はてなキーワード: 線形空間とは
∀x, y ∈ X, x ≿ y ∨ y ≿ x
∀x, y, z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z
∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は X において閉集合
∀x, y, z ∈ X, ∀α ∈ (0, 1), (x ≿ z ∧ y ≿ z) ⇒ αx + (1-α)y ≿ z
関数 u: X → ℝ が以下を満たすとき、u を選好関係 ≿ の効用関数と呼ぶ:
∀x, y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)
効用関数 u: X → ℝ に対して、任意の r ∈ ℝ に対する無差別集合 I_r を以下で定義する:
I_r = {x ∈ X | u(x) = r}
公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が連続であるとき、任意の r ∈ ℝ に対して、I_r は X の閉集合である。
証明:
u の連続性より、I_r = u^(-1)({r}) は X の閉集合である。
公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が準凹であるとき、任意の r ∈ ℝ に対して、I_r は凸集合である。
証明:
x, y ∈ I_r, α ∈ (0, 1) とする。u の準凹性より、
u(αx + (1-α)y) ≥ min{u(x), u(y)} = r
一方、u(αx + (1-α)y) > r とすると、公理 4 に矛盾する。
よって、u(αx + (1-α)y) = r となり、αx + (1-α)y ∈ I_r が示される。
X が Banach 空間のとき、関数 f: X → ℝ が点 x ∈ X で Gâteaux 微分可能であるとは、任意の h ∈ X に対して以下の極限が存在することをいう:
δf(x; h) = lim_{t→0} (f(x + th) - f(x)) / t
効用関数 u: X → ℝ が Gâteaux 微分可能であるとき、点 x ∈ X における財 i と財 j の間の限界代替率 MRS_{ij}(x) を以下で定義する:
MRS_{ij}(x) = -δu(x; e_i) / δu(x; e_j)
ただし、e_i, e_j は i 番目、j 番目の基底ベクトルとする。
X が Hilbert 空間で、効用関数 u: X → ℝ が二回連続 Fréchet 微分可能かつ強凹であるとき、任意の x ∈ X と任意の i ≠ j に対して、
∂MRS_{ij}(x) / ∂x_i < 0
証明:
u の強凹性より、任意の h ≠ 0 に対して、
⟨D²u(x)h, h⟩ < 0
これを用いて、MRS の偏導関数の符号を評価することで証明が完了する。
X が局所凸位相線形空間、p ∈ X* (X の双対空間)、w ∈ ℝ とする。
効用関数 u: X → ℝ が連続かつ準凹で、以下の問題の解 x* が存在するとき、
max u(x) subject to ⟨p, x⟩ ≤ w, x ∈ X
ある λ ≥ 0 が存在して、以下が成り立つ:
1. ⟨p, x*⟩ = w
2. ∀y ∈ X, u(y) > u(x*) ⇒ ⟨p, y⟩ > w
3. δu(x*; h) ≤ λ⟨p, h⟩, ∀h ∈ X
証明:
超平面分離定理を用いて、{y ∈ X | u(y) > u(x*)} と {y ∈ X | ⟨p, y⟩ ≤ w} が分離可能であることを示し、そこから条件を導出する。
1. (X, 𝒯) を局所凸ハウスドルフ位相線形空間とする。
2. ℱ ⊂ X を弱コンパクト凸集合とする。
3. 各 i ∈ I (ここで I は可算または非可算の指標集合) に対して、効用汎関数 Uᵢ: X → ℝ を定義する。Uᵢ は弱連続かつ擬凹とする。
4. 社会厚生汎関数 W: ℝᴵ → ℝ を定義する。W は弱連続かつ単調増加とする。
sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
定理: ℱ が弱コンパクトで、全ての Uᵢ が弱上半連続、W が上半連続ならば、最適解が存在する。
P: sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
D: inf[λ∈Λ] sup[y∈X] {W((Uᵢ(y))ᵢ∈I) - ⟨λ, y⟩}
定理 (強双対性): 適切な制約想定のもとで、sup P = inf D が成立する。
