ここでいう「ユークリッド幾何学」とは、座標空間、ベクトル、三角関数、微分積分などの解析的手法を用いないいわゆる総合幾何学のことです(*1)。2020年8月現在の高校数学のカリキュラムでいえば、「数学A」の「図形の性質」に該当する分野です。
ユークリッド幾何学が不要だと思う理由は単純明快で、何の役にも立たないからです。大学に入って、「補助線を引いて、相似な三角形を作って~」とか「コンパスと定規による作図」みたいなパズルゲームをやることは絶対にありません(*2)。これは常識で考えても分かると思います。たとえば工学の研究で、ある物体の弧長や面積などを測定しなければならないとして、ユークリッド幾何学の補助線パズルが適用できる多角形や円などしか測れないのでは話になりません。一方、座標空間、ベクトル、三角関数、微分積分などの手法は一般的な現象を記述する上で必ず必要になります。
もちろん、たとえば三角比を定義するには、「三角形の内角の和は180度である」とか「2角が等しい三角形は相似である」といった初等幾何学の性質が必要になります。そのようなものを全て廃止せよと言っているわけではありません。しかし、高校1年生で習う余弦定理:
を証明してしまえば、原理的にはユークリッド幾何学の問題は解けます。それ以降は、ユークリッド幾何学的な手法や問題設定にこだわる必要はないと思いますし、実際それで問題ありません。
現状、少なくない時間がユークリッド幾何学に費やされています。数学の1単元を占めているだけではなく、その他の単元にもユークリッド幾何学の発想に影響された例や問題が多く登場します。たとえば、複素平面において4点の共円条件や垂直二等分線を求めさせる問題など。そして最も労費されているのは生徒の自習時間です。以前よりマシになったとはいえ、大学入試等には技巧的な図形問題が出題されるため、受験生はその対策に多大な時間を費やしています。
高校数学では以下のような事項が重要だと思います。ユークリッド幾何学を学ばせている時間があったら、このような分野を優先的に修められるようにすべきです。
これらの分野は数学の手法としても非常に強力ですし、大学以降で数学を学ぶ際、現実的な問題を数学や物理の問題として正確に記述する際に必ず必要になります。仮にユークリッド幾何学が何らかの場面で応用されるとしても、微分積分などと同レベルに重要だと真剣に主張する人っていらっしゃるでしょうか?
ユークリッド幾何学を初等教育で教えるべきだとする根拠には、大雑把に言って以下の4つがあると思います。
まず①は明らかにおかしいです。ユークリッド幾何学に限らず、数学のあらゆる命題は証明されるべきものだからです。高校の教科書を読めば、相加平均・相乗平均の不等式、点と平面の距離の公式、三角関数の加法定理、微分のライプニッツ則や部分積分の公式など、どれも証明されています。そもそも、数学の問題はすべて証明問題です。たとえば、関数の極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であるかそうでないかを定義や既知の性質に基づいて示す必要があります。したがって、ユークリッド幾何学だけが特に証明の考え方を学ぶのに有効だという理由はありません。
②もおかしいです。図形問題を扱うのはユークリッド幾何学だけではないからです。ベクトルや微分積分でも図形問題を扱います。たとえば、三角形の5心の存在や、チェバの定理、メネラウスの定理などはベクトルを用いても容易に示すことができます。また言うまでもなく、曲線の接線は微分で求めることができ、面積や体積は積分で求めることができます。また、ユークリッド幾何学の手法は問題ごとに巧い補助線などを発見しなければいけないのに対し、解析的な手法は一般に方針が立てやすく汎用的です。したがって、図形問題を扱うのにユークリッド幾何学の手法にこだわる理由はありません。
③は単なる個人の思い込みであり、科学的な根拠はありません。そもそも、数学教育の目的は「地頭」などを鍛えることではなく、「大学や実社会において必要な数学の素養を身につけること」のはずです。また、これも上ふたつと同様に「ユークリッド幾何学以外の数学では、『数学的直観』などは鍛えられないのか」という疑問に答えられておらず、ユークリッド幾何学を特別視する理由になっていません。
④もおかしいです。そもそも「歴史的に重要である」ことと「初等教育で教えるべき」という主張には何の関係もありません。歴史的に重要ならば教えるというなら、古代バビロニア、インド、中国などの数学は特に扱わないのはなぜでしょうか。もっと言えば、文字式や+-×÷などの算術記号が使われ始めたのでさえ、数学史的に見ればごく最近のことですが、昔はそれらを使わなかったからといって、今でもそれらを使わずに数学を記述するべき理由があるでしょうか。
数学で重要なのはその内容であるはずです。ユークリッド幾何学を擁護する論者は、「(表面的に)計算問題に見えるか、証明問題に見えるか」のようなところに価値を置いて、一方が数学教育的に有意疑だと見なしているようですが、そんな分類に意味は無いと思います。
大昔は代数の計算や方程式の解法(に対応するもの)は作図問題に帰着していたようですが、現代でそれと同様の手法を取るべき理由は全くありません。記述する内容が同じであれば、多項式や初等解析のような洗練された方法・重要な結果を導きやすい方法を用いればよいに決まっています(数学史家は別として)。同様に、ユークリッド幾何学も、解析的な手法で解ければそれでよく、技巧的な補助線パズルなどに興じたり、公理的な方法にこだわる必要はありません。
