「ユニタリ」を含む日記 RSS

はてなキーワード: ユニタリとは

2024-11-14

AdS/CFT対応ブラックホール情報パラドックス

AdS/CFT対応

AdS/CFT対応は、d+1次元の反ド・ジッター空間AdS_{d+1}における重力理論と、その境界上のd次元共形場理論CFT_dとの間の双対性を主張する。この対応は以下の等式で表現される:

Z_gravity[φ_0] = ⟨exp(∫_∂AdS d^dx φ_0(x)O(x))⟩_CFT

ここで、Z_gravityはAdS重力理論の生成汎関数、右辺はCFTの相関関数の生成汎関数である。φ_0はAdS空間境界での場の値、OはCFT演算子である

ブラックホールのホログラフィック表現

AdS空間内のシュワルツシルト・ブラックホールは、CFTの有限温度状態対応する。ブラックホール温度TとCFT温度は一致し、以下のように与えられる:

T = (d r_+)/(4π L²)

ここで、r_+はブラックホールの地平線半径、LはAdS空間の曲率半径である

エンタングルメントエントロピーと面積法則

CFTのある領域AのエンタングルメントエントロピーS_Aは、AdS空間内の極小面γ_Aの面積と関連付けられる:

S_A = Area(γ_A)/(4G_N)

ここで、G_Nはニュートン定数である。この関係は、Ryu-Takayanagi公式として知られている。

情報パラドックス解決

AdS/CFT対応は、ブラックホール情報パラドックスに対して以下の洞察提供する:

1. ユニタリ性: CFT時間発展はユニタリであり、これはAdS空間でのブラックホール形成蒸発過程全体がユニタリであることを意味する。

2. 情報の保存: ブラックホールに落ち込んだ情報は、CFT状態に完全に符号化される。形式的には:

S(ρ_CFT,initial) = S(ρ_CFT,final)

ここで、S(ρ)はフォン・ノイマンエントロピーである

3. スクランブリング: 情報スクランブリングは、CFTの非局所演算子の成長によって記述される:

⟨[W(t), V(0)]²⟩ ∼ e^(λ_L t)

ここで、λ_Lはリャプノフ指数で、λ_L ≤ 2πT(カオス束縛)を満たす。

量子誤り訂正ブラックホール

AdS/CFTは量子誤り訂正コードとしても解釈できる。境界CFTの部分系Aに符号化された情報は、バルクのサブリージョンaに再構成できる:

Φ_a = ∫_A dx K(x; a) O(x)

ここで、Φ_aはバルク場、K(x; a)は再構成カーネル、O(x)は境界演算子である

2024-09-20

量子力学圏論的定式化とブラックホール情報パラドックス解決

前提:

1. 現実ヒルベルト空間上のベクトルである

2. 波動関数シュレーディンガー方程式に従って時間発展する。

1. ヒルベルト空間圏論的定式化

1.1 ヒルベルト空間の圏 Hilb

Hilb は次の性質を持つ。

1.2 ダガー圏としての Hilb

- (S ∘ T)† = T† ∘ S†

- (T†)† = T

- id_H† = id_H

1.3 対称モノイドダガー圏としての Hilb

- (T ⊗ S)† = T† ⊗ S†

1.4 コンパクト閉圏としての Hilb

- 評価射: eval_H: H* ⊗ H → ℂ

- 共評価射: coeval_H: ℂ → H ⊗ H*

- (id_H ⊗ eval_H) ∘ (coeval_H ⊗ id_H) = id_H

- (eval_H ⊗ id_H*) ∘ (id_H* ⊗ coeval_H) = id_H*

2. 状態と射の対応

2.1 状態の射としての表現

⟨φ|ψ⟩ = (φ† ∘ ψ): ℂ → ℂ

2.2 観測量の射としての表現

⟨A⟩ψ = (ψ† ∘ A ∘ ψ): ℂ → ℂ

3. シュレーディンガー方程式圏論表現

3.1 ユニタリ時間発展作用素

U(t) = exp(-iHt/ħ): H → H

3.2 時間の圏 Time関手 F

- 対象: 実数 t ∈ ℝ

- 射: t₁ → t₂ は t₂ - t₁ ∈ ℝ

- 対象対応: F(t) = H

- 射の対応: F(t₁ → t₂) = U(t₂ - t₁)

3.3 状態時間発展の射としての表現

ψ(t₂) = U(t₂ - t₁) ∘ ψ(t₁)

  • 射の合成による時間累積性:

U(t₃ - t₁) = U(t₃ - t₂) ∘ U(t₂ - t₁)

