「ホログラフィー」を含む日記 RSS

はてなキーワード: ホログラフィーとは

2024-09-20

量子力学圏論的定式化とブラックホール情報パラドックス解決

前提:

1. 現実ヒルベルト空間上のベクトルである

2. 波動関数シュレーディンガー方程式に従って時間発展する。

1. ヒルベルト空間圏論的定式化

1.1 ヒルベルト空間の圏 Hilb

Hilb は次の性質を持つ。

1.2 ダガー圏としての Hilb

- (S ∘ T)† = T† ∘ S†

- (T†)† = T

- id_H† = id_H

1.3 対称モノイドダガー圏としての Hilb

- (T ⊗ S)† = T† ⊗ S†

1.4 コンパクト閉圏としての Hilb

- 評価射: eval_H: H* ⊗ H → ℂ

- 共評価射: coeval_H: ℂ → H ⊗ H*

- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H

- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*

2. 状態と射の対応

2.1 状態の射としての表現

⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ

2.2 観測量の射としての表現

⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ

3. シュレーディンガー方程式圏論表現

3.1 ユニタリ時間発展作用素

U(t) = exp(-iHt/ħ): H → H

3.2 時間の圏 Time関手 F

- 対象: 実数 t ∈ ℝ

- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ

- 対象対応: F(t) = H

- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)

3.3 状態時間発展の射としての表現

ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)

  • 射の合成による時間累積性:

U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)

4. ブラックホール情報パラドックス圏論解決

4.1 パラドックスの定式化
4.2 圏論的枠組みにおける情報保存

H_total = H_BH ⊗ H_rad

- H_BH: ブラックホール内部のヒルベルト空間

- H_rad: ホーキング放射ヒルベルト空間

U_total(t): H_total → H_total

- U_total(t) はユニタリ射。

4.3 完全正な量子チャネルスタインスプリング表現

E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)

- ρ_BH: ブラックホールの初期状態

- Tr_H_BH: H_BH 上の部分トレース

- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。

E(ρ) = Tr_K (V ρ V†)

4.4 情報ユニタリな伝搬
4.5 ホログラフィー原理圏論的定式化

- バルクの圏 Hilb_bulk: ブラックホール内部の物理記述

- 境界の圏 Hilb_boundary: 境界上の物理記述

- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像保証

4.6 自然変換による情報の保存

- バルク: F_bulk: Time → Hilb_bulk

- 境界: F_boundary: Time → Hilb_boundary

  • 自然変換 η: F_bulk ⇒ G ∘ F_boundary:

- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。

η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁

- これにより、バルク境界での時間発展が対応し、情報が失われないことを示す。

5. 結論

量子力学圏論的に定式化し、ユニタリダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手自然変換を構成し、情報が圏全体で保存されることを示した。

2024-09-02

ブラックホール情報パラドックスについて

ブラックホール情報パラドックスは、量子場の理論一般相対性理論整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。

1. 量子力学ユニタリ性

量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:

|ψ(t)⟩ = U(t)|ψ(0)⟩

ここで、U(t) は以下の性質を満たす:

U†(t)U(t) = U(t)U†(t) = I

これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。

2. ブラックホール形成蒸発

ブラックホール形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:

rₛ = 2GM/c²

ここで、G は重力定数、M はブラックホール質量、c は光速

ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:

T_H = ℏc³/(8πGMk_B)

ここで、ℏ はプランク定数、k_B はボルツマン定数

3. 情報喪失問題

ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:

|ψᵢ⟩⟨ψᵢ| → ρ_f

これは量子力学ユニタリ性矛盾する。

超弦理論から解決アプローチ

ホログラフィー原理

ホログラフィー原理は、(d+1) 次元重力理論が d 次元場の理論等価であることを示唆する。ブラックホールエントロピー S は:

S = A/(4Gℏ)

ここで、A は事象の地平面の面積。これは、情報事象の地平面上に符号化されていることを示唆する。

AdS/CFT対応

AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:

ds² = (L²/z²)(-dt² + d𝐱² + dz²)

ここで、L は AdS 空間の曲率半径、z は動径座標。

CFT の相関関数は、AdS 空間内のフェイマン図に対応する。例えば、2点相関関数は:

⟨𝒪(x)𝒪(y)⟩_CFT ∼ exp(-mL)

ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。

量子エンタングルメントER=EPR 仮説

量子エンタングルメントは、ブラックホール情報パラドックス解決重要役割を果たす可能性がある。2粒子系のエンタングルした状態は:

|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)

ER=EPR 仮説は、量子エンタングルメントEPR)とアインシュタインローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。

結論

超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワーク提供している。

ホログラフィー原理、AdS/CFT対応量子エンタングルメントなどの概念は、このパラドックス解決に向けた重要な手がかりとなっている。

今後の研究では、量子重力の完全な理論を構築することが必要特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要課題となるだろう。

2022-09-20

国葬してると山上ホログラフィーで登場して

悪役っぽいセリフを吐くみたいな演出を期待している

2021-03-18

anond:20210318022224

あれ何だったんだろうな。

すげえホログラフィー技術かと思ったらグリーンバックだし。

2015-06-04

「大栗先生超弦理論入門」 を読んだけど面白かった!

栗先生超弦理論入門 (ブルーバックス)   大栗博司

http://www.amazon.co.jp/dp/4062578271



僕は専門外だけどスラスラ読めた。

面白かった!いや、面白かった!

興奮冷めやらぬまま感想文を増田に投下。自己満足

著者は弦理論を作り上げて来た天才達のひとり。

修士在学中に東大助教卒業後すぐにシカゴ准教授

評価書には " He is a genius." とひと言だけ書かれていたとかなんとか。(噂。確認してない)

とにかく伝説的な方である

そんな弦理論第一人者の書いた一般向け啓蒙書がこちらの本。

寝る前にちょっとだけ読み進めていたのが6章あたりからまらなくなった。

とにかく熱い! 第一次/第二次ストリング革命の熱気が!感動が!時を超えて伝わってくる。

基本的お話だと思って読んでよいとおもう。たとえわからなくても熱気だけは伝わる。

すごい

例え話に逃げずに真っ正面から解説しているのがすごい。

数式を避け、簡単なことばを選んで専門用語を説明していく。

とても真摯姿勢読み手を信頼しているのだと思う。

第5章のゲージ原理解説がすごい。

リーマン幾何学みたいな図が描いてあるなと思ったら「為替相場」と「裁定機会とある。なんだこれ!

なんだこれはと思いつつ最後まで読むと理解できてしまう。ゲージ原理が!為替相場で!

ヤン=ミルズ場のゲージ変換なんてすごい。各サイト上に球面「ものさし」を置いて、局所的に回転することで視覚的に説明してしまう!

(球面だからSU(2)なのか?!)

図を見ると一目瞭然なのでぜひ見て欲しい。

大栗さんの美学哲学も伝わってくるよう。

素晴らしい一冊。


いろいろ

イラスト

なんと大栗先生直筆の物理学者の顔イラストつき。

現役の研究者も含まれる。

めっちゃ特徴を捉えていて笑えてくる。これだけでも個人的には買ってよかった。

ホログラフィー原理 (ゲージ/重力対応)

最近はてなで人気のホログラフィー原理は8章から。3章くらいから読むといいかな?

からないところは飛ばしても読める。なぜか雰囲気で読めてしまう。

ダウンロード版ではなく普通の本を買えばよかった。

これなんだっけと前のページをめくるのが辛い。

「この顔イラスト見て見て!」とかやるのにページめくるの辛い。

 
ログイン ユーザー登録
ようこそ ゲスト さん