「多様体」を含む日記 RSS

はてなキーワード: 多様体とは

2023-11-22

超弦理論って結局なんなの?

超ひも理論は、光子からクォークに至るまで、すべての粒子がゼロ次元の点ではなく1次元のひもであるという理論的枠組みのこと。

もし、あらゆる文脈で成り立つ超ひも理論バージョン発見されれば、宇宙性質記述するための単一数学モデルとして機能することになり、重力説明できない物理学標準モデルに取って代わる「万物理論」となるとされる。

超ひも理論の全貌を理解するには、広範な勉強必要だが、超ひも理論の主要な要素を知れば、その核となる概念基本的理解が得られるだろう。

 

1. 弦とブレーン

弦は一次元フィラメントで、開いた弦と閉じた弦の2種類がある。

開放弦は両端がつながっておらず、閉鎖弦は閉じたループ形成する。

ブレーン(「膜」という言葉に由来する)はシート状の物体で、その両端に弦を取り付けることができる。

ブレーンは量子力学ルールに従って時空を移動することができる。

 

2. 追加の空間次元

物理学者は、宇宙には3つの空間次元があると認めているが、超ひも理論家は、空間の追加次元記述するモデルを主張している。

超ひも理論では、カラビ・ヤウ多様体と呼ばれる複雑な折りたたみ形状にしっかりと圧縮されているため、少なくとも6つの追加次元は検出されない。

 

3. 量子重力

理論は量子物理学一般相対性理論を融合させようとしているため、量子重力理論である

量子物理学原子素粒子のような宇宙で最も小さな物体研究するが、一般相対性理論は通常、宇宙でよりスケールの大きな物体に焦点を当てる。

 

4. 超対称性

超弦理論としても知られる超対称性は、2種類の粒子、ボソンフェルミオン関係記述する。

超対称弦理論では、ボソン(または力の粒子)は常にフェルミオン(または物質の粒子)と対になるものを持ち、逆もまた同様である

超対称性概念はまだ理論的なもので、科学者はまだこれらの粒子を見たことがない。

一部の物理学者は、ボソンフェルミオンを生成するには、とてつもなく高いエネルギーレベル必要からだと推測している。

これらの粒子は、ビッグバンが起こる前の初期の宇宙存在していたかもしれないが、その後、現在見られるような低エネルギーの粒子に分解されたのかもしれない。

大型ハドロン衝突型加速器世界で最も高エネルギーの粒子衝突型加速器)は、ある時点でこの理論を支持するのに十分なエネルギーを発生させるかもしれないが、今のところ超対称性証拠は見つかっていない。

 

5. 統一された力

理論家は、相互作用する弦を使って、自然界の4つの基本的な力(重力電磁気力、強い核力、弱い核力)がどのように万物統一理論を作り出しているか説明できると考えている。

 

超弦理論歴史

2023-11-13

数学宇宙仮説とは?

人生宇宙、そしてすべての意味とは何か?「銀河ヒッチハイク ガイド」では、答えは 42となっている。

科学質問範囲は、一部の分野では縮小し、他の分野では急増した。

宇宙ある意味数学であるという考えは、少なくとも古代ギリシャピタゴラス派にまで遡り、物理学者哲学者の間で何世紀にもわたる議論を生み出してきた。

マックス・テグマークはこの考えを極限まで推し進め、宇宙は単に数学によって記述されるのではなく、数学自体であると主張している。

この議論の基礎は、人間とは独立した外部の物理現実存在するという仮定である

これはそれほど物議を醸すものではない。物理学者の大多数はこの長年の考えを支持していると思うが、まだ議論されている。

形而上学独我論者はそれをきっぱり拒否し、量子力学のいわゆるコペンハーゲン解釈の支持者は、観察のない現実存在しないという理由でそれを拒否するかもしれない。

外部現実存在すると仮定すると、物理理論はそれがどのように機能するかを説明することを目的としている。

一般相対性理論量子力学など、最も成功した理論は、この現実の一部、たとえば重力素粒子挙動のみを説明している。

対照的に、理論物理学の聖杯はすべての理論、つまり現実の完全な記述である

現実人間とは独立して存在すると仮定する場合記述が完全であるためには、人間概念をまったく理解していない、人間以外の存在、つまりエイリアンスーパーコンピューターなどに従って、現実が明確に定義されていなければならない。

言い換えれば、そのような記述は、「粒子」、「観察」、またはその他の英語単語のような人間負担排除した形で表現可能でなければならない。

対照的に、教えられてきたすべての物理理論には 2 つの要素がある。

それは数式と、その方程式私たちが観察し直観的に理解しているものとどのように関連しているか説明する言葉である

理論の結果を導き出すとき陽子分子、星などの新しい概念を導入するが、それは便利だからである

原理的には、このようなバゲッジがなくてもすべてを計算できる。

たとえば、十分に強力なスーパーコンピューターは、何が起こっているか人間言葉解釈することなく、宇宙状態時間の経過とともにどのように進化するかを計算できる。

バゲッジを含まない外部現実記述を見つけることは可能か?

