワーシェルbashの違いが分かってない。

つづいてPyQに2か月くらい登録してみる。

https://pyq.jp/

とりあえずデータ分析コースを終わらせる。

なかなかPythonが楽しくなってきたが、クラス意味が今一つ掴めないままいったん中断。

この辺で、自分統計に興味があってもプログラミングに興味がないんじゃないかということに気づく。

結局Excelへ戻り、PowerQueryとの出会って、再びPythonとRに回帰した話

なんだかんだもがきながら、PythonもRもモノにならず、日常ちょっとした計算グラフを作ったりはExcelを使い続ける日々が続く。

あるいは、Excelで成形して、検定かけやす形式にしてRで検定するとか。

Rに触れてなかったな、Rは完全に独学。「こんなことやりたいなぁ、ググってみるか、ほうなるほど」って感じ。

そんなさなか、放送大学で「Rで学ぶ確率統計」という講義があるのを知り、さっそく入学して受講。

なかなか面白かったし、PythonばっかりでRあんまり触ってなかったからいい刺激になった。

恥ずかしながら、負の二項分布やガンマ分布ってよう知らんかった。

しかし、講義は楽しかったがなにか書けるようになったかというとそんなことはなく、依然として基本はExcel

まあ、実際csvじゃなく、手書きデータとかをExcelに打ち込んだりする程度なんでPythonやRを使うまでもなかったというのもあるんだけど。

そんなとき出会ったのがこちら、パワークエリというもの

Excelパワーピボット 7つのステップデータ集計・分析を「自動化」する」

https://www.amazon.co.jp/Excel%E3%83%91%E3%83%AF%E3%83%BC%E3%83%94%E3%83%9C%E3%83%83%E3%83%88-7%E3%81%A4%E3%81%AE%E3%82%B9%E3%83%86%E3%83%83%E3%83%97%E3%81%A7%E3%83%87%E3%83%BC%E3%82%BF%E9%9B%86%E8%A8%88%E3%83%BB%E5%88%86%E6%9E%90%E3%82%92%E3%80%8C%E8%87%AA%E5%8B%95%E5%8C%96%E3%80%8D%E3%81%99%E3%82%8B%E6%9C%AC-%E9%B7%B9%E5%B0%BE-%E7%A5%A5-ebook/dp/B07SCK1ND9/ref=sr_1_2?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=%E3%83%91%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%A8%E3%83%AA&qid=1637483953&s=books&sr=1-2

パワークエリを覚えたらピボット形式Excelファイルとか、セルの結合が多用されたExcelファイルを、成形加工するのが非常に楽になった。

しかも、同じフォーマットで記録されてるデータならフォルダにぶち込んで一気にまとめ上げることも可能

控えめにいって神!

としばらくパワークエリを礼賛してたのだけど、各ステップPythonのpandasやRのdplyrでも出来ることに気づく。というか最初から気づけ。

こりゃ、一気に覚えちまおう、統計というより、データの前処理だなと思ってUdemyでRの動画を買ってみた。

AIエンジニアが教えるRとtidyverseによるデータの前処理講座

https://www.udemy.com/course/r-tidyverse-preprocess/

すっかりR信者になる。

それまで教本を呼んでもdplyrの便利さが今一つわからなかったのに、パワークエリで具体的にモノを作ると、dplyrに翻訳したら、すいすい。スピード10倍。

便利さにようやく気付く。

ハドリーウィッカムって神だな。

そんで、pandasに翻訳したらどうなんだろ?と思ったらもっと速いw

すごいなPython

Rへの入信はたった数週間。再びPythonに興味。

機械学習

さて、ゼロから作るディープラーニングを再開しようと思ったけれども、そもそも機械学習をすっ飛ばし深層学習って無茶だったと反省し、まずは機械学習に。

機械学習エッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)

https://www.amazon.co.jp/%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%81%AE%E3%82%A8%E3%83%83%E3%82%BB%E3%83%B3%E3%82%B9-%E5%AE%9F%E8%A3%85%E3%81%97%E3%81%AA%E3%81%8C%E3%82%89%E5%AD%A6%E3%81%B6Python-%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0-Machine-Learning/dp/4797393963/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=1637485264&sr=1-1