4. ブラックホール情報パラドックス圏論解決

4.1 パラドックスの定式化
4.2 圏論的枠組みにおける情報保存

H_total = H_BH ⊗ H_rad

- H_BH: ブラックホール内部のヒルベルト空間

- H_rad: ホーキング放射ヒルベルト空間

U_total(t): H_total → H_total

- U_total(t) はユニタリ射。

4.3 完全正な量子チャネルスタインスプリング表現

E(ρ_in) = Tr_H_BH (U_total ρ_in ⊗ ρ_BH U_total†)

- ρ_BH: ブラックホールの初期状態

- Tr_H_BH: H_BH 上の部分トレース

- 存在定理: 任意の完全正なトレース保存マップ E は、あるヒルベルト空間 K とユニタリ作用素 V: H_in → H_out ⊗ K を用いて表現できる。

E(ρ) = Tr_K (V ρ V†)

4.4 情報ユニタリな伝搬
4.5 ホログラフィー原理圏論的定式化

- バルクの圏 Hilb_bulk: ブラックホール内部の物理記述

- 境界の圏 Hilb_boundary: 境界上の物理記述

- G は忠実かつ充満なモノイドダガー関手であり、情報の完全な写像保証

4.6 自然変換による情報の保存

- バルク: F_bulk: Time → Hilb_bulk

- 境界: F_boundary: Time → Hilb_boundary

  • 自然変換 η: F_bulk ⇒ G ∘ F_boundary:

- 各時刻 t に対し、η_t: F_bulk(t) → G(F_boundary(t)) は同型射。

η_t₂ ∘ U_bulk(t₂ - t₁) = G(U_boundary(t₂ - t₁)) ∘ η_t₁

- これにより、バルク境界での時間発展が対応し、情報が失われないことを示す。

5. 結論

量子力学圏論的に定式化し、ユニタリダガー対称モノイド圏として表現した。ブラックホール情報パラドックスは、全体系のユニタリ性とホログラフィー原理圏論的に導入することで解決された。具体的には、ブラックホール内部と境界理論の間に忠実かつ充満な関手自然変換を構成し、情報が圏全体で保存されることを示した。

2024-09-02

ブラックホール情報パラドックスについて

ブラックホール情報パラドックスは、量子場の理論一般相対性理論整合性に関する根本的な問題だ。以下、より厳密な数学的定式化を示す。

1. 量子力学ユニタリ性

量子力学では、系の時間発展はユニタリ演算子 U(t) によって記述される:

|ψ(t)⟩ = U(t)|ψ(0)⟩

ここで、U(t) は以下の性質を満たす:

U†(t)U(t) = U(t)U†(t) = I

これは、情報が保存されることを意味し、純粋状態から混合状態への遷移を禁じる。

2. ブラックホール形成蒸発

ブラックホール形成過程は、一般相対性理論の枠組みで記述される。シュワルツシルト解を考えると、事象の地平面の半径 rₛ は:

rₛ = 2GM/c²

ここで、G は重力定数、M はブラックホール質量、c は光速

ホーキング放射による蒸発過程は、曲がった時空上の量子場の理論を用いて記述される。ホーキング温度 T_H は:

T_H = ℏc³/(8πGMk_B)

ここで、ℏ はプランク定数、k_B はボルツマン定数

3. 情報喪失問題

ブラックホールが完全に蒸発した後、初期の純粋状態 |ψᵢ⟩ が混合状態 ρ_f に遷移したように見える:

|ψᵢ⟩⟨ψᵢ| → ρ_f

これは量子力学ユニタリ性矛盾する。

超弦理論から解決アプローチ

ホログラフィー原理

ホログラフィー原理は、(d+1) 次元重力理論が d 次元場の理論等価であることを示唆する。ブラックホールエントロピー S は:

S = A/(4Gℏ)

ここで、A は事象の地平面の面積。これは、情報事象の地平面上に符号化されていることを示唆する。

AdS/CFT対応

AdS/CFT対応は、d+1 次元の反ド・ジッター空間 (AdS) における重力理論と、その境界上の d 次元共形場理論 (CFT) の間の等価性を示す。AdS 空間の計量は:

ds² = (L²/z²)(-dt² + d𝐱² + dz²)

ここで、L は AdS 空間の曲率半径、z は動径座標。

CFT の相関関数は、AdS 空間内のフェイマン図に対応する。例えば、2点相関関数は:

⟨𝒪(x)𝒪(y)⟩_CFT ∼ exp(-mL)

ここで、m は AdS 空間内の粒子の質量、L は測地線の長さ。

量子エンタングルメントER=EPR 仮説

量子エンタングルメントは、ブラックホール情報パラドックス解決重要役割を果たす可能性がある。2粒子系のエンタングルした状態は:

|ψ⟩ = (1/√2)(|0⟩_A|1⟩_B - |1⟩_A|0⟩_B)

