「代数多様体」を含む日記 RSS

はてなキーワード: 代数多様体とは

2023-03-09

anond:20230309113735

おれ、chatGPT使えるようになって真っ先に望月新一ABC予想についての海外数学コミュニティでの受け止めについて聞いてみたんだけど、その時はまあまあちゃんとした内容(通り一遍ではあるが)が返ってきた。いま望月新一について尋ねてみたらこんなのが戻ってきた。

望月新一(もちづきしんいち)は、日本漫画家であり、推理小説家でもあります。彼は、特に名探偵コナン』の作者として知られています

望月新一は、1965年6月4日青森県青森市で生まれました。彼は若いから漫画小説を書くことに情熱を持っており、高校生の頃から漫画家としてのキャリアスタートさせました。

1994年に、望月新一は『名探偵コナン』を連載し始めました。この漫画は、高校生探偵江戸川コナンが、毒を飲まされて小さくなってしまった身体を利用して、事件解決するストーリーです。この作品は、世界中で大きな成功を収め、アニメ化映画化など、さまざまなメディアで展開されました。

望月新一は、漫画だけでなく、小説でも才能を発揮しています。『名探偵コナン』の小説版をはじめ、数多くの推理小説執筆しています

また、望月新一は、漫画小説以外にも、音楽にも興味を持っており、自ら作曲した楽曲使用したアニメーション作品もあります

望月新一は、日本漫画小説界に多大な影響を与えた偉大な作家の一人であり、彼の作品は今でも多くの人々に愛されています

いや数学者だろ、とツッコミを入れたら以下。もっともらしいがデタラメ多い、というか、望月拓郎とごた混ぜになっている。

望月新一あきら・もちづき)は、日本数学者であり、代数幾何学を専門としています。主に、モチヅキ理論モチヅキ加群モチヅキ因子などの研究で知られています

代数幾何学は、代数学幾何学の融合であり、代数方程式幾何学的な対象である代数多様体を研究する数学の分野です。望月新一は、代数多様体の幾何学性質研究する際に、代数手法を用いて新しい理論を発展させました。

具体的には、望月新一は、代数多様体上の「D加群」と呼ばれる特殊加群研究し、それを用いて、代数多様体の幾何学性質を解明しました。また、望月新一は、代数多様体上の「モチヅキ因子」と呼ばれるもの定義し、これを用いて、代数多様体の双有理幾何学に関する新しい理論を構築しました。

望月新一の業績は、代数幾何学の発展に大きく寄与し、現在でも代数幾何学の分野で重要研究が行われています

2020-06-29

anond:20200629153146

どうせほとんどの読者は高校数学さえ理解していないのだから、何を解説したって数学本質的理解は無理なのかもしれない

彼らには、以下はどれも同じに見えている

正の数X, Yに対して、log(XY) = log(X) + log(Y)

N元N次一次方程式は、N次正方行列AとN次元の列ベクトルx, bを用いて、Ax=bと書ける。

この方程式が一意的に解けるためには、Aの行列式が可逆であることが必要十分。

二次体の有限次Abel拡大は、1のべき根と、楕円モジュラー函数特殊値と、虚数乗法を持つ楕円曲線の等分点の座標で生成される。

Xを位数q=p^mの有限体F_q上のn次元非特異射影代数多様体、Y=X×_{F_q}(F_qの代数閉包)とすると、

#X(F_q) = ∑[i=0, 2n](-1)^i Tr(F_q, H^i(Y, Q_l))。

ここでF_qはFrobenius写像、H^i(Y, Q_l)はi次l進エタールコホモロジー(l≠p)。

Cをダークマター作用を持つN次元クリスタル、Xをそのアトラクターとすると、XからCへの次元変換Fは、固有なファクター方程式

F = F_1 ⊕ ... ⊕ F_N

を満たす。

仮に全編にわたって無意味なことを書いてもおそらく判別できないだろう。

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

 
ログイン ユーザー登録
ようこそ ゲスト さん