で、この本がすごい。

5章あるんだけど、機械学習アルゴリズムは5章だけなんだなw

それまでは何に割かれてるんだって?数式の証明とか、便利な計算法、例えばニュートン法とかラグランジュ未定乗数法とかw

こんだけ引っ張っておいて、いよいよ本番の第5章もゴリゴリ数式をスクリプトに落とし込んでいってるのに、「これは学習のためでscikit-learnっての使えばたった1行」っていう無慈悲

いや、ほんと数学勉強になったし、こうやってゴリゴリやるとなんのためにクラスというもの存在するのかようやくわかった。

線形代数って便利なんだなと。行列スカラー値のように何の気なしに扱えるようになると、あの頃苦しんでいた実験計画法タグメソッド、今読み直したら別の印象があるんじゃないかなと思うようになったり。

この本を読む途中、「マンガでわかる統計学因子分析編」で学んだことが理解の助けになった。

なんたる僥倖

線形回帰、リッジ回帰SVM、PCA、k-means、クラスター分析、一気に手札が増えた。

ふたたび実験計画法

Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析

https://www.amazon.co.jp/%EF%BC%B0%EF%BD%99%EF%BD%94%EF%BD%88%EF%BD%8F%EF%BD%8E%E3%81%A7%E5%AD%A6%E3%81%B6%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB%E6%B3%95%E5%85%A5%E9%96%80-%E3%83%99%E3%82%A4%E3%82%BA%E6%9C%80%E9%81%A9%E5%8C%96%E3%81%AB%E3%82%88%E3%82%8B%E3%83%87%E3%83%BC%E3%82%BF%E8%A7%A3%E6%9E%90-%EF%BC%AB%EF%BC%B3%E6%83%85%E5%A0%B1%E7%A7%91%E5%AD%A6%E5%B0%82%E9%96%80%E6%9B%B8-%E9%87%91%E5%AD%90%E5%BC%98%E6%98%8C-ebook/dp/B09C89HZRV/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=python+%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB&qid=1637486019&s=books&sr=1-1

実験計画法って、fisherの古典的なやつ、ラテン方格に割り付けて、ってやつかと思ったら、線形代数使えればもうなんでもありなのな。

そこにきて、ベイズ、今まで避けてたのに出会ってしまった!!

結論から言うと、超面白い。

これ、すごいな。

Python万歳

いいのかこんな便利分析個人でやれて。

機械学習実験計画法がここでつながるとか、控えめにいって最高だな。

まだ読了してないので、また後日。

数学プログラミング勉強を開始して、何度も挫折して今に至る軌跡を晒す

2013年の秋、その時の自分は30代前半だった。

衝動的に数学を学び直すことにした。

若くないし、数学を学びなおすには遅すぎると思って尻ごみしていたが、そこを一念発起。

というか軽い気持ちで。ぶっちゃけると分散分析とやらに興味を持ったから。

数学というか統計かな。

統計的に有意差があったといわれてもその意味がさっぱりだった。

一応、理系大学を出てるので、有意差という単語をちょいちょい耳にはしていたが、

「よくわかんないけどt検定とかいうやつやっとけばいいんでしょ?」

くらいの理解だった。

で、ありがちな多重比較の例で、3群以上の比較にt検定は使っちゃダメだよっていう話を聞いて、なんか自分だけ置いてけぼりが悔しくなって、Amazonポチッとしたのが全ての始まり

あと、あの頃はライン作業の工員だったから、脳が疲れてなかったし。

そんなわけで、自分の軌跡を晒してみる。

みんな数学とかプログラミング、とくにPython無料講座は無言ブックマークしてるから興味あるっぽいので、参考になれば。

アドバイスとかくれると嬉しい。

きっかけは大村

実験計画分散分析のはなし」 大村

https://www.amazon.co.jp/%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB%E3%81%A8%E5%88%86%E6%95%A3%E5%88%86%E6%9E%90%E3%81%AE%E3%81%AF%E3%81%AA%E3%81%97%E2%80%95%E5%8A%B9%E7%8E%87%E3%82%88%E3%81%84%E8%A8%88%E7%94%BB%E3%81%A8%E3%83%87%E3%83%BC%E3%82%BF%E8%A7%A3%E6%9E%90%E3%81%AE%E3%82%B3%E3%83%84-%E5%A4%A7%E6%9D%91-%E5%B9%B3/dp/481719457X/ref=asc_df_481719457X/?tag=jpgo-22&linkCode=df0&hvadid=295668542764&hvpos=&hvnetw=g&hvrand=17668988115346233997&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9053313&hvtargid=pla-525207011759&psc=1&th=1&psc=1