ER=EPR 仮説は、量子エンタングルメントEPR)とアインシュタインローゼン橋(ER)の等価性を示唆する。これにより、ブラックホール内部の情報が外部と量子的に結合している可能性が示される。

結論

超弦理論は、ブラックホール情報パラドックスに対する完全な解決策を提供するには至っていないが、問題に取り組むための数学的に厳密なフレームワーク提供している。

ホログラフィー原理、AdS/CFT対応量子エンタングルメントなどの概念は、このパラドックス解決に向けた重要な手がかりとなっている。

今後の研究では、量子重力の完全な理論を構築することが必要特に、非摂動的な超弦理論の定式化や、時空の創発メカニズムの解明が重要課題となるだろう。

量子論現実数学構造

基本構造

状態観測

力学情報

複合系と相互作用

抽象化一般

まとめ

2024-08-30

レベル分け説明: SVDとはなにか

SVD (特異値分解) について、異なる難易度説明します。

レベル1: 幼児向け

SVDは、大きな絵を小さなパーツに分ける魔法のようなものです。この魔法を使うと、複雑な絵をシンプルな形に分けることができます。例えば、虹色の絵を赤、青、黄色の3つの基本的な色に分けるようなものです。

レベル2: 大学生向け

SVD (Singular Value Decomposition) は、行列を3つの特別行列の積に分解する線形代数手法です。

A = UΣV^T

ここで:

SVDは次元削減、ノイズ除去、データ圧縮などの応用があります。主成分分析 (PCA) とも密接な関係があり、多変量解析や機械学習で広く使用されています

レベル3: 専門家向け

SVDは任意複素数体上の m×n 行列 A に対して以下の分解を提供します:

A = UΣV*

ここで:

主要な理論性質:

1. A の階数 r は、非ゼロ特異値の数に等しい

2. A の核空間は V の r+1 列目から n 列目によってスパンされる

3. A の値域は U の最初の r 列によってスパンされる

4. σ_i^2 は A*A (または AA*) の固有値

5. ||A||_2 = σ_1, ||A||_F = √(Σσ_i^2)

数値計算観点:

応用:

1. 低ランク行列近似 (Eckart–Young–Mirsky の定理)

2. 総最小二乗問題の解法

3. 擬似逆行列 (Moore-Penrose) の計算

4. 条件数評価: κ(A) = σ_1 / σ_r

高度な話題:

レベル4: 廃人向け

1. 関数解析一般化:

  • コンパクト作用素 T: X → Y (X, Y はHilbert空間) に対するSVD
  • Schmidt分解との関連: T = Σσ_n(·,v_n)u_n
  • 特異値の漸近挙動: Weyl's inequality と Lidskii's theorem

2. 無限次元への拡張:

3. 微分幾何学解釈:

4. 代数幾何学視点:

5. 高次元データ解析:

6. 量子アルゴリズム:

7. 非線形SVD:

8. 確率論的アプローチ:

9. 計算複雑性理論:

10. 偏微分方程式との関連:

- SVDを用いた固有値問題の解法 (Sturm-Liouville問題等)

- 非線形PDEの低次元モデル化 (Proper Orthogonal Decomposition)

科学的実在論検討

科学的実在論の中核的主張は、成熟した科学理論記述する観測不可能実体過程実在するというものだ。この立場の具体的な論拠を詳細に検討する。

奇跡論法精緻

Putnam と Boyd によって提唱された無奇跡論法は、科学予測成功説明する最良の方法は、理論が真理に近いと考えることだと主張する。

具体例:一般相対性理論による水星の近日点移動の予測

1. ニュートン力学では説明できなかった水星軌道の異常を、アインシュタイン一般相対性理論が高精度で予測した。

2. この予測成功は、時空の曲率という観測不可能概念実在性を示唆する。

批判:Laudan の悲観的帰納法

1. 過去成功理論フロギストン説エーテル理論など)が誤りだったことを指摘。

2. 理論経験成功と真理性の相関関係に疑問を投げかける。

構造実在論の発展

Worrall によって提唱された構造実在論は、理論数学構造のみが実在を反映すると主張する。

具体例:Maxwell電磁気学からEinstein特殊相対性理論への移行

1. エーテルという実体否定されたが、Maxwell 方程式数学構造は保持された。

2. この構造連続性が、より深い実在の反映だと解釈できる。

発展:Ontic Structural Realism (Ladyman, French)