たとえば、放物線は直線と点からの距離が等しい点の軌跡として定義することもできますが、初等教育で重要なのは明らかに2次関数のグラフとして現れるものです。放物線を離心率や円錐の断面などを用いて導入したところで、結局やるのは二次関数の増減問題なのですから、最初から2次関数のグラフとして導入するのは理にかなっています。数学教育の題材は「計算問題か証明問題か」などではなく、このような観点で取捨選択すべきです。
三角比などを学んだあともユークリッド幾何学を教えたり、解析的な手法では煩雑になるがユークリッド幾何学の範疇ではエレガントに解けるような問題を出して受験生を脅したりするのは、意味が無いと思います。それは、「掛ける数」と「掛けられる数」を区別したり、中学で連立方程式を学ぶのに小学生に鶴亀算を教えるのと同様に、無駄なことをしていると思います。
----
(*1)
現代数学では、n次元ベクトル空間R^n = Re_1⊕...⊕Re_nに
(e_i, e_j) = δ_i,j (クロネッカーのデルタ)
で内積が定義される空間上の幾何学はすべてユークリッド幾何学に分類されます。したがって、上にあげた座標空間、ベクトル、微分積分、一次変換なども敢えて分類すればユークリッド幾何学です。しかし、ここではその意味でのユークリッド幾何学が不要と言っているのではありません。飽くまでも、技巧的な補助線問題や、公理的な方法にこだわることが不要だと言っています。
(*2)
数学科の専門課程で学ぶガロア理論では、コンパスと定規による作図可能性が論じられますが、これは「作図問題にガロア理論が応用できる」というだけであり、「ガロア理論を学ぶのに作図の知識が必要」というわけではありません。
これは常識で考えても分かると思います。
公準などから出発して厳密にやる幾何は不要(中高大学すべて) 中高でどこまでやるか(不要も含め)、の議論になってると思うんですけど 中学で座標、方程式や三角関数を使わない...
実際未だにユークリッドによるユークリッド幾何学をやってるのは日本くらいなのでは? ユークリッド幾何学という大きな括りで言えば、アメリカの中学はBirkhoff's axiomsによるユークリ...
定規と分度器で各公理を実験できるBirkhoff's axiomsが座標を使った幾何学より直感的ということにはあまり異存はないでしょう Birkhoff's axioms方式を推奨されてるようなので質問します 面...
現行のカリキュラムやるくらいなら数Aは丸々いらないまである データの分析と統計もいらん 中高の数学は広く浅くやりすぎ 大学以降の数学やる上で身にならない ベクトルだとか行列...
高校数学の解析は言うて完成度高いから変えなくていい 曖昧にされてるのは極限の定義、中間値、平均値、極限の準同型性の証明くらいのもんで、どれも十分直感的には明らかだし
でも文系だと大学入ってからいきなり統計を詰め込まれるのがつらいって話もあるからなあ 理系だと基本的な数学力高いから高校でやってない部分もなんとかできる人が多いみたいなの...
行列を一次変換まで教えていた 数学Ⅰ 数学ⅡB 数学Ⅲの最後の10年 基礎解析 代数幾何などの世代 この20年間が高校数学指導要領のベスト この後のABCとかになってから高校教育...
数学の記述としては座標系を入れないのは不自然というのは同意するよ 一旦入れた後で取り払って公理系を作ったりしないといけないのだろうし ただ、数学の自然な記述が人間の原始...
国民一般(中学、高校)向け数学教育、教科としての数学は、 一般教養として数学の応用価値と実用性(算術、数式、図形)の観点を 学ぶことを重視すべきだろうけど、 ある意味それ...
全くその通りで、だからアメリカなどはユークリッド幾何学の公理を洗練させてその元で論証を行う だからそれを否定する人が日本の数学徒に多いとしたら、それは日本の数学の教育が...
「ユークリッド距離」という理論上も実用上も重要な概念が、 教科としての数学の一単元(「図形」に関する半ば物理学の単元) として、人類が理解し納得するために、 「ユークリ...
何ゆうちょるんかさっぱわからんちん。。w
横だけど、ユークリッド距離という概念はベクトルのノルムとして理解したら良くて、技巧的な図形問題を解けるようになる必要はないって主張でしょ 図形パズルで遊ぶよりベクトルの...
いや、俺はテキトーに貼っただけだから知らんけど
180とか360って中途半端だから、円を1000度として、半円を500度でいいじゃん。といったらどうする?
ちなみに180というのは2パイ ぱいぱいであるが 4*90というのは4*3*3*10でもある。
パイは2つあるから360度でパイにすべきだ
易経とニーモック表を小学生に教えちゃえばいいんだよ。 個人的には小学生の時点で詭弁論理学逆説論理学が一人で読める地頭がある子供に 中学上がる冬休みにゲーデルエッシャーバ...
同意 現代数学のルーツがガロア理論にあることは間違いないが中学で作図などを教えたら 飛び級入学を許して、ゲーデルの不完全性定理やラッセルの論理学などどんどん読み進めるのが...
ユークリッド幾何学は学校で教える必要がある 公理から初めて論述によって命題を示すという手法は現代数学の基本 代数や微分積分などは計算だけできれば解けてしまうが ユークリッ...
ユークリッド幾何学不要派のような知識だけを得て万能感に浸っているのは愚者だと思う ガロアによる方程式の不可解性定理や作図不可能性定理、ゲーデルの不完全性定理などにより 知...
ユークリッド幾何学は不要 わざわざ方法制限する必要ないしな
同意。数1のなんちゃって統計と、aの初等幾何はいらん。 ベクトルが理系だけの範囲になるのもおかしい。
そもそも数学って必要? 俺は麻雀に使う数Aの確率くらいしか要らん気がする