いきなり当たりを引いた。

軽妙な語り口で、懇切丁寧。受験参考書の実況中継シリーズをわかりやすくした感じ。

数学がこんなに面白いと思ったことはない。

何者だと思ったら元航空幕僚長

手を動かさずとも数式を追えるくらいの丁寧な式変形。かゆいところへのフォロー

そこから大村平さんの本を読み漁る日々。

前述の「実験計画分散分析のはなし」よりも易しめの「統計のはなし」「統計解析のはなし」からまり、「QC数学のはなし」「信頼性工学のはなし」「ORのはなし」「予測のはなし」「論理と集合のはなし」までぶっ通し。

内容的にかぶるところはあるものの、しかしそれがよかった。

しかし、やっぱり「実験計画分散分析のはなし」が一番印象に残ってるのは、その後の勉強に役立っていったからだと思う。

余談だけど、最近亡くなったそうだ。ご冥福をお祈り申し上げます

それと、

マンガでわかる統計学 因子分析編」

https://www.amazon.co.jp/%E3%83%9E%E3%83%B3%E3%82%AC%E3%81%A7%E3%82%8F%E3%81%8B%E3%82%8B%E7%B5%B1%E8%A8%88%E5%AD%A6-%E5%9B%A0%E5%AD%90%E5%88%86%E6%9E%90%E7%B7%A8-%E9%AB%98%E6%A9%8B-%E4%BF%A1/dp/4274066622/ref=pd_lpo_2?pd_rd_i=4274066622&psc=1

本当は、回帰分析編を買うつもりだったんだけど、マーケットプレイスから間違えてこっちが届いた。

これがのちに役立つことになるとはこの時点では想像もつかず。

Webで学ぶ

大村さんの本はぶっちぎりでわかりやすいんだけど、あと一歩踏み込みたい。

分散分析平行線検定法、プロビット法、自分の住む業界で聞いたことがある単語大村さんの本にはのってない。

そんなわけで頼ったのがこのページ。

統計学入門

http://www.snap-tck.com/room04/c01/stat/stat.html

覚えたものの、実際に計算となるとかなりややこしい。

t検定くらいならExcelでも一発でp値を出してくれる関数があるけれど、そこから一歩二歩踏み込んでいくと、自分で「あれの平方和を計算して」、「あっちの平方和を計算して」、「サンプルサイズが不揃いだから平均値代用して自由度補正して」、ということをExcel上でやらにゃならなかった。

1行に1レコード形式じゃないとやり難いなぁ。そうじゃないとサンプルサイズが変わるごとに計算列が変わって困る。

と、おぼろげながらtidyデータ概念に気づく手前に来てた。

タグメソッドとの出会い

勉強ブームは2013から2014年くらいまで。そこからしばらくはなんもやってない。

転職して事務仕事が増えたりしたせいもあったり。

そんななか、2018年ごろ、タグメソッド入門書出会う。

Excelでできるタグメソッド解析法入門」広瀬 健一 , 上田 太一郎

https://www.amazon.co.jp/Excel%E3%81%A7%E3%81%A7%E3%81%8D%E3%82%8B%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E8%A7%A3%E6%9E%90%E6%B3%95%E5%85%A5%E9%96%80-%E5%BA%83%E7%80%AC-%E5%81%A5%E4%B8%80/dp/4496034883/ref=sr_1_4?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89&qid=1637426448&s=books&sr=1-4

これがまた面白い

元工員だからかかもだけど、やっぱモノづくりはいいね

なるほど、実験計画法をこう使うのか!

有意差があるかどうかじゃなくて、それを使ってどう改良するかか!