1. 物理対象関係の束として捉え、実体概念を完全に放棄

2. 量子力学における粒子の非個体性や、一般相対性理論における点事象の背景独立性と整合的。

量子力学解釈問題の深掘り

量子力学解釈は、客観的現実存在に関する議論の核心だ。主要な解釈とその含意を詳細に検討する。

コペンハーゲン解釈再考

Bohr と Heisenberg によって提唱されたこ解釈は、測定問題を中心に据える。

1. 波動関数確率解釈:|ψ|^2 は粒子の位置確率密度を表す。

2. 補完性原理:粒子性と波動性は相補的な性質であり、同時に観測できない。

問題点:

多世界解釈の詳細

Everett によって提唱されたこ解釈は、波動関数客観的実在性を主張する。

1. 分岐する宇宙:測定のたびに宇宙分岐し、全ての可能な測定結果が実現する。

2. 相対状態形式主義観測者の状態波動関数の一部として扱う。

利点:

問題点:

デコヒーレンス理論重要

Zeh と Zurek らによって発展したデコヒーレンス理論は、量子から古典への移行を説明する。

1. 環境との相互作用により、量子的重ね合わせが急速に古典的な混合状態に移行。

2. 選択された基底(ポインター基底)のみが安定して観測される。

含意:

情報理論アプローチの最新の展開

情報を基礎とする物理学の構築は、客観的現実本質に新たな視点提供する。

量子情報理論ER=EPR 対応

Susskind と Maldacena による ER=EPR 対応は、量子エンタングルメントと時空の構造を結びつける。

1. Einstein-Rosen ブリッジワームホール)と Einstein-Podolsky-Rosen 対(量子もつれ)の等価性を示唆

2. 量子情報と時空構造の深い関係示唆し、量子重力理論への新たなアプローチ提供

計算複雑性と時空の創発

Susskind らによる計算複雑性と時空の関係研究

1. ブラックホール内部の時空の成長が、量子回路の計算複雑性の増大と対応

2. 時空そのものが、より基本的な量子情報処理から創発する可能性を示唆

結論

客観的現実存在問題は、現代物理学の最先端問題と密接に結びついている。量子力学の基礎的解釈構造実在論、情報理論アプローチなど、様々な視点からの探求が進んでいるが、決定的な答えは得られていない。

今後の研究方向性としては、量子重力理論の完成、意識物理実在関係の解明、そして情報理論物理学の更なる融合が重要になるだろう。これらの進展により、客観的現実本質に関する我々の理解が大きく変わる可能性がある。

現時点では、客観的現実存在を単純に肯定または否定するのではなく、我々の認識独立した実在可能性を探求しつつ、同時に観測者の役割情報本質重要性を考慮に入れた、より洗練された存在論的枠組みの構築が必要だ。

2024-08-24

創発時空概要

1. 基本的な設定

(H, ⟨·|·⟩)を可分なヒルベルト空間とし、B(H)をH上の有界線形作用素の集合とする。

2. 量子状態観測

S(H) = {ρ ∈ B(H) : ρ ≥ 0, Tr(ρ) = 1}を密度作用素の集合とする。A ⊂ B(H)を自己共役作用素部分代数とし、これを観測量の集合とする。

3. 時間発展

ユニタリ群{Ut}t∈ℝを考え、シュレーディンガー方程式を以下のように表現する:

iħd/dtUt = HUt

ここでH ∈ Aはハミルトニアンである

4. 状態空間位相

S(H)上にトレース距離を導入し、位相空間(S(H), τ)を定義する。

5. 観測量の局所性

A上にC*-代数構造を導入し、局所的な部分代数の族{A(O)}O⊂ℝ⁴を定義する。ここでOは時空の開集合である

6. 因果構造の導出

A(O1)とA(O2)が可換であるとき、O1とO2は因果的に独立である定義する。これにより、ℝ⁴上に因果構造を導入する。

7. 計量の再構成

状態ρ ∈ S(H)に対し、関数dρ : A × A → ℝ+を以下のように定義する:

dρ(A, B) = √Tr(ρ[A-B]²)

この関数から、ℝ⁴上の擬リーマン計量gμνを再構成する手続き定義する。

8. 時空多様体創発

(ℝ⁴, gμν)を基底時空とし、これに対して商位相を導入することで、等価類の空間M = ℝ⁴/∼を定義する。Mを創発した時空多様体とみなす

9. 量子状態と時空の対応

写像Φ : S(H) → Mを構成し、量子状態と時空点の対応定義する。

10. 動力学の整合性

シュレーディンガー方程式による時間発展ρ(t) = Ut ρ Ut*が、M上の滑らかな曲線γ(t) = Φ(ρ(t))に対応することを示す。

2024-08-19

多世界解釈抽象化

多世界解釈抽象化する。以下では、カテゴリー理論代数的構造を取り入れた視点からアプローチする。

1. ヒルベルト空間カテゴリー

量子系はカテゴリー 𝐇𝐢𝐥𝐛 の対象であるヒルベルト空間 𝐇 によって記述される。ここで、射はユニタリ作用素であり、状態対象ベクトルとして扱われる。

2. 状態テンソル積と観測

観測者を含む系全体はテンソル積 𝐇_𝐭𝐨𝐭𝐚𝐥 = 𝐇 ⊗ 𝐇_𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐫 によって記述される。このテンソル積は、カテゴリー 𝐇𝐢𝐥𝐛 におけるモノイド構造形成する。