もしそうなら、外部現実における物体とそれらの間の関係のそのような記述は完全に抽象的でなければならず、あらゆる言葉記号は何の事前の意味も持たない単なるラベルにならざるを得ない。

代わりに、これらのエンティティの唯一のプロパティは、エンティティ間の関係によって具体化されるものになる。

ここで数学が登場する。

現代数学は、純粋抽象的な方法定義できる構造正式研究である。つまり数学構造発明するのではなく、それらを発見し、それらを記述するための表記法発明するだけである

人間から独立した外部の現実を信じるなら、テグマーク数学宇宙仮説と呼ぶもの、つまり物理現実数学構造であるということも信じなければならない。

言い換えれば、巨大な数学オブジェクトの中に住んでいる。

そのオブジェクトは、十二面体よりも精巧で、おそらくカラビ・ヤウ多様体テンソル束、ヒルベルト空間などの恐ろしい名前オブジェクトよりも複雑である

世界のすべてのものは、あなたも含めて純粋数学であるはずだ。

それが本当であれば、万物理論純粋抽象的で数学的でなければならない。

理論がどのようなものになるかはまだわからないが、素粒子物理学と宇宙論は、これまでに行われたすべての測定が、少なくとも原理的には、数ページに収まりわずか 32 個の未説明の数値定数を含む方程式説明できる段階に達している。

したがって、すべての正しい理論は、T シャツに書ける程度の方程式説明できるほど単純であることが判明する可能性さえある。

しかし、数学宇宙仮説が正しいかどうかを議論する前に、外部の物理現実を見る 2 つの方法区別することができる。

1 つは、上空から風景を観察する鳥のような、数学構造研究する物理学者の外側の概要

もう一つは、鳥によって見渡される風景の中に住むカエルのように、構造によって記述される世界に住む観察者の内面視点

これら 2 つの視点を関連付ける際の 1 つの問題時間関係する。

数学構造は、定義上、空間時間の外側に存在する抽象的で不変の存在である

宇宙歴史映画に例えると、その構造は 1 コマではなく DVD 全体に相当する。

したがって、鳥の視点から見ると、4 次元時空内を移動する物体の軌跡は、スパゲッティもつれに似ている。

カエルには一定の速度で動く何かが見えますが、鳥には調理されていないスパゲッティのまっすぐな束が見える。

カエル地球の周りを回る月を見ると、鳥は絡み合った2本のスパゲッティが見える。

カエルにとって、世界ニュートン運動重力法則によって記述される。

鳥にとって世界パスタ幾何学模様である

2 つの視点を関連付ける際のさらなる微妙な点には、観察者がどのようにして純粋数学的になることができるかを説明することが含まれる。

この例では、カエル自体は厚いパスタの束で構成されている必要がある。

その非常に複雑な構造は、おなじみの自己認識感覚を引き起こす方法情報を保存および処理する粒子に対応している。

では、数学宇宙仮説を検証するにはどうすればよいか?

まず、自然界ではさらなる数学規則性がまだ発見されていないことが予測される。

ガリレオ数学宇宙の考えを広めて以来、素粒子小宇宙と初期宇宙の大宇宙における驚くべき数学的秩序を捉える素粒子物理学の標準モデルなど、その系譜に沿った発見が着実に進歩してきた。