∂W を W の劣微分とし、∂Uᵢ を各 Uᵢ の劣微分とする。
0 ∈ ∂(W ∘ (Uᵢ)ᵢ∈I)(y*) + Nℱ(y*)
ここで、Nℱ(y*) は y* における ℱ の法錐である。
T: X → X* を以下のように定義する:
⟨Ty, h⟩ = Σ[i∈I] wᵢ ⟨∂Uᵢ(y), h⟩
ここで、wᵢ ∈ ∂W((Uᵢ(y))ᵢ∈I) である。
⟨Ty*, y - y*⟩ ≤ 0, ∀y ∈ ℱ
L: X → X を L = T ∘ Pℱ と定義する。ここで Pℱ は ℱ 上への射影作用素である。
定理: L のスペクトル半径 r(L) が1未満であれば、最適解は一意に存在し、反復法 y[n+1] = Ly[n] は最適解に収束する。
(Ω, 𝒜, μ) を確率空間とし、U: Ω × X → ℝ を可測な効用関数とする。
定理: 適切な条件下で、以下が成立する:
sup[y∈ℱ] ∫[Ω] U(ω, y) dμ(ω) = ∫[Ω] sup[y∈ℱ] U(ω, y) dμ(ω)
ヒルベルト空間は無限次元の線形空間だが、射影ヒルベルト空間として有限次元多様体のように扱うことができる。射影ヒルベルト空間 P(H) は、ヒルベルト空間 H の単位球面上のベクトルをスカラー倍による同値類で割った空間であり、量子状態の集合を位相的に解析するための空間だ。局所座標系は、例えば、正規直交基底を用いてチャートとして定義され、局所的にユークリッド空間に似た構造を持つ。この構造により、量子状態の位相的特性を解析することが可能となる。
スキーム理論は代数幾何学の概念であり、ヒルベルト空間においては作用素環を通じて状態空間を解析するために用いる。特に、自己共役作用素のスペクトル分解を考慮し、各点を極大イデアルに対応させる。このアプローチにより、量子状態の観測可能量を代数的にモデル化することができる。例えば、観測可能量としての作用素 A のスペクトルは、A = ∫ λ dE(λ) という形で表され、ここで E(λ) は射影値測度である。これにより、量子状態の代数的特性を解析することが可能となる。
ヒルベルト空間における射は、線形作用素として表現される。特に、ユニタリ作用素 U: H → H は、U*U = UU* = I を満たし、量子力学における対称変換を表す。これにより、系の時間発展や対称性を解析することができる。射影作用素は、量子状態の測定を表現し、観測可能量の期待値や測定結果の確率を計算する際に用いられる。これにより、量子状態の射影的性質を解析することが可能となる。
ヒルベルト空間のコホモロジーは、量子系のトポロジカル不変量を解析するための手段を提供する。例えば、ベリー接続 A = ⟨ψ(R) | ∇ | ψ(R)⟩ やベリー曲率 F = ∇ × A は、量子状態のパラメータ空間における幾何学的位相的性質を記述する。チャーン数は、∫ F により計算され、トポロジカル不変量として系のトポロジカル相を特徴付ける。これにより、量子系のトポロジカル特性を解析することが可能となる。
ヒルベルト空間の基底を用いて、空間を再構築する。直交基底 { |e_i⟩ } は、量子状態の展開に用いられ、|ψ⟩ = Σ_i c_i |e_i⟩ と表現される。これにより、状態の表現を簡素化し、特定の物理的状況に応じた解析を行う際に有用である。例えば、フーリエ変換は、状態を異なる基底で表現するための手法であり、量子状態の解析において重要な役割を果たす。
ヒルベルト空間における構造を保つ変換は、ユニタリ群 U(H) として表現される。これらの群は、量子系の対称性を記述し、保存量や選択則の解析に利用される。例えば、回転対称性は角運動量保存に対応し、ユニタリ変換は系の時間発展や対称性変換を記述する。これにより、量子系の対称性特性を解析することが可能となる。
ヒルベルト空間は、内積により誘導される距離を持つ完備距離空間である。具体的には、任意の状態ベクトル |ψ⟩ と |φ⟩ の間の距離は、||ψ - φ|| = √⟨ψ - φ, ψ - φ⟩ で定義される。この距離は、量子状態の類似性を測る指標として用いられ、状態間の遷移確率やフィデリティの計算に利用される。これにより、量子状態の距離的特性を解析することが可能となる。
経済を表現する空間を E とし、これを局所凸位相線形空間とする。価格空間 P を E の双対空間 E* の部分集合とし、商品空間 X を E の部分集合とする。
Z: P × Ω → X を一般化された超過需要関数とする。ここで Ω は外生パラメータの空間である。Z は以下の性質を満たす:
(b) 一般化された同次性:任意の λ > 0 に対して Z(λp, ω) ≈ Z(p, ω)