3. 状態の重ね合わせと分岐

状態 |Ψ⟩ は、ヒルベルト空間対象として、直和 ⊕ によって表現される。

|Ψ⟩ = ⊕_i c_i |ϕ_i⟩

観測者の状態 |O⟩ も同様にテンソル積の対象として扱われる。

観測プロセスは、モノイド射としてのテンソル積を用いて次のように表現される。

|Ψ_𝐭𝐨𝐭𝐚𝐥⟩ = ⊕_i c_i (|ϕ_i⟩ ⊗ |O_0⟩) → ⊕_i c_i (|ϕ_i⟩ ⊗ |O_i⟩)

ここで、|O_i⟩ は観測者が結果 i を観測した後の状態である

4. 分岐抽象的な表現

観測者の知識による分岐は、ファイバー束の概念を用いて抽象化できる。各観測結果に対する分岐は、ファイバーとして異なる基底を持つ束のように扱われる。

5. 確率と射の重み

ボルン規則に基づく確率は、射の重みとしてカテゴリー内で扱われる。具体的には、射のノルムとして次のように表現される。

P(i) = ‖c_i‖²

この確率は、観測者がどのファイバー経験するかの確率として解釈される。

6. 結論

この定式化により、多世界解釈カテゴリー理論代数的構造を用いて、観測者の知識がどの世界分岐するかを決定する要因として数学的に表現される。

観測者の状態と系の状態テンソル積を通じて絡み合うことにより、知識更新世界分岐を引き起こすという視点が強調される。

ヒルベルト空間分析

1. 多様体としてのヒルベルト空間

ヒルベルト空間無限次元線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態位相特性を解析することが可能となる。

2. スキームとしてのヒルベルト空間

スキーム理論代数幾何学概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に自己共役作用素スペクトル分解を考慮し、各点を極大イデアル対応させる。このアプローチにより、量子状態観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態代数特性を解析することが可能となる。

3. Hom(-, S)による記述

ヒルベルト空間における射は、線形作用素として表現される。特にユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。

4. コホモロジー

ヒルベルト空間コホモロジーは、量子系のトポロジカル不変量を解析するための手段提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態パラメータ空間における幾何学位相性質記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。

5. 局所的断片からの再構築

ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態表現簡素化し、特定物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要役割を果たす。

6. 構造を保つ変換の群

ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性記述し、保存量や選択則の解析に利用される。例えば、回転対称性角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。

7. 距離空間としてのヒルベルト空間

ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態類似性を測る指標として用いられ、状態間の遷移確率やフィデリティ計算に利用される。これにより、量子状態距離特性を解析することが可能となる。

2024-08-16

量子論幾何学

量子論幾何学的側面は、数学的な抽象化を通じて物理現象記述する試みである

SO(3)とSU(2)