この仮説は、並行宇宙存在という、より劇的な予測も行う。

長年にわたって多くのタイプの「多元世界」が提案されてきましたが、それらを 4 つのレベル階層に分類することが役立つ。

最初の 3 つのレベルは、同じ数学構造内の非通信並行世界対応します。レベル I は単に、光がまだ到達していない遠い領域意味する。

レベル II は、介在する宇宙宇宙論的膨張により永遠に到達できない領域カバーする。

レベル III は「多世界」と呼ばれることが多く、特定の量子事象中に宇宙が「分裂」する可能性がある、量子力学のいわゆるヒルベルト空間の非通信部分が含まれる。

レベル IV は、根本的に異なる物理法則を持つ可能性がある、異なる数学構造並行世界を指す。

現在の最良の推定では、膨大な量の情報、おそらく Googolビット使用して、観測可能宇宙に対するカエル視点を、すべての星や砂粒の位置に至るまで完全に記述する。

ほとんどの物理学者は、これよりもはるかに単純で、T シャツには収まらないとしても、本に収まる程度のビット数で特定できるすべての理論を望んでいる。

数学宇宙仮説は、そのような単純な理論が多元宇宙予測するに違いないことを示唆している。

なぜなら、この理論定義上、現実の完全な記述であるからである

宇宙を完全に特定するのに十分なビットが不足している場合、星や砂粒などの考えられるすべての組み合わせを記述しなければならない。

そのため、宇宙記述する追加のビットは単にエンコードするだけである

世界電話番号のように、私たちがどの宇宙にいるのか。このように、複数宇宙記述することは、単一宇宙記述するよりも簡単になる可能性がある。

極限まで突き詰めると、数学宇宙仮説はレベル IV の多元宇宙意味し、その中に他のすべてのレベルが含まれる。

宇宙である特定数学構造があり、その特性物理法則対応している場合、異なる特性を持つそれぞれの数学構造は、異なる法則を持つ独自宇宙である

実際、数学構造は「作成」されるものではなく、「どこか」に存在するものではなく、ただ存在するだけであるため、レベル IV の多元宇宙必須である

スティーヴン・ホーキング博士はかつてこう尋ねた。

方程式に火を吹き込み、それらが記述できる宇宙を作り出すものは何でしょうか?」

数学宇宙場合重要なのは数学構造宇宙記述することではなく、それが宇宙であるということであるため、火を噴く必要はない。

レベル IV の多元宇宙存在は、物理学者のジョン・ウィーラーが強調した混乱する疑問にも答える。

たとえ宇宙を完全に記述する方程式が見つかったとしても、なぜ他の方程式ではなく、これらの特定方程式が使われるのか?

他の方程式が並行宇宙支配しており、観察者をサポートできる数学構造分布考慮すると、統計的可能性が高いため、宇宙にはこれらの特定方程式があるということだ。

並行世界科学範囲内なのか、それとも単なる推測に過ぎないのかを問うことは重要である

並行宇宙はそれ自体理論ではなく、特定理論によってなされた予測である

理論反証可能であるためには、そのすべての予測を観察および検証できる必要はなく、少なくともそのうちの 1 つだけを検証できれば十分である

たとえば、一般相対性理論は、重力レンズなど、私たちが観察できる多くのことを予測することに成功しているため、ブラックホールの内部構造など、私たちが観察できないことについての予測真剣に受け止めている。

ここに数学宇宙仮説の検証可能予測がある。

多くの並行宇宙存在するのであれば、我々は典型的宇宙にいると予想されるはずです。

ある量、たとえば、この量が定義されている多元宇宙の一部の典型的観測者によって測定された暗黒エネルギー密度空間次元確率分布計算することに成功したと仮定する。

この分布により、我々自身宇宙で測定された値が非常に非典型的ものになることが判明した場合、多宇宙、したがって数学宇宙仮説が除外されることになる。

生命要件理解するまでにはまだ程遠いが、暗黒物質、暗黒エネルギーニュートリノに関して私たち宇宙がどの程度典型的であるかを評価することで、多元宇宙予測テストを始めることができる。

なぜなら、これらの物質銀河形成など、よりよく理解されているプロセスにのみ影響を与えるからである

これらの物質存在量は、多元宇宙ランダム銀河から測定されるものとかなり典型的ものであると測定されている。

しかし、より正確な計算と測定では、そのような多元宇宙は依然として除外される可能性がある。

結局のところ、なぜ数学宇宙仮説を信じるべきか?

おそらく最も説得力のある反対意見は、直感に反して不安を感じるということである

数学宇宙仮説が真実であれば、科学にとって素晴らしいニュースであり、物理学と数学の洗練された統合により、深い現実理解できるようになる可能性がある。

実際、多元宇宙もつ数学宇宙は、期待できるすべての理論の中で最良のものであるかもしれない。

なぜなら、規則性を明らかにし、定量的予測を行うという科学的探求から現実いかなる側面も立ち入れないことを意味するからである

しか宇宙についての究極的な疑問を再び変えることになる。

どの特定の数式が現実のすべてを記述するのかという問題は見当違いであるとして放棄し、その代わりに、鳥の視点からカエル宇宙観、つまり観察をどのように計算するかを問うことになる。

それは、宇宙の真の構造を明らかにたかどうかを決定し、数学宇宙のどの隅が私たち故郷であるかを理解するのに役立つ。

 

参考文献: 数学的な宇宙 究極の実在の姿を求めて by マックス・テグマーク (著), 谷本 真幸 (翻訳)