(c) 一般化されたワルラスの法則:<p, Z(p, ω)> = 0
ここで <・,・> は E* と E の間の双対性を表す
(d) 境界条件:p が P の境界に近づくとき、||Z(p, ω)|| は無限大に発散
価格の動的調整を表現するために、以下の無限次元力学系を導入する:
dp/dt = F(Z(p, ω))
ここで F: X → TP は C^1 級写像であり、TP は P の接束を表す。
定理1(均衡の存在):適切な位相的条件下で、Z(p*, ω) = 0 を満たす p* ∈ P が存在する。
証明の概略:KKM(Knaster-Kuratowski-Mazurkiewicz)の定理を一般化した不動点定理を応用する。
定理2(局所安定性):p* の近傍 U が存在し、初期値 p(0) ∈ U に対して、解軌道 p(t) は t → ∞ のとき p* に収束する。
証明の概略:リャプノフ関数 V(p) = ||Z(p, ω)||^2 / 2 を構成し、V の時間微分が負定値となることを示す。
不均衡状態における経済主体の行動を記述するために、以下の最適化問題を導入する:
最大化 U_i(x_i)
制約条件 <p, x_i> ≤ w_i + Σ_j p_j min{z_ij, 0}
ここで U_i は効用汎関数、w_i は初期富、z_ij は財 j に対する主体 i の超過需要である。
確率空間 (Ω, F, P) 上で、以下の確率微分方程式を考察する:
dp(t) = F(Z(p(t), ω))dt + σ(p(t), ω)dW(t)
ここで W(t) は適切な次元のウィーナー過程、σ はボラティリティ作用素である。
ε dp/dt = F(Z(p, ω))
この解析により、短期的な価格調整と長期的な均衡の関係を明らかにする。
定理3(一般化された不動点定理):P が局所凸位相線形空間 E の非空、凸、コンパクト部分集合であり、F: P → P が連続写像であるとき、F は不動点を持つ。
この定理を用いて、より一般的な経済モデルにおける均衡の存在を証明できる。
ε → 0 のとき、特異摂動問題 ε dp/dt = F(Z(p, ω)) の解の漸近挙動は、元の動的システムの長期的均衡と一致する。
そのslideshareの人はただのgiftedなのでもう少し他のを参考にした方がいいと思う。
機械学習に興味を持ってビショップ本に行くのもあまりお勧めできない。
過剰にベイジアンだし実際問題あそこまで徹底的にベイズにする必要は無いことも多いから。
よく知らんけどMRIとかの方面もだいぶ魑魅魍魎なので(DTIとか微分幾何学的な話がモリモリ出てくる)、
近づくなら覚悟と見通しを持ってやった方がいいんじゃないかなあという気はする。
オライリーの本は読んだことないけど悪くなさそう。「わかパタ」とか「続パタ」とかは定番でよい。
ビッグデータがどうとか世間では言ってるけど、データのビッグさはあんま気にしなくていいと思う。
ビッグデータを処理するためのインフラ技術というものはあるけど、数理的な手法としては別に大して変わらない。
(オンライン学習とか分散学習とかの手法はあるけど、わざわざそっち方面に行く意味も無いと思う。
超大規模遺伝子データベースからパターン検出したい、とかだとその辺が必要かもしれないけど…)
数学については、線形代数は本当に全ての基礎なのでやはり分かっておくとよい。
「キーポイント線形代数」とか「なっとくする行列・ベクトル」とか、他にも色々わかりやすいいい本がある。
(まあ固有値と固有ベクトルが計算できて計量線形空間のイメージがわかって行列式とかトレースとかにまつわる計算が手に馴染むくらい。ジョルダン標準形とかは別にいらん)
プログラミングはそのくらいやってるならそれでいいんじゃないか、という気はする。行列演算が入る適当なアルゴリズム(カルマンフィルタとか)が書けるくらいか。かく言う俺もあまり人の事は言えないけど。
処理をなるべく簡潔かつ構造的に関数に分割したり、抽象化して(同じ処理をする)異なるアルゴリズムに対するインターフェースを共通化したりとかのプログラミング技術的なところも意識できるとなおよい。
ggplot2は独自の世界観ですげえ構造化してあるんだけどやりすぎてて逆に使いづらい…と俺は思う…。
遺伝子のネットワークとかなんかそれ系の話をし出すと離散数学的なアルゴリズムが必要になってきて一気に辛くなるが、必要性を感じるまでは無視かなあ。
プログラミングの学習は向き不向きが本当に強烈で、個々人の脳の傾向によってどうしたらいいかが結構異なる気がしてる。
向いてるなら割とホイホイ書けるようになっちゃうし、向いてないなら(俺もだけど)試行錯誤が必要になる。
まあせいぜい頑張りましょう。
それはさすがにレベル低過ぎじゃね???