ついでに、その中で使ってる手法からコンジョイント分析にも興味が出る。

ははーん、人文科学世界でも使えるんだね、分散分析実験計画。と。

分散分析をコンジョイント分析と呼ぶと怒られるけど、許して)

「入門パラメータ設計

https://www.amazon.co.jp/%E5%85%A5%E9%96%80%E3%83%91%E3%83%A9%E3%83%A1%E3%83%BC%E3%82%BF%E8%A8%AD%E8%A8%88%E2%80%95Excel%E6%BC%94%E7%BF%92%E3%81%A7%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E3%81%AE%E8%80%83%E3%81%88%E6%96%B9%E3%81%A8%E6%89%8B%E9%A0%86%E3%82%92%E4%BD%93%E5%BE%97%E3%81%A7%E3%81%8D%E3%82%8B-%E4%BA%95%E4%B8%8A-%E6%B8%85%E5%92%8C/dp/4817192542

上級タグメソッド

https://www.amazon.co.jp/%E4%B8%8A%E7%B4%9A%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E2%80%95%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E3%81%AE%E7%9C%9F%E9%AB%84%E3%82%923%E3%81%A4%E3%81%AE%E3%83%9D%E3%82%A4%E3%83%B3%E3%83%88%E3%81%8B%E3%82%89%E9%87%8D%E7%82%B9%E7%9A%84%E3%81%AB%E6%98%8E%E5%BF%AB%E3%81%AB%E8%A7%A3%E8%AA%AC-%E4%B8%AD%E9%87%8E-%E6%83%A0%E5%8F%B8/dp/4817193379/ref=pd_lpo_1?pd_rd_i=4817193379&psc=1

品質を獲得する技術

https://www.amazon.co.jp/%E5%93%81%E8%B3%AA%E3%82%92%E7%8D%B2%E5%BE%97%E3%81%99%E3%82%8B%E6%8A%80%E8%A1%93%E2%80%95%E3%82%BF%E3%82%B0%E3%83%81%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E3%81%8C%E3%82%82%E3%81%9F%E3%82%89%E3%81%97%E3%81%9F%E3%82%82%E3%81%AE-%E5%AE%AE%E5%B7%9D-%E9%9B%85%E5%B7%B3/dp/4817103396/ref=sr_1_1?__mk_ja_JP=%E3%82%AB%E3%82%BF%E3%82%AB%E3%83%8A&keywords=%E5%93%81%E8%B3%AA%E3%82%92%E7%8D%B2%E5%BE%97%E3%81%99%E3%82%8B%E6%8A%80%E8%A1%93&qid=1637482074&s=books&sr=1-1

と読み進む。

この辺までは全てExcel学習

この辺から行列計算が出てきてExcelでは限界を感じるようになる。

後編に続く

2021-10-27

岸DAPPIは何がしたかったのか

麻生の代わりに謝罪する子分、誰が総裁なのやら

政策高市に丸ごと取って変わられ絞りかすも残ってない

甘利のおかげで選挙あかんちゃう

2021-10-24

松本純駅前演説麻生太郎応援に来てた

昨日の話。

 

松本純地元衆議院議員で元自民党

今度の衆議院選の候補

 

「元」なのはコロナ自粛無視して銀座飲食したのがバレて批判受けて離党したから。

同じ立場自民議員がほかに二人いたけど松本純最初全部私です一人ですと言って

前途ある2人をなんとしても庇いたかったとか言ってそれはどうなんだ

男気があるという評価と取り調べに嘘つきやがってという評価が支持者の間でも半々て感じ。らしい。

しばらく時間空けて改めて地元自民党かなんか通して詫びを入れて復党願を出したけど拒絶された。

 

ただ松本純麻生太郎の数少ない子分と言われていて

離党後まもなくyoutubeチャンネル安倍晋三が出てきたりして

少なくともそのへんの人達からは見限られていない感じだった。

そういうわけで昨日の夜七時から駅前演説にも麻生太郎応援に来た。 

 

時間つなぎをしてるのは地元自民党市議で、沢山いた緑のジャンパーはたぶんいつも通りの自民党スタッフ

人だかりが凄くて交通整理のスタッフは沢山働いてたし報道陣もかなりいた。

どうでもいいけど一番高いカメラ担当してる若い女カメラマンが脚立の天板に乗っててすごく怖かった。

 