2023-10-24

レアさんにてモテたくて猛勉強して東大に入ったがモテなくて通学しながらホストになった話をやっていた。

この手のテレビ企画定番なのが、いかにも頭のいいことやらせスタッフには全然理解してない合いの手を入れさせることだが、今回は複素関数積分で、東大生が定理適用の仕方を語ってるところにスタッフが「なるほど…」と理解してなさそうなトーンで言っていた。

しか東京大学学生にしては簡単なことやってるなーと違和感があった。

計算用紙も見たがもろ

https://eman-physics.net/math/imaginary11.html

のあたり扱ってる内容で、このサイト複素関数から読み始めれば理系マーチに入れる学力なら複素平面終えたての高校生でも数日で計算できるようになる内容だろう。

なんだろう、むしろスタッフがわからないふりをしてるというよりも、むしろスタッフ側が複素関数積分ぐらい知っててこれ東大生に言わせたらいかにもって感じじゃねって考えてて、むしろスタッフの方から東大生に何を言わせるか提案してると考えた方が自然に思えた。東大生におまかせしちゃうとそれこそゲージ理論多様体の話とか難しさに際限がなくなっちゃうから…ってそれでも問題なく思えるんだど、とにかく東大生が勉強してると言ってる内容にしては簡単すぎて不自然に感じたのだ。

俺がすごいと思ったのは仕事中に他のホストが今どれぐらい売り上げてるか頭の中で計算して記憶してるって話。自分ワーキングメモリじゃ不可能だわ…

2023-08-27

馬鹿

az67kl33bj71さん

2023/8/27 20:56

それはあなた基本的知識が少ないからです。

この程度の内容なら、学術書ではなく教育書です。

例えば、ラルース現代数学百科のリー群記述の一部を書くと、

群Gが解析的多様体構造をもち、G×GからGへの写像

(x,y) → xy が解析的であるもの

とありますが、これが分からないとなると、

まず大学数学の基本から勉強しなくてはならない事になります

高校生でも言葉さえ何を意味しているか分かれば、

何が書いているか分かる内容になっていると思います

解析的多様体が何か、群がなにか、解析的とは何かが分かっていたら、

こんな明晰な記述はありません。

バー

主に大学の授業の教科書として使われてて、なんとか大学なんとか教授著というような本。

明確に学術書教育書なんだよなあ…

2023-05-06

anond:20230506120425

間違いやら何やらいっぱい入ってて改善しないといけないところは無数にあるけど、普通にそこらの学生よりまともな作文をしてくるGPTに俺は衝撃を受けたし、多少の改善はまだ必要とはいえあれで仕事を肩代わりされてしまう人はそこそこいるだろうと思う まぁ実用に落とし込めるかどうかは別の話だけど

研究レベル革新的かと言われるとそりゃまだChatGPTから直接的に革新的ものは出てこないだろうな

単なる言語モデル走らせてるだけなんだし現状で人類の知らない新しい何かを生成できるかって言うとできないけど、GPTの改良の先にそこそこ革新的もの普通に出力される未来が見えるのが凄いんだよ 今まではそんなことできるとさえ思わなかったしな 人間の応答が単純な言語モデルだけで模倣できることが分かってきてしまって、結局人間の知性なんて大したことじゃなかったと判明した手前、人間の閃きは言語モデルの中にあるのか先にあるのかは今のところ誰にも分からん 俺はまだしばらく人間特権であってほしいけど明日かに急に何かできましたとか出てくるかもしれんしな

例に上がってるUMAPだって主成分分析しかなかったところに一足飛びに出てきたわけじゃないし、実際にはその途中で多様体学習の長い歴史がある 革新と思ってるなら単に間の歴史を知らんだけだよ

キャッチーなこと書いてるからミスリーディングだけど単に既存法のチューニング変えただけで、研究者なら多かれ少なかれ現場でやってたチューニングを仰々しく書き直して実装ちゃんとやったってだけだし、革新と思ってるものも実際にはそういう歴史と膨大な試行の上に地続きになってる そういう意味でChatGPTはゴールじゃなくて筋の良い試行第一

現状のGPTでできないことは無数にあるけど、例えば入力方式が違うとかそんな瑣末な問題なら俺みたいな末端でさえ改善策が無数に思いつくようなレベルだし、今何ができないとか議論しても意味ないんだよな 数週間ごとか数日後、もしくは数時間後に修正かかって何かを組み合わせると科学論文が大量生産されるとかもできるようになるかもしれないんだから

