(Ω, ℱ, (ℱ_t)_t≥0, ℙ) を完備確率空間とし、ℋ = L²(Ω, ℱ, ℙ) をヒルベルト空間とする。
状態変数を無限次元ヒルベルト空間 𝒳 の要素 x_t ∈ 𝒳 とする。
dx_t = A(x_t)dt + B(x_t)dW_t
ここで、A: 𝒳 → 𝒳 は非線形作用素、B: 𝒳 → ℒ₂(𝒰, 𝒳) はヒルベルト空間値作用素、W_t は 𝒰-値のシリンドリカルウィーナー過程である。
代表的主体の価値汎関数 V: 𝒳 → ℝ を以下のように定義する:
V(x) = sup_α∈𝒜 𝔼[∫₀^∞ e⁻ᵖᵗ ⟨U(c_t, l_t), μ⟩ dt | x₀ = x]
ここで、𝒜 は許容制御の集合、ρ > 0 は割引率、U: 𝒳 × 𝒳 → 𝒳 は効用作用素、μ は 𝒳 上の測度、⟨·, ·⟩ は内積を表す。
最適性の必要条件として、以下の無限次元 HJB 方程式が成立する:
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
ここで、DV と D²V はそれぞれ V のフレシェ微分と二階フレシェ微分、B* は B の共役作用素である。
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
Y(x) = F(K(x), L(x))
C(x) + I(x) = Y(x)
DU_c(C(x), L(x)) = DV(x)
DU_l(C(x), L(x)) = DV(x)F_L(K(x), L(x))
ここで、F, K, L, C, I はすべて 𝒳 上の非線形作用素である。
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
ここで、(T_i, M_i) は価格改定のタイミングと大きさを表す二重確率点列、δ はディラックのデルタ測度である。
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
ここで、𝒜 は線形作用素、𝒦 は非線形作用素、𝒮 はヒルベルト空間値作用素、W_t^π は 𝒳-値のシリンドリカルウィーナー過程である。
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
ここで、Θ, Φ_π, Φ_y, Σ はすべてヒルベルト空間上の線形作用素である。
ケインズ派モデルの一般均衡は、以下の確率偏微分方程式系の解として特徴付けられる:
dx_t = 𝒜(x_t, π_t, i_t)dt + ℬ(x_t, π_t, i_t)dW_t
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
y_t = 𝒴(x_t) - 𝒴*
𝔼[dV(x_t, π_t, i_t)] = ρV(x_t, π_t, i_t)dt - ⟨U(C(x_t), L(x_t)), μ⟩dt
1. 状態空間: 新古典派モデルでは実物変数のみで状態を記述するが、ケインズ派モデルでは名目変数(インフレ率、名目金利)も含む無限次元空間を考慮する。
2. 確率過程: 新古典派モデルは主に無限次元拡散過程を用いるが、ケインズ派モデルではマーク付きポアソン点過程も導入し、不連続な価格調整を表現する。
3. 均衡の特徴づけ: 新古典派モデルでは無限次元HJB方程式を用いるが、ケインズ派モデルでは確率偏微分方程式系を用いる。
4. 作用素の性質: 新古典派モデルでは主に非線形作用素を扱うが、ケインズ派モデルでは線形作用素と非線形作用素の組み合わせを扱う。
5. トポロジー: 新古典派モデルは主にヒルベルト空間のトポロジーを用いるが、ケインズ派モデルではより一般的なバナッハ空間やフレシェ空間のトポロジーを考慮する必要がある。