SO(3)は、3次元空間の回転を記述する特殊直交である

この群の要素は、3×3の直交行列行列式が1である

物理的には、SO(3)は角運動量の保存則や回転対称性に関連している。

SO(3)のリー代数は、3次元の反対称行列構成される。

SU(2)は、2×2の複素行列で行列式が1である特殊ユニタリである

SU(2)はSO(3)の二重被覆群であり、スピン1/2の系における基本的対称性記述する。

SU(2)のリー代数は、パウリ行列を基底とする3次元の実ベクトル空間である

SO(4)とその表現

SO(4)は、4次元空間の回転を記述する群である

SO(4)の要素は、4×4の直交行列行列式が1である

この群は、SU(2)×SU(2)として表現され、四次元の回転が二つの独立したSU(2)の作用として記述できることを示している。

これは、特にヤンミルズ理論一般相対性理論において重要役割を果たす。

ファイバー束とゲージ理論

ファイバー束は、基底空間ファイバー空間の組み合わせで構成され、局所的に直積空間として表現される。

ファイバー束の構造は、場の理論におけるゲージ対称性記述するために用いられる。

ゲージ理論

ゲージ理論は、ファイバー束の対称性を利用して物理的な場の不変性を保証する。

例えば、電磁場はU(1)ゲージ群で記述され、弱い相互作用SU(2)ゲージ群、強い相互作用SU(3)ゲージ群で記述される。

具体的には、SU(2)ゲージ理論では、ファイバー束のファイバーSU(2)群であり、ゲージ場はSU(2)のリー代数に値を持つ接続形式として表現される。

幾何学量子化

幾何学量子化は、シンプレクティック多様体量子力学的なヒルベルト空間に関連付ける方法である

これは、古典的位相空間上の物理量を量子化するための枠組みを提供する。

例えば、調和振動子位相空間量子化する際には、シンプレクティック形式を用いてヒルベルト空間構成し、古典的物理量を量子演算子として具体的に表現する。

コホモロジー

コホモロジーは、場の理論におけるトポロジー性質記述する。

特に、トポロジカルな場の理論では、コホモロジー群を用いて物理的な不変量を特徴づける。

例えば、チャーン・サイモン理論は、3次元多様体上のゲージ場のコホモロジー類を用いて記述される。

チャーン・サイモン理論

チャーン・サイモン理論は、3次元多様体上のゲージ場を用いて構成され、そのトポロジカル不変量を計算する。

この理論は、結び目不変量や3次元多様体の不変量を具体的に導出するために用いられる。

2024-07-18

[]ユニタリ宇宙論はいかにして熱力学一般化し、インフレーションエントロピー問題解決たか

量子力学観測問題に関する理論は、ユニタリ宇宙論の枠組みにおいてエントロピー観測関係を新たな視点から捉え直したものである

この理論では、宇宙を系、観測者、環境の3つのサブシステムに分割し、これらの相互作用を通じてエントロピーの変化を記述する。

この理論的枠組みにおいて、系のエントロピー観測者との相互作用によってのみ減少し、環境との相互作用によってのみ増加するという一般化された熱力学第二法則が導出される。

これは、量子力学的な観測過程熱力学的な観点から捉え直したものであり、量子測定理論と統計力学の融合を示唆している。

観測によるエントロピー減少の量子的メカニズムは、量子ベイズの定理を通じて厳密に記述される。

この定理は、量子状態更新フォン・ノイマンエントロピーの減少をもたらすことを数学的に示している。

具体的には、観測前の量子状態 ρ に対して、観測後の状態 ρ' のエントロピーが S(ρ') ≤ S(ρ) となることが証明される。

さらに、宇宙論インフレーションによって生成される長距離エンタングルメント効果により、観測されたビット数に対してエントロピーの減少が指数関数的に起こることが示されている。