2022-12-24

ビッグバンを模式するために使われる風船のたとえをもって「全てが中心だ」と言い張る人がいる。

しかしこれは屁理屈だ。

普通人間はそんなふうには考えない。

膨張の基点は風船のゴム膜の中にではなくそれによって包まれている空気に満たされた空間の内部に一点だけ見出すのがまっとうな考えだろう。

ここから類推するならこの宇宙の中心はこの宇宙には無い。

たとえばこの宇宙三次元多様体の膜のようなものだと仮定するならその中心は四次元以上の座標系のある一点から放射状に膜が広がっていったと見ることができるだろう。

宇宙の全ての点で点同士が離れあっているというのはいわばコリオリみたいな見かけの現象だ。

次元真空のゆらぎから宇宙構成する一点ができたという仮説に基づくなら、その宇宙の一点が三次元に収まっているのあえていうなら最初の瞬間だけであり、それ以降は一点に収まってたものは、各々一点から四次元以上の意味での距離において等距離だけ遠ざかっているということである。見かけ各点同士が遠ざかっているのは、一点に対する離れ方が等距離からであり、実際の我々は絶えず高次元上の一点からまっすぐにどこかへと移動しているのだ。いきなり真空のゆらぎに無限次元仮定するのはオッカムの剃刀からしても妥当ではなかろうが、とにかく、最低でも膨張の基点に原点をおいたときその座標を構成する変数のうち4つ以上の変数絶対値が絶えず増加するような高次元旅行を我々はしているのだと思う。

2022-12-13

anond:20221213162631

例えばアルゴリズム作るときベクトル空間(計量線形空間)とか多様体とか微分方程式とかそういう言葉もたくさん出てくるんだけど、そんなのをいちいち「誰にでもわかる言葉」になんてしてたら仕事にならないんだよね。

2022-10-11

anond:20221011145711

それは知らねーな。カラビヤウ多様体をガキにわかやす説明するのがお前の仕事だろ

anond:20221011142341

さすがにこれは一般向けの解説でもいいか多様体学べって話かな?

2022-09-07

anond:20220907110352

仕事とか専門技術コンテキストが明文化されてる部分ではかなり高度にコンテキストを読んでいる

固有ベクトル」の一言で状況に応じて関数空間多様体のある程度細かい条件まで察して受け取るみたいなのはある。

2022-08-24

anond:20220824164233

知恵袋数学者気取りには数学用語以外の言葉についてはいちいち定義を求めて来る奴がいる。

察しようという発想は皆無らしい。

クラインの壺二次元多様体なのですがそれを四次元というのはどういうことですか」などとあろうことか抜かしてきた。クラインの壺四次元普通数学者でも通じるので、そこに食って掛かる奴はそうそうおらんだろ。

人として欠陥があるとしか思えない。

あんなんじゃ人に教授したり人の上に立つ仕事は任されないこと請け合いだな。

高校野球部のノリでいつまで立っても草野球してる奴と同じで、数学の分野で重職につけなかった輩が知恵袋にくすぶって人を馬鹿にするというしょうもない人生送ってるんだろう

2022-08-15

数学的な「多様体」の概念が、もっと社会に定着してほしい

まり数学では、ある図形に座標系が貼り付けられるときに「多様体」と呼ぶわけ。

社会的計量にも何かしら使えそうに思うのだが。

2022-02-16

anond:20220216194037

おお、マジレスが来るとは思わなかった。

それって座標近傍定義するときに困るっていうことなのか?ユークリッド空間の方は当然ハウスドルフだろうから

でもそれは逆に言えば普通やるように座標近傍が取れることを多様体定義にしたらハウスドルフ性はそこから従うんじゃねえのという気がするんだよな。

そうじゃなくて独立ハウスドルフ性を定義に加えてるということは、座標近傍存在して局所座標の上では極限が取れたとしてもそれが多様体側で整合しなくなるケースみたいなのがあるってことなんかな?

anond:20220216192852

そんな基本的なことじゃなくて(しかもそれは数学じゃなくて物理だ)、例えばそうだなあ、普通意味での多様体ハウスドルフ性を持ってることを前提とすると思うけど、ハウスドルフじゃないとどう困るもんなの?

2021-12-07

大学数学は嫌われて当然

小説だって何巻というのを無視して途中の巻から読めば作中特有概念人物を示す固有名詞でつまづくのは普通で、そうならないように何巻とか上下巻みたいな目印がある。

しか数学書はそういうのがなく仕方なく手に取ってみても行単位で見知らぬ固有名詞ぼんぼん出て来る。予備知識を手に入れようにも「前の巻」という概念自体がどうにもならない。

岩波基礎(!?)数学叢書かいうのに微分多様体の本があったと思うけどはしがきには基本的な解析数学代数学微積分学を既知のものとして扱っていると書いてあったと思う。

しかしたとえばお前の言う基本的代数学とは具体的にどこまでの範囲を指しているんだ?ていうか何の本を読めばいい?てかお前が大学時代読んできた本のなかでその範囲に属するものを列挙すりゃそれで済むし確実なのになぜそうしない?という言葉がつい漏れる。