俺が学生の頃は「あの子と内積とりたい」とか(ディラックのブラケットを思い浮かべること)、数少ない女の子に群がる男を見て「ボーズアインシュタイン凝縮してる」とか、そういうのが普通に日常会話だったが。
今は社会に出てるので線形代数あたりのネタが多いな。内積も当然線形空間ネタなんだが、なんというか、ディラック記法を踏まえた文脈かどうかの違いが本質的。物理系のヒルベルト空間は必然的にその上に作用する作用素とセットだから。
そもそも例えじゃなくて文化資本の格差を時間の関数と見たときの厳密な表現だぞ。
他の科ならわざわざ数学に例えるなんてひくわぁ
文系ならそうだろうけど、理系でそれ言うと自分の馬鹿さ加減を宣伝してることになるぞ。
まともな理系の知識持ってる人間だったら「2階微分」で意味不明と思うなんて有り得ないよ。
うちの会社とか、どう逆立ちしても入社すらできないだろうなあ。
しかしこういう「勉強ダセェw」みたいな子、10年ぶりくらいに見たな…。なんか懐かしい感じ。どういうバックグラウンドの子なんだろう。
そもそも空間に内積が入ってるというのは、内積から自然に誘導されるノルムや距離や位相がある空間だということだ。
ノルム、距離、位相だけでは記述できない、内積によって規定される構造というのは、角度であり特に重要なのは直交という概念だね。
直交性というのは、その(線形)空間の中である意味「お互いに独立」な要素を決める。
n次元ユークリッド空間なら、n本の直交なベクトルを定義することができて、空間中の点はそれぞれのベクトルの方向に、「他のベクトルの方向には影響を与えず」独立に動かすことができる。
逆に、平行なベクトル同士では、互いに完全に影響を与え合う形でしか動かすことができない。平行性も内積によって定義される性質であり、これを従属と言う。
n本以下の平行でない適当なベクトルの組を持ってきたときに、内積を使って直交したベクトルの組を得ることもできる。グラムシュミットの直交化とかで。
空間中の直交なベクトルの組を見出すということは、空間の性質をかなり詳しく知るということになっていて、そのための演算として空間に定義された内積は超重要。
ベクトルに関する操作は、和、スカラー倍、ノルム、そして内積くらいしか高校では使っていない。内積という操作を禁止すると何ができなくなるかを考えてみるといい。
ちなみに内積は標準内積と呼ばれる高校で習う定義に限るものではなくて、内積の公理を満たす演算ならなんでもいい。
これは逆に空間にどういう構造を入れるか?というユーザの意思や物理的要請から決まるもの。内積の定義が各点で変わるような空間もあって、これは空間が曲がっているということに対応する。
ユークリッド空間みたいに平坦で内積が一様な空間というのは特別な空間ということだな。
また、線形空間という概念は実はユークリッド空間に限ったものでもなくて、空間の元に対して和やスカラー倍、単位元や逆元が定義されていて、いくつかの性質を満たせばよい。
これは例えば関数をたくさん集めてきた関数空間についても成り立つことがあって、そこに内積を定義することでユークリッド空間のベクトルの議論と完全に同じ話をすることができる。
俺の高校時代の物理の教師はまだマシだったかな。それでも今にして思えば分かってねーなというところはあるが。
数学教師の方が数が圧倒的に多いから、変なのに当たる確率も高かったのかもしれない。