これは、観測者の情報処理能力はるかに超えてエントロピーを減少させることができることを意味し、量子情報理論宇宙論を結びつける重要洞察である

この理論は、「インフレーションエントロピー問題」に対する解決策を提供する。

インフレーション無視できない体積で発生している限り、ほとんどすべての知的観測者が低エントロピーハッブル体積に存在することが導かれる。

これにより、我々が低エントロピー宇宙存在することの謎が説明される。

この理論は、量子デコヒーレンス概念とも密接に関連している。

デコヒーレンスは、量子系が環境相互作用することで量子的な重ね合わせ状態古典的状態に移行する過程説明するものであり、観測問題理解重要役割を果たす。

この理論は、デコヒーレンス過程エントロピー観点から捉え直したもの解釈することができる。

また、この理論は量子情報理論観点から重要意味を持つ。

量子エンタングルメントと量子情報関係性、特に量子測定理論における情報利得と擾乱のトレードオフなどの概念と密接に関連している。

これらの概念は、量子暗号や量子コンピューティングなどの応用分野にも重要な影響を与えている。

結論として、この理論量子力学観測問題に対して新たな視点提供し、量子力学熱力学宇宙論情報理論統合する試みとして高く評価される。

この理論は、量子力学の基礎的な問題に対する理解を深めるとともに、量子情報科学や宇宙論などの関連分野にも重要示唆を与えるものである

参考: https://arxiv.org/abs/1108.3080

2024-06-09

量子力学観測問題解釈模索

状態ベクトルの収縮は、ユニタリ変換による時間発展という過程露骨矛盾しているように思える。

どのように20世紀物理学者はこの問題に折り合いをつけていたのか。

ボーアによるコペンハーゲン観点

状態ベクトルは実際に量子論レベルでの実体を表すのではなく、観測者の心の状態を表していると主張している。

したがって、状態ベクトルの収縮という過程でのジャンプは単に観測者の知識状態不連続な変化の結果で、物理学実体を持ちうるような物理学的変化ではない。

環境によるデコヒーレンスという観点

観測という過程物理系はそれを取り巻く環境と解きほぐしようもなく絡み合うことになるという事実を利用する。

すると環境における自由度ランダムで、観測不能と考えられるため、その自由度を足し上げることによって、状態ベクトルによる記述ではなく密度行列による記述が得られる。

この密度行列が、基底に関して対角行列となる時、物理系は対角成分のうちの一つによって表される状態になり、その状態にある確率は対角成分の値によって与えられる。

世界という観点

状態ベクトルユニタリ変換による時間発展をし、物理学実体を表している。

その結果、観測においてはあらゆる観測結果が同時に存在する。

ただし、それらの観測結果のそれぞれが観測者の意識の異なる状態と絡み合っている。

したがって、対応する異なる意識状態もまた同時に存在し、それぞれが異なる世界体験し、異なる観測結果に遭遇することになる。

新しい物理理論という観点

量子力学の従来の定式化は暫定的で、観測過程意味づけをするために新しい物理理論必要という可能性もある。

ブロイボームの枠組みや、コンシステントヒストリー理論のような標準的量子力学と異なるような観測結果は持たないようなものもあるが、別な枠組みによれば、少なくとも原理的には標準的量子力学と新しい理論区別する実験存在すると思われる。

 

おそらく物理学者の大半は、これらの観点最初の3つの観点を抱いていると言っても良いと思われる。

そうした物理学者は、量子論形式が持つ数学的な優雅さは言うまでもなく、量子力学予言が目を見張るような形で例外なく実験によって立証されているということが、この理論が何ら変更を必要としていないということを示す、という議論をするかもしれない。

しかし、これらの物理学者のうち多くがそれでもなお量子力学に関する現状に居心地悪さを感じているかもしれない。

その理論に対する完全に認められた唯一の解釈存在しないという単純な事実が、この居心地悪さを煽っている。

2023-11-06

[] 複素ウィグナーエントロピー

複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウスユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数進化を考えるとき物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数複素数フィッシャー情報定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態ガウス加法ノイズを受けたときの複素ウィグナーエントロピー時間微分リンクしている。複素平面位相空間における準確率分布エントロピー特性分析するための適切な枠組みをもたらす可能性がある。

2023-09-20

熱力学の第2法則

つい最近エントロピー増田記事を見たが、ワイもちょっとだけメモすんで。

 

ユニタリ量子力学を想定した宇宙論があるとして、系・観測者・環境という3者がそこに存在すると考えられるわな。

 

から熱力学の第2法則は「系のエントロピーは観察者と相互作用しない限り減少できず、環境相互作用しない限り増加できない」と言い換えられんねん。

 

観察者と系の相互作用については、量子ベイズ定理から得られるわけや。

宇宙論インフレーションで生じる長距離エンタングルメントがあるが、宇宙エントロピー観測された情報ビット数に比例するのではなく、指数関数的に減少して、特定の観察者が脳が保存できる情報量よりもさらに多くのエントロピーを減少させられるってわけや。

 

2023-02-08

[]シュレーディンガーの猫のいくつかの解釈

シュレーディンガーアインシュタインに宛てて、量子力学コペンハーゲン解釈の重大な欠陥を明らかにするために、架空実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。

この効果を、原子というミクロ世界特殊性として片付けることはできるかもしれないが、その世界が、テーブル椅子、猫といったマクロ日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガー思考実験は、それを明らかにすることで、量子力学コペンハーゲン解釈不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしかさないし、死んだり生きていたりもしない。

ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。

この思考実験意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数宇宙複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。

 

1. シュレーディンガーのQBist猫について

通常の話では、波動関数は箱入りのネコ記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。

例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的歴史なのだ

今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数崩壊」と呼ぶものは、QBistにとっては、エージェント自分の 賭けに手を加えることなのだ。

重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合からである

QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである

 

2. ボーミアンについて

量子力学コペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。

ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?

量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。

なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたかである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。

 

3. 知識可能性について

シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識可能性と関係があるのだ。問題は、量子世界が非現実であることではなく、量子系を知識対象として安定化できないことである

通常の知識論理では、私たち質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。

 

4. 反実仮想的な本質

シュレーディンガー実験には、3つの基本的意味がある。

これらの本質的な特徴は「反実仮想」であり、何があるかないか現実)ではなく、何が可能不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想性質は、量子論運動法則よりも一般的であり、より深い構造を明らかにするものからだ。

量子論後継者は、運動法則根本的に異なるかもしれないが、反実仮想性質を示すことで、重ね合わせやエンタングルメントさらには新しい現象可能になるだろう。

シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理可能性を示唆していると主張したと一般に言われている。しかし、それは正反対であるシュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論理解しようとする試みは拒否されるべきであると考えたのである

