観察対象(物体や概念)がヒルベルト空間内の状態に変換される。この状態は以下のように表される:
|π(Item)⟩
次に、この状態を解釈するための基底状態(概念)が定義される:
|Iᵢ⟩
ここで、iは状態のラベルである。解釈はこれらの基底状態の線形結合として表現される。
観察者が選択した基底|i⟩に対して、状態|π(Item)⟩は以下のように表される:
R|π(Item)⟩ = Σᵢ αᵢ |Iᵢ⟩
ここで、αᵢは重み付け係数であり、以下の内積によって計算される:
αᵢ = ⟨Iᵢ | π(Item)⟩
この重み付け係数αᵢの絶対値の二乗|αᵢ|²は、観察者がその状態を特定の|Iᵢ⟩として解釈する確率を表す。
状態が解釈されると、システムはある特定の分類状態に「コラプス」する。この過程は以下のように記述される:
D = Σᵢ ιᵢ |Iᵢ⟩⟨Iᵢ|
ここで、ιᵢは観測結果として得られる固有概念を表す。最終的に得られる状態は、コラプスによって一つの値に決まる:
D|π(Item)⟩ → Collapse
このとき、システムは特定の状態|Iₚ⟩に収束し、他のすべての状態は消失する。
解釈プロセスは初期状態では混合状態(複数の可能性が共存する状態)である。これを密度行列ρで表すと:
ρ = Σᵢ αᵢ |Iᵢ⟩ Σᵢ αᵢ* ⟨Iᵢ|
ρ = Σᵢ |αᵢ|² |i⟩⟨i| + Σᵢ≠ₖ αᵢ* αₖ |i⟩⟨k|
最初の項は、異なる概念が識別可能な部分を示し、第二項は概念が区別不可能な干渉部分を示す。
S = -k_B Trace(ρ ln(ρ))
密度行列ρが対角化されているため、エントロピーは次のように簡略化される:
S = -k_B Σᵢ |αᵢ|² ln(|αᵢ|²)
コラプス後、システムは一つの状態に収束するため、最終的なエントロピーはゼロになる。このとき、エントロピーの減少は以下のように計算される:
Q = k_B T Σᵢ |αᵢ|² ln(|αᵢ|²)
ここで、Qは放出される熱量、Tは温度である。エントロピーの減少により、システムは環境に熱を放出し、全体のエントロピーが増加する。