だって同じ岩波基礎の本でもアフィン代数みたいな本があってこれが大学数学代数スタートラインにあたるものなのは確実だろうがそこのはしがきにはその応用は標準形は別の本にまとめられてると書いてあって確かにジョルダン標準形とか二次形式は別の本になっている。

しかしこれらもそれなりのボリュームがあるわけで読んでやっとのことで理解した後に「実はそこまで代数を掘り下げて学ぶ必要はなかった」と言われたんじゃ遅いわけ。

興味ある分野へ最短経路で学べるようになりたい人も当然多いわけで、実は不必要なのに無駄学習時間注ぎたくないわな。そわそわしてもこれは必要学習だということだから頑張れるわけで。

高校みたいに数1とか数2とかなってて高校行ってなくて道筋が明瞭でどうとでも独学できるのとはわけが違う。しかも全てのはしがきに予備知識として学ぶべきものが書いてあるわけじゃなくこのはしがきを頼りとした芋づる式で学ぶべき順番に見当をつける方法をもってしても袋小路に入ることもあるという…。んでどうでもいいことだが俺の学びたいものベクトル解析が必要なのかいまだに判断がつかない。

日本語一家言ある人や政治的思想がある人は検索してるうち日本語学や法律学論文に当たることもあるだろうけど、そもそも興味があるのもあって字面は難しそうでもじっくり読めば理解できなかったということはなかったはず。でも数学知識が無い人を門前払いです…。

ドラクエだかでファルスコクーンなんていうスラング象徴されてる現象プレイすればゲーム展開に沿って難なく解消されるわけで要するにそんなのよりずっとタチが悪いのが大学数学の現状

anond:20211206191058

ホモロジートポロジーを使わず多様体説明するのは不可能に近いけどな(もちろん啓発書にありがちな「分かった気にさせる」レベルは付加)

しかしそれらの数学言語として習得するには読書百遍も然りだがやはり一種地頭も不可欠なわけで…

2021-10-18

数学者への劣等感

劣等感ほどは無いんだけど、

高校同級生天才東大理1から東大数学科博士を出て、旧帝大数学ポストについている。

僕は普通に社会人になって、でもコツコツと数学自体勉強している。

  

数学レベルだが、自分は一応は大学レベル数学理解している。

代数学は雪江先生とかハーツホーン、幾何学多様体と数え上げ幾何学、解析はルベーグ関数解析とか。

佐藤幹夫先生数学が好き。工学微妙数学数学昇華してくれてて溜飲が下がるっていうか。

普通に大学院受かるくらいは勉強はしている。

  

しかし、数学論文全然読めるレベルじゃ無い。

難しすぎるね、数学論文は。

適当修士とか博士論文をコツコツ読んでるけど、それすら難しい。

  

もう30代になって、数学能力の伸びも小さくなってきた。

普通数学科の人は25くらいには研究レベルには到達してるんでしょうね。

僕は人より時間がかかるみたいです。

ああ。普通数学ができるようになりたいなあ。

2021-10-02

anond:20211001193500

でも言葉を洗練したものが数式だとして、数式という道具を発明たからこそ扱える領域があるのでは?多様体とかエキゾチックな球面とか言葉を持ってなかったころの人類が扱えたとはとうてい思えないんだけど。

そもそもAIやら気象予報の技術たらだって1人の人間だけの思考では完成するものじゃなくて、研究結果を複数人で共有していって考えを出し合うことによって生まれものじゃないの?そして思考の共有には言語必要

AI気象予報自体生存必須ではない便利なものという意味では意味では「言葉必要じゃない」「なぜなら言葉によって派生したもの必要じゃないからだ」と、むしろあなたの考えを補強することになりかねないけど。

しかしそれでも文体問題じゃないし、言葉だけでの問題じゃなくて、言葉を操ってそういう学問的に高度な領域に至ることができるような知性も必要で、そこには才能の比重が大きいと思う、俺なんか多様体の本どころか松坂の集合位相論で20ページでつまづくような数学の才能皆無な人間だったけど、こういう本によって人類は着実に深遠な方向へと思考を到達させていることは感じられるよ。

そもそも数式なんかは「写経」したところでその数式の言わんとすることを自分自身が分かったうえで出力できるようになるわけじゃないからなあ。門前小僧習わぬ経を読むから論語読みの論語知らずよ。写経することによって得られた数式の暗記や受け売り的な出力は記憶力はともかく知性については何も保証しないよ。