それでまあ麻生太郎が出てきただけでなんかスター性があるから盛り上がるし

安倍最初応援先に選んだのも松本純神奈川1区なんですとか言って

ファンイベントとして洗練されすぎている。

全国区知名度スターがやってきて地元候補を持ち上げて

下にいる地元支援者がそうだーって呼応して拍手して。

 

松本純が言うのも「あんなことをした反省自民党はいられないから離党したけど身体のどこを斬っても自民党の血だ」と。

麻生太郎も「私が一番信頼しているのは松本純です」とかそういう方向で場を温めてから

ポンポンとわかりやす政策の話をして厳しい状況だから皆さんの力がいるとか

自民野党に落ちたりしながらずっと国のかじ取りをしてるし今も上手くやれているしこれからなんだと。 

https://www.youtube.com/watch?v=dunXIi4Fucc

 

 

それでその場所に同じ日の9時ごろに通りかかったら

今度は立憲民主党のしはら豪が立っていたんですよ。

そばバンがあってのぼりも立ってるとこまでは松本純と同じなんだけど

人間候補が1人。スタッフも1人。

 

まりにも寂しい。

しかもしのはら豪はなんか老人に絡まれていました。

内容を聞くと「支持者として説教」を垂れている左派老人です。

 

イライラとしたすごく嫌な感じの言い方で立憲がなっとらんところをグチグチ言って

あとは共産党ちゃん連携せんかということを何度も何度も言ってました。

しのはら豪は大きい身体を屈めてハイハイ、と聞いて。

暗くて人通りもまばらな駅前通り道に老人の不機嫌な罵声けが響き渡っていました。

 

うるせえジジイ!どっかいけ!と一喝してやればいいのにね。

 

 

この話の要点が分かるでしょうか。

私はしのはら豪に投票するつもりです。

 

ですが、松本純としのはら豪には大差があります

能力にではありません。

「掴んでる客層」にです。

 

こまけーことをグチグチ言わずに「私達の純」「俺達の太郎」で盛り上がってくれる幅広くネアカで知り合いの多そうな支持者。

注文ばっかり多くて不機嫌でネクラ絶対友達が少ないタイプの狭い支持者。 

松本支持者がもしも前者みたいな理由だけで投票してたらそれは大変困るんですが、

客として支持者として質がいいのは明らかに前者です。

  

一方で、野党として冷や飯を食べてる時代が長いとどうしても後者のようなタイプ身の回りに増えてしまます

でもイライラ古参左派ジジイの長い説教ハイハイ、と聞いて貴重な時間絶対友だちもいない偏屈ジジイの1票に変えてても勝てないんです。

そういう嫌な感じの気難しい常連古参みたいな奴は近寄ることすらできないようにして、明るい支持者の輪を広げないといけないんです。

 

声に出して「うるせえ!ジジイ!」と言えば晒されるリスクがあるからダメですが

心の中で「うるせえ!ジジイ!」の精神は持っていてほしいのです。

あんな奴の話なんか切り上げていいんだよ横で聞いてるだけでも話がループしてたし礼儀そもそもなってないし。

 

健全で強い野党応援しています

2021-10-17

anond:20211017130441

リクルート部長待遇でウチの会社に来た人がいたけど、無能で評判だった。

脈絡なく元リクであること誇示してウザがられていた。

その上、無能な元リク社員を引っ張ってきて、被害を拡大させていた。蝗害のようだ。

つのまにか子分ともども居なくなってたけど、どうやって駆除したんだろう。

食い尽くしてうま味が無くなったから、別の獲物を求めて出て行っただけかもしれんけど。

2021-09-24

[]1万人の異性とセックスできる、1万人の友達ができる、1万人の有能な子分ができる、1万人の子供ができる

どれが一番良い?