シュレーディンガーは、量子力学波動関数は、個々のシステムの完全な物理記述提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼン論文に反発していたのであるEPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである

シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理記述提供し、2)それが「測定」が行われるまで常に彼自身シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベル言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである

もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学形式理解するための2つのアプローチである。いわゆる「多世界解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガー馬鹿にしていた結論に直面することになる。

 

5. 波動関数実在論について

シュレーディンガーの例は、量子システムの不確定性をミクロ領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学ミクロな系と同様にマクロな系にも不確定性を含意している。

問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということであるシュレーディンガーは、「手ぶれやピンボケ写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反関係にある。

ベルが彼の定理実験的に検証する前、量子力学技術が発展し、もつ状態実在性を利用し、巨視的なもつシステムを作り出す技術が開発される前、形而上学的な雲のオプションテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈必要である

波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈アプローチであるシュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数自由度を収容できる超高次元空間となる。

 

6. 超決定論について

不変集合論IST)は、エネルギーの離散的性質に関するプランク洞察を、今度は量子力学状態空間に再適用することによって導き出された量子物理学のモデルであるISTでは、量子力学連続ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想世界存在し、このような反実仮想世界は格子の構造矛盾している。このように、IST形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。

ISTでは、ISTの格子上にある状態は、世界アンサンブル対応し、各世界状態空間特別な部分集合上で進化する決定論的系である非線形力学理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。

アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界アンサンブル記述していると考えていたが、これは実現可能である特にシュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。

 

7. 関係量子力学について

シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学仮定である。 もし全ての性質関係であるならば、見かけ上のパラドックスは解消されるかもしれない。

猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかであるしかし、この現象は箱の外にある物理系には関係ない。

箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれ可能性があるからだ。

まり波動関数崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリ進化」は、外部システムに対する性質の実現確率進化を表すのである。 これが、量子論関係論的解釈における「見かけのパラドックス」の解決策とされる。

 

8. 多世界

物理学者たちは古典物理学では観測された現象説明できないことに気づき量子論現象論的法則発見された。 しかし、量子力学科学理論として受け入れられるようになったのは、シュレーディンガー方程式を考案してからである

シュレーディンガーは、自分方程式放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。

このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態崩壊することによって、量子系の進化記述する方程式としての普遍的有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールド存在が示されれる。これこそが、非局所的な作用回避し、自然界における決定論を守る一つの可能である

[1] https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

2012-09-24

http://anond.hatelabo.jp/20120924030123

いずれにしても、基底操作を実装して、それでマクロ操作を組むということですね。

その通り(何度も言うけど勘で書いてるので微妙に間違ってるかもしれない。本質的には外してないと思うけど…)。

そこが分かれば後のことは数学的詳細なので実装上は気にしなくてもいいと思う。

基底のところは正直かなり説明をはしょったので(少なくともベクトル空間についてよく知っていることを仮定した)、

からなくても無理は無いと思う。

拡張なしのオイラー式であれば、(v, e, f)という三次元空間の平面上の点が立体で、

それを表現するのは平面上に2つの独立したベクトルがあればいい、ということですよね。

これは完全にその通り。これが理解できるというのはかなり凄いと思います

操作」というのはその平面上で点を動かすことに対応していて、動かし方は無限にあるわけだけど、それらをどう表現できるかという話。

回転というのは、三次元でいうところの平面上の2つのベクトルが法線を中心にして回転する感じですか?

この辺はかなり抽象的な話なので、だいぶ意味が違う。

ここで言った「回転」というのは、「基底ベクトルの組を任意に回転(ユニタリー変換)してもやはり基底ベクトルの組になる」というような意味で、

具体的には2次元基底ベクトル(1,0)と(0,1)を45度回転した1/sqrt(2) (1,1)と1/sqrt(2) (-1,1)もまた基底ベクトルとみなせるというようなこと。

ここでは「ベクトル」はさっきの「立体を表す点を指すベクトル」ではなく「操作」そのもののことなので、「基底操作」についてそういうような

アナロジーが成り立つということを言いたかった。

厳密には「操作」自体はベクトル空間を構成しなくて、もっと広い(制約が緩い)概念であるところの群を構成する。

「基底操作」というのは群論言葉で言うと生成元のことで、全体の群を構成する生成元の取り方が複数あるということ。

まぁいずれにせよあんま気にしなくていいと思う。

個人的には、とにかく実装してしまうパワーが弱い方なので、実装力高い人はうらやましい。

  • 追記

「群」がずっと変換ミスで「郡」になっていたので修正しました。すんません。

 
ログイン ユーザー登録
ようこそ ゲスト さん