2021-09-07

暗記数学が正しい Part. 1

長くなりすぎたので、概要編と実践例に分けます

本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます

受験数学方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間無駄です。

受験諸君は悪質な情報に惑わされないようにしましょう。

よくある誤解と事実

まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます

誤解1: 暗記数学は、公式や解法を覚える勉強法である

暗記数学は、数学知識有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています

誤解2: 受験数学は暗記数学で十分だが、大学以降の数学は暗記数学では通用しない

類似の誤解として、

などがあります。これらは事実に反します。むしろ大学理学部工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナー大学入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。

嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。

そもそも、暗記数学別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックス勉強法です。和田秀樹氏らは、その実践例のひとつ提案しているに過ぎません。

暗記数学の要点

暗記数学の要点を述べます。これらは別に数学勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。

  1. 数学重要なのは、技巧的な解法をひらめくことではなく、基礎を確実に理解することである
  2. そのためには、具体的な証明計算例を通じて学ぶことが効果である
  3. 論理ギャップや式変形の意図などの不明点は曖昧にせず、調べたり他人に聞いたりして、完全に理解すべきである

ひらめきよりも理解

一番目は、従来数学重要ものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもの効果があると実証されたもの存在しません。

大学入試に限って言えば、入試問題大学研究活動をする上で重要知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。

実例を通じて理解する

二番目はいわゆる「解法暗記」です。なぜ実例重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識理解することが極めて困難だからです。たとえば、

などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数定義だけからその最大・最小値問題の解法を思いついたり、ベクトル内積定義線形性等の性質だけを習ってそれを幾何学問題に応用することは、非常に難しいです。したがって、それらの基本的概念性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります

これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールから直ちには明らかでない駒の活用法を身につける必要があります数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学理解するためにも豊富実例を通じて概念定理の使い方を理解する必要があります。そして、将棋において初心者独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者有益実例を見出すことも難しいです。したがって、教科書入試問題採用された教育効果の高い題材を通じて、数学概念意味や論証の仕方などを深く学ぶべきです。

そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に大学以降の数学抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナー大学入試の口頭試問などでは、以下のような質問が頻繁になされます


不明点を曖昧にしない

教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分理解絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。

たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。

  1. 文中に出てくる用語記号定義を言えるか。
  2. 今、何を示そうとしているのか、そのためには何が言えれば十分なのか。
  3. 式変形をしたり、ある性質を導くために、どのような定理を使ったのか。
  4. その定理仮定は何で、本当にその条件を満たしているのか。
  5. そもそもその定理は本当に成り立つのか。自力証明できるか。
  6. どういう理屈意図でそのような操作・式変形をするのか。

ほとんどの人はまず「自分数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理仮定結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。

まず、用語記号定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります

また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、

整数l, m, nに対して、2l = mnとする。このとき、mまたはnは2の倍数。

などと書いてあったら、これは

pが素数で、mnがpの倍数ならば、mまたはnはpの倍数。

という一般的定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、

a ≡ b (mod n) ⇒ mamb (mod n)

は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります

l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめ必要があります

さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理意図理解しなければいけません。たとえば、「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くありません。

そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているかかめると言うことです。

はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます

  • 問題文の条件をどう使うのか
  • 何が分かれば、目的のものが求まるのか
  • どのような主張が成り立てば、ある定理を使ったり、問題文の条件を示すのに十分なのか

こういうことを十分に考えた上で本を読み直せば、ひとつひとつ定義定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。

以上のことは、別に数学勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法道路交通法改正について説明することになったとしましょう。その時、そこに出てくる用語意味が分からないとか、具体的にどういう行為違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。

2021-07-18

せっかく英語のつづりに意味があるのにカタカナにするな

からある言葉しょうがないけど、現代海外から入ってくる言葉を無理にカタカナ表記にして、一見日本語っぽくするのをやめろ。

今、リコンファーム(reconfirm: [予約など]を再確認する)が話題になってて、そもそもカタカナとか英語とかじゃなくて「再確認」でええやろと思うけど、どうしても英語で言いたいならreとcon-firmに意味があるわけだからreconfirmって書けやって思う。

まあ発音日本式でもいいけどさ、たとえば「ハロー効果」ってあるけど、日本人ってまずこれ見たたときhelloか波浪と連想するよね?でも実際にはhaloで「後光」って意味。後光って意味を知らずに「はろー効果」っていう言葉だけ覚えるのむずかしいと思うわけよ。「ハロー注意報」と同じぐらい難しいんじゃない?