2021-08-27

読解問題「生涯後悔するぞ」

暴力団の組長のAくんは関与を疑われた事件裁判死刑判決を受けました。判決を聞いてAくんは裁判長に向かって「生涯後悔するぞ」と言いました。このときのAくんの心情として最も適しているものを次の中から1つ選びなさい。(7点)

 

ア 起こしてしまった事件について反省し、かつての自分の行動を「(僕は)生涯後悔するぞ」と宣言たかった

イ 判決が気に食わなかったので裁判長に復讐しようと考え、裁判長がこれから後悔することになると脅したかった

ウ Aくんは判決が不当なものだと確信していて、将来、裁判長が自分判決を後悔することになると思って心配した

エ 判決が気に食わなかったので子分復讐してもらおうと思い、直接命令したと言質を取られないように子分命令した

2021-08-26

医師数が問題から病床削減に問題ないという阿呆な嘘

最近日本医師数が足りないのがボトルネックになっているのでコロナ禍で病床を減らしても問題が無い、とする意見が幅を利かせていて頭が痛い。特に知的背伸びをしたい連中が引っかかっているようだ。

例えばこんなところがそうだ。

https://anond.hatelabo.jp/20210812125322

外国と比べて日本の病床数を多くて医師が少ないから正解は病床数削減なのだ、と。

 

引っかかっている人の例を上げておこう

問題は「病床」ではなくて「人材」だと思うんですけどね。病床に当たる人材を増やすか、効率よく働けるシステム構築するかという中での病床削減だと思うのだけど。今は人材増やして欲しい側面だろうなぁ。」

https://b.hatena.ne.jp/entry/s/lllagoon.hatenablog.com/entry/2021/08/24/163120

あのさ、これやこれに引っかかっている知的チャレンジドな人らは、なんで減床政策を実行してると思ってるんだ?

医師病棟に紐づけられて雇用されている。足りなきゃバイトで確保する。だから減床に応じた病院では解雇雇止めが発生する。

そして減床の根拠は病床稼働率だ。病床稼働率が低い病院を名指しして1割以上削減したら補助金を出しますよというのが2020年の決定だ。当然稼働率が上がるのだから医者のヒマは無くなる。急性期病院では患者を寝かしてるだけじゃないんだから手術も検査も回数が増える。医師が足りなくなってメディカル実習奴隷インターンを今以上にタダ働きでコキ使うようになるのも目に見えている。

医師働き方改革」という惹句が付いているが直接的には診療報酬の上乗せだ。それで賃金は少々上昇するかもしれない。

だが直接的に医師負担が軽減されるという訳ではない。これを簡単に信じてしまう人は決定権者の利害と改革される現場人間の利害が違うという事が判っていない。

 

知的背伸びするよりgoogle検索の使い方改革を。WEB2.0より1.0を。

こういう政治が絡んだ問題が発生するとあっという間に背伸び厨房達が「人材だと思うですけどね」みたいな意見をばら撒いて検索不能になる。

そういう時はgoogle検索で期間指定をする事をおススメする。上部の「ツール」→「期間を指定」で政治問題化する以前の期間を指定して検索する。

更にこういう問題保険会社保険会社シンクタンク日経メディカルなどの業界誌が必ず扱うはずなのでそういうのを読むようにする。WEB2.0なんかより1.0の企業サイトを読み比べた方がニュートラルで判りやすいのだ。

更にその手のサイトの中で研究員などが書いているコラムblogがあったらもっと問題が判りやすい。これはweb1.0上のサンドボックスで走るWeb2.0と言える。

そうすれば「人材だと思うですけどね」みたいな間抜け中間取りをして晒上げ食らうこともないだろう。

自衛隊中央病院の例

DP号等で存在感を示している自衛隊中央病院だが、ここは職域病院で元々は自衛官家族だけの受け入れで一般人の受け入れはしていなかった。

一般受け入れを始めたのはやはり病床稼働率の低さが問題とされたからだ。職域病院業務上傷病が多い業種での医療提供の為に始まるが、やがて福利厚生に傾斜していき、やがて過剰となるというのがパターンだ。自衛隊病院も然りで、財務省にネジ込まれ自衛隊は小規模の診療所廃止、病床稼働率が低い数軒の中央病院廃止合併縮小を求められた。

そこで病院規模を保つ為に一般受け入れを始めたというのが経緯だ。

一方、自衛隊には戦争可能性があり、その場合に備え病床の空きは確保しておかねばならないものだ。

有事には一般患者は転院してもらうというのは良い方法かもしれない。だが他の病院も病床稼働率を見て100%近くになるまで削られていたら転院先がない。ICUが埋まっていたら猶更だ。有事にはどうするのだろうかと心配になる。

この自衛隊病院有事国内遍く起きたのがコロナ感染爆発だ。

感染患者数というのは一定ならず常には低いものであって、アウトブレイクが起きた時は急激に増加する。だからこのやり方の減床政策を続けるとパンデミックという有事に極端に弱くなる。今回のパンデミック一発でこの20年近くの減床政策で浮かせた金なんて全て吹っ飛んだだろう。

 

なお、余談だが東電も職域病院信濃町に持っていた。原発事故の後に国費を注入する事になって福利厚生の過剰にメスが入り、東電は同じように一般受け入れによる病院の存続を希望したが、なにぶん建っていたのが慶応病院の直ぐ隣だったので公共的に不必要とされて廃止されてしまった。

こういう風に減床政策は病床稼働率を見て行われる。

補助金方式への転換

減床政策をやってもなかなか病床数は減らなかった。その為に2020年から導入する事になったのが補助金で、1割以上減床した病院には病床数から起算した得べかりし入院収入を支払うという方式だ。

ところがコロナのせいで病院収入が減ってしまい、これに飛びつく経営者が続出するかもしれない。地域医療確保よりも資金繰りに傾斜する可能性が高い状態でこのエサを撒くのは正しいのか?という事だ。

ここで「コロナ経営が苦しい病院政府は助けろ」と言われても何もしなかった事を思い出してほしい。結局ジェット機飛ばしただけだった。その背景には補助金誘導できるという算段があったのだ。パンデミックでやる事じゃない。

 

また、補助金には利子補給金もある。これは病院を潰して他の病院統合した場合、その病院の残債の利子分政府自治体が支払うというものだ。

この場合設備が新しい病院統合されるという風に考える人がいるがよく考えてもらいたい。建物設備の償還が終わった古いと新しい病院、どっちに残債が多く残っているだろうか?免除される利子はどっちが多いだろうか?

からこの制度設備更新に反する動機を生む制度なのだ

 

補助金方式経営に直結するから急激に減床が進むだろう。それを感染爆発期にするものなのか?

感染症の医師なんて普段はヒマでダブついているのが当たり前なのだ。病床稼働率を見て減らす方式で一番のターゲットになるのはここであるのは言うまでもない。

2021-08-24

読解問題「生涯後悔するぞ」

暴力団の組長のAくんは関与を疑われた事件裁判死刑判決を受けました。判決を聞いてAくんは裁判長に向かって「生涯後悔するぞ」と言いました。このときのAくんの心情として最も適しているものを次の中から1つ選びなさい。(7点)

ア 起こしてしまった事件について反省し、かつての自分の行動を「(僕は)生涯後悔するぞ」と宣言たかった

イ 判決が気に食わなかったので裁判長に復習しようと考え、裁判長がこれから後悔することになると脅したかった

ウ Aくんは判決が不当なものだと確信していて、将来、裁判長が自分判決を後悔することになると思って心配した

エ 判決が気に食わなかったので子分復讐してもらおうと思い、直接命令したと言質を取られないように子分命令した

2021-08-18

anond:20210818193747

そりゃあ買えるけどさ、贈り物は喜んでもらいたいって好意なんだよ

喜べないのは他人に甘えられなかったり贈答品で子分にしてやるって気分が透けて見えるとかそういうやつかな

人間関係が複雑なところにいるのかい

2021-08-14

櫻井よしこの失脚に時代の変遷を見た

一昔前ならこんなもんどうということもなかったんだよ

日本右翼にとって韓国右翼(それどころか政権も)は子分のようなものだったわけで

自分らがさんざん煽った『嫌韓』に復讐されたわけだな

2021-07-31

anond:20210731155010

そこだよね。立派な上司モテる男は属性が近いので両立するけど、立派な上司モテる女は両立しにくい。

から結婚して恋愛市場から上がった女性モテ意識する必要がないので子分を守る豪傑もいるにはいる。しかしそれをしたところでモテなどのメリットがないから数は少ない。

ログイン ユーザー登録
ようこそ ゲスト さん