ホールケーキもさ、hole cakeだと思ってるんだろうな。a whole cakeで「ケーキまるごと1つ」って意味からカタカナにするともう1回英語に戻さないとわけわからなくなる。これは昔からある言葉からしょうがないんだろうけど……そうだからサイクリング(Cycling)、ライフサイクル(Life Cycle)、シリンダー(Cylinder)、サイクロン(Cyclone)、シクロアルカン(Cycloalkane)とかの共通点を見いだせず、1つ1つバラバラに覚えるハメになる。

パルスオキシメーター」とかさ、pulse oximeter[パルスオキシメーター]って併記したりルビふって書けばいいじゃん。pulseが波/振動、oxiが酸素、meterが計測器なんだから、「パルスオキシメーター」ってカタカナにして暗号化する必要ないじゃん。クリアホルダーとかな、clear folderで、clear(透明な)、fold(折りたたんで収納する)、er(やつ)なのに「ホルダー」とか書いてあるから「hold」と勘違いして、PCの「フォルダー」とは全然無関係ものだと感じてる人が多いんじゃないか

こういうのって、せっかく漢字で書けるのにわざわざカタカナにしてるのと同じなんだよな。外国人向けにわかやすくなると思って「誤解を招く発言をしてしまい失礼しました」を「ゴカイをマネハツゲンをシテシマイシツレイシマシタ」みたいに変えたり、「巨漢の男性玄関の扉をぶち破った」を「キョカンダンセイがゲンカンのトビラをブチヤブッタ」って変えるぐらい迷惑。ヨミニクイイガイはモンダイナイノデコウシタヒウキでもドッカイジタイはカノウダトオモウケド。

中国出身の人が、習近平を「シーチンピンってカタカナっぽく言わないで、わからない」っていうふうに言ってたけど、本当に外来語特に英語を誰のためにカタカナにしてるのか理解できない。英語がわかってる人もカタカナにされるとわからなくなる。発音が違うから認識できないし、普段カタカナで話さな英語カタカナにされると迷惑potatoはポディトゥって聞こえるからポテトって言われてもポディトゥのことだと認識できないって感覚。誰にとっても迷惑情報にたどり着きにくくなるだけではっきり言ってうざい。「この記事ポテトだ」って言っても「何が芋なんだ?」ってわけわかんないけど、「この記事potatoだ」なら、なんか日本語じゃない意味があるんだろうなって推測できるじゃん?

「ゴ・ジューのトオ」って書かれて何かすぐわかる?「ケンドウ・モツカナェイ」って書かれて何かすぐわかるか?

もとが外国語カタカナ意味がある。マーチャンダイザーっていうのは「merchandiser商品[merchandise]計画をする人)/ merchant: 商人」だし、インテークマホールド(エンジン空気を取り込む複数の弁[Intake: 吸入、manifold: 多様体])とか、インフォームド・コンセント(Informed[知らされた]、Consent[同意])とかさ。コロナ(Corona: かんむり)でいうとバリアント(Variant: 変異体、vary: に変える/を多様にする)もそう。ジングルベルも「Jingle: チリンチリン」で、チリンチリンって鳴るベルだし、全部意味があるのにカタカナ台無しスペルの1つ1つに歴史意味があるのに消してるんだよなあ。

マジみんな、なんのために今まで日本語存在してなかった外来語カタカナにしてんの。インディビジュアルなオピニオンのタームスでは、エジュケーションにアットオールコントビュートしないかナンセンスだとコンシダレイトなんだが?イディオットマストゲットリドオブでは?ファック。

2021-07-16

anond:20210716133717

から素粒子勉強してないんだよ。まじで知らないんだけど、例えば電磁場みたいなベクトル場の一般化として、空間の各点に多様体ファイバー)がくっついてるようなもん(ゲージ場)を考えてるんだろ?そんでそのファイバー作用する変換群がU(1)とかSU(2)とかいろいろあって、その群の既約表現に一つ一つ「素粒子」を対応させることができるような量子化存在するとかそういうことなんだろうなと思ってる。

超対称性ファイバー構造群かしらんけどその双対空間みたいなのを考えてるのか??と思ったけどどうも空間をでかくしてるっぽいな。元空間双対空間直積を考えるとかか?という気もするけどよく分からん。まじでわからんhttps://www.math.kyoto-u.ac.jp/~fukaya/stringdual.pdf

anond:20210716132337

X を非特異な複素射影多様体とすると、X 上のすべてのホッジ類は、

X の複素部分多様体コホモロジー類の

有理数係数の線形結合となるのではないか

解いて解いて

精神障害者無職ならもしかしたらUFO交信して解けるかもしれねえじゃん?

ログイン ユーザー登録
ようこそ ゲスト さん